Loogle!
Result
Found 974 declarations whose name contains ".comap". Of these, 120 match your pattern(s).
- AddSubmonoid.comap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid N) : AddSubmonoid M - Submonoid.comap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid N) : Submonoid M - AddSubgroup.comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] (f : G β+ N) (H : AddSubgroup N) : AddSubgroup G - Subgroup.comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_7} [Group N] (f : G β* N) (H : Subgroup N) : Subgroup G - AddEquiv.comapAddSubgroup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_5} [AddGroup H] (f : G β+ H) : AddSubgroup H βo AddSubgroup G - MulEquiv.comapSubgroup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {H : Type u_5} [Group H] (f : G β* H) : Subgroup H βo Subgroup G - Setoid.comap π Mathlib.Data.Setoid.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} (f : Ξ± β Ξ²) (r : Setoid Ξ²) : Setoid Ξ± - Setoid.comapQuotientEquiv π Mathlib.Data.Setoid.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} (f : Ξ± β Ξ²) (r : Setoid Ξ²) : Quotient (Setoid.comap f r) β β(Set.range (Quotient.mk'' β f)) - Submodule.comap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (p : Submodule Rβ Mβ) : Submodule R M - Submodule.comapSubtypeEquivOfLe π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] {p q : Submodule R M} (hpq : p β€ q) : β₯(Submodule.comap q.subtype p) ββ[R] β₯p - AddSubsemigroup.comap π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ββ+ N) (S : AddSubsemigroup N) : AddSubsemigroup M - Subsemigroup.comap π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ββ* N) (S : Subsemigroup N) : Subsemigroup M - NonUnitalSubsemiring.comap π Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) (s : NonUnitalSubsemiring S) : NonUnitalSubsemiring R - Subsemiring.comap π Mathlib.Algebra.Ring.Subsemiring.Basic
{R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] (f : R β+* S) (s : Subsemiring S) : Subsemiring R - Subring.comap π Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R β+* S) (s : Subring S) : Subring R - Submodule.comap_equiv_self_of_inj_of_le π Mathlib.Algebra.Module.Submodule.Equiv
{R : Type u_1} {M : Type u_5} {N : Type u_9} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {f : M ββ[R] N} {p : Submodule R N} (hf : Function.Injective βf) (h : p β€ LinearMap.range f) : β₯(Submodule.comap f p) ββ[R] β₯p - AddCon.comap π Mathlib.GroupTheory.Congruence.Defs
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M β N) (H : β (x y : M), f (x + y) = f x + f y) (c : AddCon N) : AddCon M - Con.comap π Mathlib.GroupTheory.Congruence.Defs
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M β N) (H : β (x y : M), f (x * y) = f x * f y) (c : Con N) : Con M - AddCon.comapQuotientEquivOfSurj π Mathlib.GroupTheory.Congruence.Basic
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (c : AddCon M) (f : N β+ M) (hf : Function.Surjective βf) : (AddCon.comap βf β― c).Quotient β+ c.Quotient - Con.comapQuotientEquivOfSurj π Mathlib.GroupTheory.Congruence.Basic
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (c : Con M) (f : N β* M) (hf : Function.Surjective βf) : (Con.comap βf β― c).Quotient β* c.Quotient - AddCon.comapQuotientEquiv π Mathlib.GroupTheory.Congruence.Basic
