Loogle!
Result
Found 929 declarations whose name contains ".comap". Of these, 117 match your pattern(s).
- AddSubmonoid.comap ๐ Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid N) : AddSubmonoid M - Submonoid.comap ๐ Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid N) : Submonoid M - AddSubgroup.comap ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] (f : G โ+ N) (H : AddSubgroup N) : AddSubgroup G - Subgroup.comap ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_7} [Group N] (f : G โ* N) (H : Subgroup N) : Subgroup G - AddEquiv.comapAddSubgroup ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_5} [AddGroup H] (f : G โ+ H) : AddSubgroup H โo AddSubgroup G - MulEquiv.comapSubgroup ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {H : Type u_5} [Group H] (f : G โ* H) : Subgroup H โo Subgroup G - Setoid.comap ๐ Mathlib.Data.Setoid.Basic
{ฮฑ : Type u_1} {ฮฒ : Type u_2} (f : ฮฑ โ ฮฒ) (r : Setoid ฮฒ) : Setoid ฮฑ - Setoid.comapQuotientEquiv ๐ Mathlib.Data.Setoid.Basic
{ฮฑ : Type u_1} {ฮฒ : Type u_2} (f : ฮฑ โ ฮฒ) (r : Setoid ฮฒ) : Quotient (Setoid.comap f r) โ โ(Set.range (Quotient.mk'' โ f)) - Submodule.comap ๐ Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rโ : Type u_3} {M : Type u_5} {Mโ : Type u_7} [Semiring R] [Semiring Rโ] [AddCommMonoid M] [AddCommMonoid Mโ] [Module R M] [Module Rโ Mโ] {ฯโโ : R โ+* Rโ} {F : Type u_9} [FunLike F M Mโ] [SemilinearMapClass F ฯโโ M Mโ] (f : F) (p : Submodule Rโ Mโ) : Submodule R M - Submodule.comapSubtypeEquivOfLe ๐ Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] {p q : Submodule R M} (hpq : p โค q) : โฅ(Submodule.comap q.subtype p) โโ[R] โฅp - AddSubsemigroup.comap ๐ Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M โโ+ N) (S : AddSubsemigroup N) : AddSubsemigroup M - Subsemigroup.comap ๐ Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M โโ* N) (S : Subsemigroup N) : Subsemigroup M - NonUnitalSubsemiring.comap ๐ Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) (s : NonUnitalSubsemiring S) : NonUnitalSubsemiring R - Subsemiring.comap ๐ Mathlib.Algebra.Ring.Subsemiring.Basic
{R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] (f : R โ+* S) (s : Subsemiring S) : Subsemiring R - Subring.comap ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R โ+* S) (s : Subring S) : Subring R - Submodule.comap_equiv_self_of_inj_of_le ๐ Mathlib.Algebra.Module.Submodule.Equiv
{R : Type u_1} {M : Type u_5} {N : Type u_9} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {f : M โโ[R] N} {p : Submodule R N} (hf : Function.Injective โf) (h : p โค LinearMap.range f) : โฅ(Submodule.comap f p) โโ[R] โฅp - AddCon.comap ๐ Mathlib.GroupTheory.Congruence.Defs
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M โ N) (H : โ (x y : M), f (x + y) = f x + f y) (c : AddCon N) : AddCon M - Con.comap ๐ Mathlib.GroupTheory.Congruence.Defs
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M โ N) (H : โ (x y : M), f (x * y) = f x * f y) (c : Con N) : Con M - AddCon.comapQuotientEquivOfSurj ๐ Mathlib.GroupTheory.Congruence.Basic
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (c : AddCon M) (f : N โ+ M) (hf : Function.Surjective โf) : (AddCon.comap โf โฏ c).Quotient โ+ c.Quotient - Con.comapQuotientEquivOfSurj ๐ Mathlib.GroupTheory.Congruence.Basic
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (c : Con M) (f : N โ* M) (hf : Function.Surjective โf) : (Con.comap โf โฏ c).Quotient โ* c.Quotient - AddCon.comapQuotientEquiv ๐ Mathlib.GroupTheory.Congruence.Basic
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (c : AddCon M) (f : N โ+ M) : (AddCon.comap โf โฏ c).Quotient โ+ โฅ(AddMonoidHom.mrange (c.mk'.comp f)) - Con.comapQuotientEquiv ๐ Mathlib.GroupTheory.Congruence.Basic
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (c : Con M) (f : N โ* M) : (Con.comap โf โฏ c).Quotient โ* โฅ(MonoidHom.mrange (c.mk'.comp f)) - RingCon.comap ๐ Mathlib.RingTheory.Congruence.Defs
{R : Type u_2} {R' : Type u_3} {F : Type u_4} [Add R] [Add R'] [FunLike F R R'] [AddHomClass F R R'] [Mul R] [Mul R'] [MulHomClass F R R'] (J : RingCon R') (f : F) : RingCon R - NonUnitalSubring.comap ๐ Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) (s : NonUnitalSubring S) : NonUnitalSubring R - NonUnitalSubalgebra.comap ๐ Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A - Finsupp.comapDomain ๐ Mathlib.Data.Finsupp.Basic
{ฮฑ : Type u_1} {ฮฒ : Type u_2} {M : Type u_5} [Zero M] (f : ฮฑ โ ฮฒ) (l : ฮฒ โโ M) (hf : Set.InjOn f (f โปยน' โl.support)) : ฮฑ โโ M - Finsupp.comapDomain.addMonoidHom ๐ Mathlib.Data.Finsupp.Basic
{ฮฑ : Type u_1} {ฮฒ : Type u_2} {M : Type u_5} [AddZeroClass M] {f : ฮฑ โ ฮฒ} (hf : Function.Injective f) : (ฮฒ โโ M) โ+ ฮฑ โโ M - Finsupp.comapSMul ๐ Mathlib.Data.Finsupp.SMul
{ฮฑ : Type u_1} {M : Type u_3} {G : Type u_5} [Monoid G] [MulAction G ฮฑ] [AddCommMonoid M] : SMul G (ฮฑ โโ M) - Finsupp.comapMulAction ๐ Mathlib.Data.Finsupp.SMul
{ฮฑ : Type u_1} {M : Type u_3} {G : Type u_5} [Monoid G] [MulAction G ฮฑ] [AddCommMonoid M] : MulAction G (ฮฑ โโ M) - Finsupp.comapDistribMulAction ๐ Mathlib.Data.Finsupp.SMul
{ฮฑ : Type u_1} {M : Type u_3} {G : Type u_5} [Monoid G] [MulAction G ฮฑ] [AddCommMonoid M] : DistribMulAction G (ฮฑ โโ M) - Subalgebra.comap ๐ Mathlib.Algebra.Algebra.Subalgebra.Basic
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A โโ[R] B) (S : Subalgebra R B) : Subalgebra R A - Ideal.comap ๐ Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [Semiring R] [Semiring S] [FunLike F R S] (f : F) [RingHomClass F R S] (I : Ideal S) : Ideal R - NonUnitalStarSubalgebra.comap ๐ Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) (S : NonUnitalStarSubalgebra R B) : NonUnitalStarSubalgebra R A - DFinsupp.comapDomain ๐ Mathlib.Data.DFinsupp.Defs
{ฮน : Type u} {ฮฒ : ฮน โ Type v} {ฮบ : Type u_1} [(i : ฮน) โ Zero (ฮฒ i)] (h : ฮบ โ ฮน) (hh : Function.Injective h) (f : ฮ โ (i : ฮน), ฮฒ i) : ฮ โ (k : ฮบ), ฮฒ (h k) - DFinsupp.comapDomain' ๐ Mathlib.Data.DFinsupp.Defs