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (c : AddCon M) (f : N β+ M) : (AddCon.comap βf β― c).Quotient β+ β₯(AddMonoidHom.mrange (c.mk'.comp f)) - Con.comapQuotientEquiv π Mathlib.GroupTheory.Congruence.Basic
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (c : Con M) (f : N β* M) : (Con.comap βf β― c).Quotient β* β₯(MonoidHom.mrange (c.mk'.comp f)) - RingCon.comap π Mathlib.RingTheory.Congruence.Defs
{R : Type u_2} {R' : Type u_3} {F : Type u_4} [Add R] [Add R'] [FunLike F R R'] [AddHomClass F R R'] [Mul R] [Mul R'] [MulHomClass F R R'] (J : RingCon R') (f : F) : RingCon R - NonUnitalSubring.comap π Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) (s : NonUnitalSubring S) : NonUnitalSubring R - NonUnitalSubalgebra.comap π Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (f : F) (S : NonUnitalSubalgebra R B) : NonUnitalSubalgebra R A - Finsupp.comapDomain π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} [Zero M] (f : Ξ± β Ξ²) (l : Ξ² ββ M) (hf : Set.InjOn f (f β»ΒΉ' βl.support)) : Ξ± ββ M - Finsupp.comapDomain.addMonoidHom π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} [AddZeroClass M] {f : Ξ± β Ξ²} (hf : Function.Injective f) : (Ξ² ββ M) β+ Ξ± ββ M - Finsupp.comapSMul π Mathlib.Data.Finsupp.SMul
{Ξ± : Type u_1} {M : Type u_3} {G : Type u_5} [Monoid G] [MulAction G Ξ±] [AddCommMonoid M] : SMul G (Ξ± ββ M) - Finsupp.comapMulAction π Mathlib.Data.Finsupp.SMul
{Ξ± : Type u_1} {M : Type u_3} {G : Type u_5} [Monoid G] [MulAction G Ξ±] [AddCommMonoid M] : MulAction G (Ξ± ββ M) - Finsupp.comapDistribMulAction π Mathlib.Data.Finsupp.SMul
{Ξ± : Type u_1} {M : Type u_3} {G : Type u_5} [Monoid G] [MulAction G Ξ±] [AddCommMonoid M] : DistribMulAction G (Ξ± ββ M) - Subalgebra.comap π Mathlib.Algebra.Algebra.Subalgebra.Basic
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A ββ[R] B) (S : Subalgebra R B) : Subalgebra R A - Ideal.comap π Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [Semiring R] [Semiring S] [FunLike F R S] (f : F) [RingHomClass F R S] (I : Ideal S) : Ideal R - NonUnitalStarSubalgebra.comap π Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) (S : NonUnitalStarSubalgebra R B) : NonUnitalStarSubalgebra R A - DFinsupp.comapDomain π Mathlib.Data.DFinsupp.Defs
{ΞΉ : Type u} {Ξ² : ΞΉ β Type v} {ΞΊ : Type u_1} [(i : ΞΉ) β Zero (Ξ² i)] (h : ΞΊ β ΞΉ) (hh : Function.Injective h) (f : Ξ β (i : ΞΉ), Ξ² i) : Ξ β (k : ΞΊ), Ξ² (h k) - DFinsupp.comapDomain' π Mathlib.Data.DFinsupp.Defs
{ΞΉ : Type u} {Ξ² : ΞΉ β Type v} {ΞΊ : Type u_1} [(i : ΞΉ) β Zero (Ξ² i)] (h : ΞΊ β ΞΉ) {h' : ΞΉ β ΞΊ} (hh' : Function.LeftInverse h' h) (f : Ξ β (i : ΞΉ), Ξ² i) : Ξ β (k : ΞΊ), Ξ² (h k) - QuotientAddGroup.comapMk'OrderIso π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [hn : N.Normal] : AddSubgroup (G β§Έ N) βo { H // N β€ H } - QuotientGroup.comapMk'OrderIso π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [hn : N.Normal] : Subgroup (G β§Έ N) βo { H // N β€ H } - Submodule.comapMkQOrderEmbedding π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) : Submodule R (M β§Έ p) βͺo Submodule R M - Submodule.comapMkQRelIso π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) : Submodule R (M β§Έ p) βo β(Set.Ici p) - Filter.comap π Mathlib.Order.Filter.Defs