{ฮน : Type u} {ฮฒ : ฮน โ Type v} {ฮบ : Type u_1} [(i : ฮน) โ Zero (ฮฒ i)] (h : ฮบ โ ฮน) {h' : ฮน โ ฮบ} (hh' : Function.LeftInverse h' h) (f : ฮ โ (i : ฮน), ฮฒ i) : ฮ โ (k : ฮบ), ฮฒ (h k) - QuotientAddGroup.comapMk'OrderIso ๐ Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [hn : N.Normal] : AddSubgroup (G โงธ N) โo { H // N โค H } - QuotientGroup.comapMk'OrderIso ๐ Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [hn : N.Normal] : Subgroup (G โงธ N) โo { H // N โค H } - Submodule.comapMkQOrderEmbedding ๐ Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) : Submodule R (M โงธ p) โชo Submodule R M - Submodule.comapMkQRelIso ๐ Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) : Submodule R (M โงธ p) โo โ(Set.Ici p) - Filter.comap ๐ Mathlib.Order.Filter.Defs
{ฮฑ : Type u_1} {ฮฒ : Type u_2} (m : ฮฑ โ ฮฒ) (f : Filter ฮฒ) : Filter ฮฑ - MonoidAlgebra.comapDistribMulActionSelf ๐ Mathlib.Algebra.MonoidAlgebra.Defs
{k : Type uโ} {G : Type uโ} [Group G] [Semiring k] : DistribMulAction G (MonoidAlgebra k G) - StarSubalgebra.comap ๐ Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (f : A โโโ[R] B) (S : StarSubalgebra R B) : StarSubalgebra R A - Subfield.comap ๐ Mathlib.Algebra.Field.Subfield.Basic
{K : Type u} {L : Type v} [DivisionRing K] [DivisionRing L] (f : K โ+* L) (s : Subfield L) : Subfield K - CategoryTheory.Pi.comap ๐ Mathlib.CategoryTheory.Pi.Basic
{I : Type wโ} (C : I โ Type uโ) [(i : I) โ CategoryTheory.Category.{vโ, uโ} (C i)] {J : Type wโ} (h : J โ I) : CategoryTheory.Functor ((i : I) โ C i) ((j : J) โ C (h j)) - CategoryTheory.Pi.comapId ๐ Mathlib.CategoryTheory.Pi.Basic
(I : Type wโ) (C : I โ Type uโ) [(i : I) โ CategoryTheory.Category.{vโ, uโ} (C i)] : CategoryTheory.Pi.comap C id โ CategoryTheory.Functor.id ((i : I) โ C i) - CategoryTheory.Pi.comapEvalIsoEval ๐ Mathlib.CategoryTheory.Pi.Basic
{I : Type wโ} (C : I โ Type uโ) [(i : I) โ CategoryTheory.Category.{vโ, uโ} (C i)] {J : Type wโ} (h : J โ I) (j : J) : (CategoryTheory.Pi.comap C h).comp (CategoryTheory.Pi.eval (C โ h) j) โ CategoryTheory.Pi.eval C (h j) - CategoryTheory.Pi.comapComp ๐ Mathlib.CategoryTheory.Pi.Basic
{I : Type wโ} (C : I โ Type uโ) [(i : I) โ CategoryTheory.Category.{vโ, uโ} (C i)] {J : Type wโ} {K : Type wโ} (f : K โ J) (g : J โ I) : (CategoryTheory.Pi.comap C g).comp (CategoryTheory.Pi.comap (C โ g) f) โ CategoryTheory.Pi.comap C (g โ f) - Ultrafilter.comap ๐ Mathlib.Order.Filter.Ultrafilter.Defs
{ฮฑ : Type u} {ฮฒ : Type v} {m : ฮฑ โ ฮฒ} (u : Ultrafilter ฮฒ) (inj : Function.Injective m) (large : Set.range m โ u) : Ultrafilter ฮฑ - UniformSpace.comap ๐ Mathlib.Topology.UniformSpace.Basic
{ฮฑ : Type ua} {ฮฒ : Type ub} (f : ฮฑ โ ฮฒ) (u : UniformSpace ฮฒ) : UniformSpace ฮฑ - Embedding.comapUniformSpace ๐ Mathlib.Topology.UniformSpace.UniformEmbedding
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [TopologicalSpace ฮฑ] [u : UniformSpace ฮฒ] (f : ฮฑ โ ฮฒ) (h : Topology.IsEmbedding f) : UniformSpace ฮฑ - Topology.IsEmbedding.comapUniformSpace ๐ Mathlib.Topology.UniformSpace.UniformEmbedding
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [TopologicalSpace ฮฑ] [u : UniformSpace ฮฒ] (f : ฮฑ โ ฮฒ) (h : Topology.IsEmbedding f) : UniformSpace ฮฑ - IsUniformInducing.comapPseudoMetricSpace ๐ Mathlib.Topology.MetricSpace.Pseudo.Constructions
{ฮฑ : Type u_3} {ฮฒ : Type u_4} [UniformSpace ฮฑ] [m : PseudoMetricSpace ฮฒ] (f : ฮฑ โ ฮฒ) (h : IsUniformInducing f) : PseudoMetricSpace ฮฑ - Inducing.comapPseudoMetricSpace ๐ Mathlib.Topology.MetricSpace.Pseudo.Constructions
{ฮฑ : Type u_3} {ฮฒ : Type u_4} [TopologicalSpace ฮฑ] [m : PseudoMetricSpace ฮฒ] {f : ฮฑ โ ฮฒ} (hf : Topology.IsInducing f) : PseudoMetricSpace ฮฑ - Topology.IsInducing.comapPseudoMetricSpace ๐ Mathlib.Topology.MetricSpace.Pseudo.Constructions
{ฮฑ : Type u_3} {ฮฒ : Type u_4} [TopologicalSpace ฮฑ] [m : PseudoMetricSpace ฮฒ] {f : ฮฑ โ ฮฒ} (hf : Topology.IsInducing f) : PseudoMetricSpace ฮฑ - IsUniformEmbedding.comapMetricSpace ๐ Mathlib.Topology.MetricSpace.Basic
{ฮฑ : Type u_2} {ฮฒ : Type u_3} [UniformSpace ฮฑ] [m : MetricSpace ฮฒ] (f : ฮฑ โ ฮฒ) (h : IsUniformEmbedding f) : MetricSpace ฮฑ - Embedding.comapMetricSpace ๐ Mathlib.Topology.MetricSpace.Basic
{ฮฑ : Type u_2} {ฮฒ : Type u_3} [TopologicalSpace ฮฑ] [m : MetricSpace ฮฒ] (f : ฮฑ โ ฮฒ) (h : Topology.IsEmbedding f) : MetricSpace ฮฑ - Topology.IsEmbedding.comapMetricSpace ๐ Mathlib.Topology.MetricSpace.Basic
{ฮฑ : Type u_2} {ฮฒ : Type u_3} [TopologicalSpace ฮฑ] [m : MetricSpace ฮฒ] (f : ฮฑ โ ฮฒ) (h : Topology.IsEmbedding f) : MetricSpace ฮฑ - TopologicalSpace.Opens.comap ๐ Mathlib.Topology.Sets.Opens
{ฮฑ : Type u_2} {ฮฒ : Type u_3} [TopologicalSpace ฮฑ] [TopologicalSpace ฮฒ] (f : C(ฮฑ, ฮฒ)) : FrameHom (TopologicalSpace.Opens ฮฒ) (TopologicalSpace.Opens ฮฑ) - TopologicalSpace.OpenNhdsOf.comap ๐ Mathlib.Topology.Sets.Opens
{ฮฑ : Type u_2} {ฮฒ : Type u_3} [TopologicalSpace ฮฑ] [TopologicalSpace ฮฒ] (f : C(ฮฑ, ฮฒ)) (x : ฮฑ) : LatticeHom (TopologicalSpace.OpenNhdsOf (f x)) (TopologicalSpace.OpenNhdsOf x) - Sylow.comapOfInjective ๐ Mathlib.GroupTheory.Sylow
{p : โ} {G : Type u_1} [Group G] (P : Sylow p G) {K : Type u_2} [Group K] (ฯ : K โ* G) (hฯ : Function.Injective โฯ) (h : โP โค ฯ.range) : Sylow p K - Sylow.comapOfKerIsPGroup ๐ Mathlib.GroupTheory.Sylow
{p : โ} {G : Type u_1} [Group G] (P : Sylow p G) {K : Type u_2} [Group K] (ฯ : K โ* G) (hฯ : IsPGroup p โฅฯ.ker) (h : โP โค ฯ.range) : Sylow p K - LTSeries.comap ๐ Mathlib.Order.RelSeries
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [Preorder ฮฑ] [Preorder ฮฒ] (p : LTSeries ฮฒ) (f : ฮฑ โ ฮฒ) (comap : โ โฆx y : ฮฑโฆ, f x < f y โ x < y) (surjective : Function.Surjective f) : LTSeries ฮฑ - Sublattice.comap ๐ Mathlib.Order.Sublattice