{Ξ± : Type u_1} {Ξ² : Type u_2} (m : Ξ± β Ξ²) (f : Filter Ξ²) : Filter Ξ± - MonoidAlgebra.comapDistribMulActionSelf π Mathlib.Algebra.MonoidAlgebra.Defs
{k : Type uβ} {G : Type uβ} [Group G] [Semiring k] : DistribMulAction G (MonoidAlgebra k G) - StarSubalgebra.comap π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (f : A βββ[R] B) (S : StarSubalgebra R B) : StarSubalgebra R A - Subfield.comap π Mathlib.Algebra.Field.Subfield.Basic
{K : Type u} {L : Type v} [DivisionRing K] [DivisionRing L] (f : K β+* L) (s : Subfield L) : Subfield K - CategoryTheory.Pi.comap π Mathlib.CategoryTheory.Pi.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} (h : J β I) : CategoryTheory.Functor ((i : I) β C i) ((j : J) β C (h j)) - CategoryTheory.Pi.comapId π Mathlib.CategoryTheory.Pi.Basic
(I : Type wβ) (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] : CategoryTheory.Pi.comap C id β CategoryTheory.Functor.id ((i : I) β C i) - CategoryTheory.Pi.comapEvalIsoEval π Mathlib.CategoryTheory.Pi.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} (h : J β I) (j : J) : (CategoryTheory.Pi.comap C h).comp (CategoryTheory.Pi.eval (C β h) j) β CategoryTheory.Pi.eval C (h j) - CategoryTheory.Pi.comapComp π Mathlib.CategoryTheory.Pi.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} {K : Type wβ} (f : K β J) (g : J β I) : (CategoryTheory.Pi.comap C g).comp (CategoryTheory.Pi.comap (C β g) f) β CategoryTheory.Pi.comap C (g β f) - TwoSidedIdeal.comap π Mathlib.RingTheory.TwoSidedIdeal.Operations
{R : Type u_1} {S : Type u_2} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] {F : Type u_3} [FunLike F R S] (f : F) [NonUnitalRingHomClass F R S] : TwoSidedIdeal S βo TwoSidedIdeal R - Ultrafilter.comap π Mathlib.Order.Filter.Ultrafilter.Defs
{Ξ± : Type u} {Ξ² : Type v} {m : Ξ± β Ξ²} (u : Ultrafilter Ξ²) (inj : Function.Injective m) (large : Set.range m β u) : Ultrafilter Ξ± - UniformSpace.comap π Mathlib.Topology.UniformSpace.Basic
{Ξ± : Type ua} {Ξ² : Type ub} (f : Ξ± β Ξ²) (u : UniformSpace Ξ²) : UniformSpace Ξ± - Embedding.comapUniformSpace π Mathlib.Topology.UniformSpace.UniformEmbedding
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [u : UniformSpace Ξ²] (f : Ξ± β Ξ²) (h : Topology.IsEmbedding f) : UniformSpace Ξ± - Topology.IsEmbedding.comapUniformSpace π Mathlib.Topology.UniformSpace.UniformEmbedding
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [u : UniformSpace Ξ²] (f : Ξ± β Ξ²) (h : Topology.IsEmbedding f) : UniformSpace Ξ± - CategoryTheory.GradedObject.comap π Mathlib.CategoryTheory.GradedObject
(C : Type u) [CategoryTheory.Category.{v, u} C] {I : Type u_1} {J : Type u_2} (h : J β I) : CategoryTheory.Functor (CategoryTheory.GradedObject I C) (CategoryTheory.GradedObject J C) - CategoryTheory.GradedObject.comapEquiv π Mathlib.CategoryTheory.GradedObject
(C : Type u) [CategoryTheory.Category.{v, u} C] {Ξ² Ξ³ : Type w} (e : Ξ² β Ξ³) : CategoryTheory.GradedObject Ξ² C β CategoryTheory.GradedObject Ξ³ C - CategoryTheory.GradedObject.comapEq π Mathlib.CategoryTheory.GradedObject
(C : Type u) [CategoryTheory.Category.{v, u} C] {Ξ² Ξ³ : Type w} {f g : Ξ² β Ξ³} (h : f = g) : CategoryTheory.GradedObject.comap C f β CategoryTheory.GradedObject.comap C g - TopologicalSpace.Opens.comap π Mathlib.Topology.Sets.Opens
{Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] (f : C(Ξ±, Ξ²)) : FrameHom (TopologicalSpace.Opens Ξ²) (TopologicalSpace.Opens Ξ±) - TopologicalSpace.OpenNhdsOf.comap π Mathlib.Topology.Sets.Opens
{Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] (f : C(Ξ±, Ξ²)) (x : Ξ±) : LatticeHom (TopologicalSpace.OpenNhdsOf (f x)) (TopologicalSpace.OpenNhdsOf x) - Sylow.comapOfInjective π Mathlib.GroupTheory.Sylow
{p : β} {G : Type u_1} [Group G] (P : Sylow p G) {K : Type u_2} [Group K] (Ο : K β* G) (hΟ : Function.Injective βΟ) (h : βP β€ Ο.range) : Sylow p K - Sylow.comapOfKerIsPGroup π Mathlib.GroupTheory.Sylow
{p : β} {G : Type u_1} [Group G] (P : Sylow p G) {K : Type u_2} [Group K] (Ο : K β* G) (hΟ : IsPGroup p β₯Ο.ker) (h : βP β€ Ο.range) : Sylow p K - LTSeries.comap π Mathlib.Order.RelSeries
{Ξ± : Type u_1} {Ξ² : Type u_2} [Preorder Ξ±] [Preorder Ξ²] (p : LTSeries Ξ²) (f : Ξ± β Ξ²) (comap : β β¦x y : Ξ±β¦, f x < f y β x < y) (surjective : Function.Surjective f) : LTSeries Ξ± - Sublattice.comap π Mathlib.Order.Sublattice
{Ξ± : Type u_2} {Ξ² : Type u_3} [Lattice Ξ±] [Lattice Ξ²] (f : LatticeHom Ξ± Ξ²) (L : Sublattice Ξ²) : Sublattice Ξ± - PrimeSpectrum.comapEquiv π Mathlib.RingTheory.Spectrum.Prime.RingHom
{R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (e : R β+* S) : PrimeSpectrum R βo PrimeSpectrum S - BooleanSubalgebra.comap π Mathlib.Order.BooleanSubalgebra
{Ξ± : Type u_2} {Ξ² : Type u_3} [BooleanAlgebra Ξ±] [BooleanAlgebra Ξ²] (f : BoundedLatticeHom Ξ± Ξ²) (L : BooleanSubalgebra Ξ²) : BooleanSubalgebra Ξ± - PrimeSpectrum.comap π Mathlib.RingTheory.Spectrum.Prime.Topology
{R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (f : R β+* S) : C(PrimeSpectrum S, PrimeSpectrum R) - IntermediateField.comap π Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L ββ[K] L') (S : IntermediateField K L') : IntermediateField K L - LieSubalgebra.comap π Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {Lβ : Type w} [LieRing Lβ] [LieAlgebra R Lβ] (f : L βββ Rβ Lβ) (Kβ : LieSubalgebra R Lβ) : LieSubalgebra R L - LieSubmodule.comap π Mathlib.Algebra.Lie.Submodule
{R : Type u} {L : Type v} {M : Type w} {M' : Type wβ} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] [AddCommGroup M'] [Module R M'] [LieRingModule L M'] (f : M βββ R,Lβ M') (N' : LieSubmodule R L M') : LieSubmodule R L M - LieIdeal.comap π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] (f : L βββ Rβ L') (J : LieIdeal R L') : LieIdeal R L - MeasurableSpace.comap π Mathlib.MeasureTheory.MeasurableSpace.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} (f : Ξ± β Ξ²) (m : MeasurableSpace Ξ²) : MeasurableSpace Ξ± - IsUniformInducing.comapPseudoMetricSpace π Mathlib.Topology.MetricSpace.Pseudo.Constructions
{Ξ± : Type u_3} {Ξ² : Type u_4} [UniformSpace Ξ±] [m : PseudoMetricSpace Ξ²] (f : Ξ± β Ξ²) (h : IsUniformInducing f) : PseudoMetricSpace Ξ± - Inducing.comapPseudoMetricSpace π Mathlib.Topology.MetricSpace.Pseudo.Constructions
{Ξ± : Type u_3} {Ξ² : Type u_4} [TopologicalSpace Ξ±] [m : PseudoMetricSpace Ξ²] {f : Ξ± β Ξ²} (hf : Topology.IsInducing f) : PseudoMetricSpace Ξ± - Topology.IsInducing.comapPseudoMetricSpace π Mathlib.Topology.MetricSpace.Pseudo.Constructions