{ฮฑ : Type u_2} {ฮฒ : Type u_3} [Lattice ฮฑ] [Lattice ฮฒ] (f : LatticeHom ฮฑ ฮฒ) (L : Sublattice ฮฒ) : Sublattice ฮฑ - TwoSidedIdeal.comap ๐ Mathlib.RingTheory.TwoSidedIdeal.Operations
{R : Type u_1} {S : Type u_2} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] {F : Type u_3} [FunLike F R S] (f : F) [NonUnitalRingHomClass F R S] : TwoSidedIdeal S โo TwoSidedIdeal R - PrimeSpectrum.comapEquiv ๐ Mathlib.RingTheory.Spectrum.Prime.RingHom
{R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (e : R โ+* S) : PrimeSpectrum R โ PrimeSpectrum S - BooleanSubalgebra.comap ๐ Mathlib.Order.BooleanSubalgebra
{ฮฑ : Type u_2} {ฮฒ : Type u_3} [BooleanAlgebra ฮฑ] [BooleanAlgebra ฮฒ] (f : BoundedLatticeHom ฮฑ ฮฒ) (L : BooleanSubalgebra ฮฒ) : BooleanSubalgebra ฮฑ - PrimeSpectrum.comap ๐ Mathlib.RingTheory.Spectrum.Prime.Topology
{R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (f : R โ+* S) : C(PrimeSpectrum S, PrimeSpectrum R) - IntermediateField.comap ๐ Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L โโ[K] L') (S : IntermediateField K L') : IntermediateField K L - CategoryTheory.GradedObject.comap ๐ Mathlib.CategoryTheory.GradedObject
(C : Type u) [CategoryTheory.Category.{v, u} C] {I : Type u_1} {J : Type u_2} (h : J โ I) : CategoryTheory.Functor (CategoryTheory.GradedObject I C) (CategoryTheory.GradedObject J C) - CategoryTheory.GradedObject.comapEquiv ๐ Mathlib.CategoryTheory.GradedObject
(C : Type u) [CategoryTheory.Category.{v, u} C] {ฮฒ ฮณ : Type w} (e : ฮฒ โ ฮณ) : CategoryTheory.GradedObject ฮฒ C โ CategoryTheory.GradedObject ฮณ C - CategoryTheory.GradedObject.comapEq ๐ Mathlib.CategoryTheory.GradedObject
(C : Type u) [CategoryTheory.Category.{v, u} C] {ฮฒ ฮณ : Type w} {f g : ฮฒ โ ฮณ} (h : f = g) : CategoryTheory.GradedObject.comap C f โ CategoryTheory.GradedObject.comap C g - LieSubalgebra.comap ๐ Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {Lโ : Type w} [LieRing Lโ] [LieAlgebra R Lโ] (f : L โโโ Rโ Lโ) (Kโ : LieSubalgebra R Lโ) : LieSubalgebra R L - LieSubmodule.comap ๐ Mathlib.Algebra.Lie.Submodule
{R : Type u} {L : Type v} {M : Type w} {M' : Type wโ} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] [AddCommGroup M'] [Module R M'] [LieRingModule L M'] (f : M โโโ R,Lโ M') (N' : LieSubmodule R L M') : LieSubmodule R L M - LieIdeal.comap ๐ Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wโ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] (f : L โโโ Rโ L') (J : LieIdeal R L') : LieIdeal R L - MeasurableSpace.comap ๐ Mathlib.MeasureTheory.MeasurableSpace.Basic
{ฮฑ : Type u_1} {ฮฒ : Type u_2} (f : ฮฑ โ ฮฒ) (m : MeasurableSpace ฮฒ) : MeasurableSpace ฮฑ - MeasureTheory.OuterMeasure.comap ๐ Mathlib.MeasureTheory.OuterMeasure.Operations
{ฮฑ : Type u_1} {ฮฒ : Type u_3} (f : ฮฑ โ ฮฒ) : MeasureTheory.OuterMeasure ฮฒ โโ[ENNReal] MeasureTheory.OuterMeasure ฮฑ - MeasureTheory.Measure.comap ๐ Mathlib.MeasureTheory.Measure.Comap
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [MeasurableSpace ฮฑ] [MeasurableSpace ฮฒ] (f : ฮฑ โ ฮฒ) (ฮผ : MeasureTheory.Measure ฮฒ) : MeasureTheory.Measure ฮฑ - MeasureTheory.Measure.comapโ ๐ Mathlib.MeasureTheory.Measure.Comap
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [MeasurableSpace ฮฑ] [MeasurableSpace ฮฒ] (f : ฮฑ โ ฮฒ) : MeasureTheory.Measure ฮฒ โโ[ENNReal] MeasureTheory.Measure ฮฑ - AffineSubspace.comap ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : AffineSubspace k Pโ - ZLattice.comap ๐ Mathlib.Algebra.Module.ZLattice.Basic
(K : Type u_1) [NormedField K] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace K E] [NormedAddCommGroup F] [NormedSpace K F] (L : Submodule โค E) (e : F โโ[K] E) : Submodule โค F - ZLattice.comap_equiv ๐ Mathlib.Algebra.Module.ZLattice.Basic
(K : Type u_1) [NormedField K] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace K E] [NormedAddCommGroup F] [NormedSpace K F] (L : Submodule โค E) (e : F โโ[K] E) : โฅL โโ[โค] โฅ(ZLattice.comap K L โe) - MvPolynomial.comap ๐ Mathlib.Algebra.MvPolynomial.Comap
{ฯ : Type u_1} {ฯ : Type u_2} {R : Type u_4} [CommSemiring R] (f : MvPolynomial ฯ R โโ[R] MvPolynomial ฯ R) : (ฯ โ R) โ ฯ โ R - MvPolynomial.comapEquiv ๐ Mathlib.Algebra.MvPolynomial.Comap
{ฯ : Type u_1} {ฯ : Type u_2} {R : Type u_4} [CommSemiring R] (f : MvPolynomial ฯ R โโ[R] MvPolynomial ฯ R) : (ฯ โ R) โ (ฯ โ R) - AlgebraicGeometry.StructureSheaf.comapFun ๐ Mathlib.AlgebraicGeometry.StructureSheaf
{R : Type u} [CommRing R] {S : Type u} [CommRing S] (f : R โ+* S) (U : TopologicalSpace.Opens โ(AlgebraicGeometry.PrimeSpectrum.Top R)) (V : TopologicalSpace.Opens โ(AlgebraicGeometry.PrimeSpectrum.Top S)) (hUV : V.carrier โ โ(PrimeSpectrum.comap f) โปยน' U.carrier) (s : (x : โฅU) โ AlgebraicGeometry.StructureSheaf.Localizations R โx) (y : โฅV) : AlgebraicGeometry.StructureSheaf.Localizations S โy - AlgebraicGeometry.StructureSheaf.comap ๐ Mathlib.AlgebraicGeometry.StructureSheaf
{R : Type u} [CommRing R] {S : Type u} [CommRing S] (f : R โ+* S) (U : TopologicalSpace.Opens โ(AlgebraicGeometry.PrimeSpectrum.Top R)) (V : TopologicalSpace.Opens โ(AlgebraicGeometry.PrimeSpectrum.Top S)) (hUV : V.carrier โ โ(PrimeSpectrum.comap f) โปยน' U.carrier) : โ((AlgebraicGeometry.Spec.structureSheaf R).val.obj (Opposite.op U)) โ+* โ((AlgebraicGeometry.Spec.structureSheaf S).val.obj (Opposite.op V)) - AddValuation.comap ๐ Mathlib.RingTheory.Valuation.Basic
{R : Type u_3} {ฮโ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop ฮโ] {S : Type u_6} [Ring S] (f : S โ+* R) (v : AddValuation R ฮโ) : AddValuation S ฮโ - Valuation.comap ๐ Mathlib.RingTheory.Valuation.Basic
{R : Type u_3} {ฮโ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero ฮโ] {S : Type u_7} [Ring S] (f : S โ+* R) (v : Valuation R ฮโ) : Valuation S ฮโ - ValuationSubring.comap ๐ Mathlib.RingTheory.Valuation.ValuationSubring
{K : Type u} [Field K] {L : Type u_1} [Field L] (A : ValuationSubring L) (f : K โ+* L) : ValuationSubring K - ConvexCone.comap ๐ Mathlib.Analysis.Convex.Cone.Basic
{๐ : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring ๐] [PartialOrder ๐] [IsOrderedRing ๐] [AddCommMonoid E] [AddCommMonoid F] [Module ๐ E] [Module ๐ F] (f : E โโ[๐] F) (S : ConvexCone ๐ F) : ConvexCone ๐ E - LocallyConstant.comap ๐ Mathlib.Topology.LocallyConstant.Basic
{X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) (g : LocallyConstant Y Z) : LocallyConstant X Z - PointedCone.comap ๐ Mathlib.Analysis.Convex.Cone.Pointed
{๐ : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring ๐] [PartialOrder ๐] [IsOrderedRing ๐] [AddCommMonoid E] [Module ๐ E] [AddCommMonoid F] [Module ๐ F] (f : E โโ[๐] F) (S : PointedCone ๐ F) : PointedCone ๐ E - ProperCone.comap ๐ Mathlib.Analysis.Convex.Cone.Proper
{E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace โ E] {F : Type u_2} [NormedAddCommGroup F] [InnerProductSpace โ F] (f : E โL[โ] F) (S : ProperCone โ F) : ProperCone โ E - OpenAddSubgroup.comap ๐ Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] (f : G โ+ N) (hf : Continuous โf) (H : OpenAddSubgroup N) : OpenAddSubgroup G - OpenSubgroup.comap ๐ Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] (f : G โ* N) (hf : Continuous โf) (H : OpenSubgroup N) : OpenSubgroup G - CategoryTheory.Subgroupoid.comap ๐ Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] {D : Type u_1} [CategoryTheory.Groupoid D] (ฯ : CategoryTheory.Functor C D) (S : CategoryTheory.Subgroupoid D) : CategoryTheory.Subgroupoid C - Mod_.comap ๐ Mathlib.CategoryTheory.Monoidal.Mod_
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] [CategoryTheory.MonoidalCategory C] {A B : Mon_ C} (f : A โถ B) : CategoryTheory.Functor (Mod_ B) (Mod_ A) - SimpleGraph.comap ๐ Mathlib.Combinatorics.SimpleGraph.Maps
{V : Type u_1} {W : Type u_2} (f : V โ W) (G : SimpleGraph W) : SimpleGraph V - SimpleGraph.Hom.comap ๐ Mathlib.Combinatorics.SimpleGraph.Maps
{V : Type u_1} {W : Type u_2} (f : V โ W) (G : SimpleGraph W) : SimpleGraph.comap f G โg G - SimpleGraph.Embedding.comap ๐ Mathlib.Combinatorics.SimpleGraph.Maps
{V : Type u_1} {W : Type u_2} (f : V โช W) (G : SimpleGraph W) : SimpleGraph.comap (โf) G โชg G - SimpleGraph.Iso.comap ๐ Mathlib.Combinatorics.SimpleGraph.Maps
{V : Type u_1} {W : Type u_2} (f : V โ W) (G : SimpleGraph W) : SimpleGraph.comap (โf.toEmbedding) G โg G - SimpleGraph.Subgraph.comap ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G โg G') (H : G'.Subgraph) : G.Subgraph - DFA.comap ๐ Mathlib.Computability.DFA
{ฮฑ : Type u} {ฯ : Type v} {ฮฑ' : Type u_1} (f : ฮฑ' โ ฮฑ) (M : DFA ฮฑ ฯ) : DFA ฮฑ' ฯ - DiscreteQuotient.comap ๐ Mathlib.Topology.DiscreteQuotient
{X : Type u_2} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) (S : DiscreteQuotient Y) : DiscreteQuotient X - LocallyConstant.comapAddMonoidHom ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [AddZeroClass Z] (f : C(X, Y)) : LocallyConstant Y Z โ+ LocallyConstant X Z - LocallyConstant.comapMonoidHom ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [MulOneClass Z] (f : C(X, Y)) : LocallyConstant Y Z โ* LocallyConstant X Z - LocallyConstant.comapRingHom ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Semiring Z] (f : C(X, Y)) : LocallyConstant Y Z โ+* LocallyConstant X Z - LocallyConstant.comapโ ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [CommSemiring R] [Semiring Z] [Algebra R Z] (f : C(X, Y)) : LocallyConstant Y Z โโ[R] LocallyConstant X Z - LocallyConstant.comapโ ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [Semiring R] [AddCommMonoid Z] [Module R Z] (f : C(X, Y)) : LocallyConstant Y Z โโ[R] LocallyConstant X Z - Filter.Realizer.comap ๐ Mathlib.Data.Analysis.Filter
{ฮฑ : Type u_1} {ฮฒ : Type u_2} (m : ฮฑ โ ฮฒ) {f : Filter ฮฒ} (F : f.Realizer) : (Filter.comap m f).Realizer - Matroid.comap ๐ Mathlib.Data.Matroid.Map
{ฮฑ : Type u_1} {ฮฒ : Type u_2} (N : Matroid ฮฒ) (f : ฮฑ โ ฮฒ) : Matroid ฮฑ - Matroid.comapOn ๐ Mathlib.Data.Matroid.Map
{ฮฑ : Type u_1} {ฮฒ : Type u_2} (N : Matroid ฮฒ) (E : Set ฮฑ) (f : ฮฑ โ ฮฒ) : Matroid ฮฑ - FirstOrder.Language.Substructure.comap ๐ Mathlib.ModelTheory.Substructures
{L : FirstOrder.Language} {M : Type w} {N : Type u_1} [L.Structure M] [L.Structure N] (ฯ : L.Hom M N) (S : L.Substructure N) : L.Substructure M - SingularManifold.comap ๐ Mathlib.Geometry.Manifold.Bordism
{X : Type u_1} [TopologicalSpace X] {k : WithTop โโ} {E : Type u_4} {H : Type u_5} {M : Type u_6} [NormedAddCommGroup E] [NormedSpace โ E] [FiniteDimensional โ E] [TopologicalSpace H] {I : ModelWithCorners โ E H} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I k M] [CompactSpace M] [BoundarylessManifold I M] (s : SingularManifold X k I) {ฯ : M โ s.M} (hฯ : Continuous ฯ) : SingularManifold X k I - NumberField.InfinitePlace.comap ๐ Mathlib.NumberTheory.NumberField.InfinitePlace.Ramification
{k : Type u_1} [Field k] {K : Type u_2} [Field K] (w : NumberField.InfinitePlace K) (f : k โ+* K) : NumberField.InfinitePlace k - CompleteSublattice.comap ๐ Mathlib.Order.CompleteSublattice
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [CompleteLattice ฮฑ] [CompleteLattice ฮฒ] (f : CompleteLatticeHom ฮฑ ฮฒ) (L : CompleteSublattice ฮฒ) : CompleteSublattice ฮฑ - ProbabilityTheory.Kernel.comapRight ๐ Mathlib.Probability.Kernel.Basic
{ฮฑ : Type u_1} {ฮฒ : Type u_2} {mฮฑ : MeasurableSpace ฮฑ} {mฮฒ : MeasurableSpace ฮฒ} {ฮณ : Type u_4} {mฮณ : MeasurableSpace ฮณ} {f : ฮณ โ ฮฒ} (ฮบ : ProbabilityTheory.Kernel ฮฑ ฮฒ) (hf : MeasurableEmbedding f) : ProbabilityTheory.Kernel ฮฑ ฮณ - ProbabilityTheory.Kernel.comap ๐ Mathlib.Probability.Kernel.Composition.MapComap
{ฮฑ : Type u_1} {ฮฒ : Type u_2} {mฮฑ : MeasurableSpace ฮฑ} {mฮฒ : MeasurableSpace ฮฒ} {ฮณ : Type u_4} {mฮณ : MeasurableSpace ฮณ} (ฮบ : ProbabilityTheory.Kernel ฮฑ ฮฒ) (g : ฮณ โ ฮฑ) (hg : Measurable g) : ProbabilityTheory.Kernel ฮณ ฮฒ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08