{Ξ± : Type u_3} {Ξ² : Type u_4} [TopologicalSpace Ξ±] [m : PseudoMetricSpace Ξ²] {f : Ξ± β Ξ²} (hf : Topology.IsInducing f) : PseudoMetricSpace Ξ± - IsUniformEmbedding.comapMetricSpace π Mathlib.Topology.MetricSpace.Basic
{Ξ± : Type u_2} {Ξ² : Type u_3} [UniformSpace Ξ±] [m : MetricSpace Ξ²] (f : Ξ± β Ξ²) (h : IsUniformEmbedding f) : MetricSpace Ξ± - Embedding.comapMetricSpace π Mathlib.Topology.MetricSpace.Basic
{Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ±] [m : MetricSpace Ξ²] (f : Ξ± β Ξ²) (h : Topology.IsEmbedding f) : MetricSpace Ξ± - Topology.IsEmbedding.comapMetricSpace π Mathlib.Topology.MetricSpace.Basic
{Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ±] [m : MetricSpace Ξ²] (f : Ξ± β Ξ²) (h : Topology.IsEmbedding f) : MetricSpace Ξ± - MeasureTheory.OuterMeasure.comap π Mathlib.MeasureTheory.OuterMeasure.Operations
{Ξ± : Type u_1} {Ξ² : Type u_3} (f : Ξ± β Ξ²) : MeasureTheory.OuterMeasure Ξ² ββ[ENNReal] MeasureTheory.OuterMeasure Ξ± - MeasureTheory.Measure.comap π Mathlib.MeasureTheory.Measure.Comap
{Ξ± : Type u_1} {Ξ² : Type u_2} [MeasurableSpace Ξ±] [MeasurableSpace Ξ²] (f : Ξ± β Ξ²) (ΞΌ : MeasureTheory.Measure Ξ²) : MeasureTheory.Measure Ξ± - MeasureTheory.Measure.comapβ π Mathlib.MeasureTheory.Measure.Comap
{Ξ± : Type u_1} {Ξ² : Type u_2} [MeasurableSpace Ξ±] [MeasurableSpace Ξ²] (f : Ξ± β Ξ²) : MeasureTheory.Measure Ξ² ββ[ENNReal] MeasureTheory.Measure Ξ± - AffineSubspace.comap π Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vβ : Type u_2} {Pβ : Type u_3} {Vβ : Type u_4} {Pβ : Type u_5} [Ring k] [AddCommGroup Vβ] [Module k Vβ] [AddTorsor Vβ Pβ] [AddCommGroup Vβ] [Module k Vβ] [AddTorsor Vβ Pβ] (f : Pβ βα΅[k] Pβ) (s : AffineSubspace k Pβ) : AffineSubspace k Pβ - ZLattice.comap π Mathlib.Algebra.Module.ZLattice.Basic
(K : Type u_1) [NormedField K] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace K E] [NormedAddCommGroup F] [NormedSpace K F] (L : Submodule β€ E) (e : F ββ[K] E) : Submodule β€ F - ZLattice.comap_equiv π Mathlib.Algebra.Module.ZLattice.Basic
(K : Type u_1) [NormedField K] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace K E] [NormedAddCommGroup F] [NormedSpace K F] (L : Submodule β€ E) (e : F ββ[K] E) : β₯L ββ[β€] β₯(ZLattice.comap K L βe) - MvPolynomial.comap π Mathlib.Algebra.MvPolynomial.Comap
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_4} [CommSemiring R] (f : MvPolynomial Ο R ββ[R] MvPolynomial Ο R) : (Ο β R) β Ο β R - MvPolynomial.comapEquiv π Mathlib.Algebra.MvPolynomial.Comap
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_4} [CommSemiring R] (f : MvPolynomial Ο R ββ[R] MvPolynomial Ο R) : (Ο β R) β (Ο β R) - AlgebraicGeometry.StructureSheaf.comapFun π Mathlib.AlgebraicGeometry.StructureSheaf
{R : Type u} [CommRing R] {S : Type u} [CommRing S] (f : R β+* S) (U : TopologicalSpace.Opens β(AlgebraicGeometry.PrimeSpectrum.Top R)) (V : TopologicalSpace.Opens β(AlgebraicGeometry.PrimeSpectrum.Top S)) (hUV : V.carrier β β(PrimeSpectrum.comap f) β»ΒΉ' U.carrier) (s : (x : β₯U) β AlgebraicGeometry.StructureSheaf.Localizations R βx) (y : β₯V) : AlgebraicGeometry.StructureSheaf.Localizations S βy - AlgebraicGeometry.StructureSheaf.comap π Mathlib.AlgebraicGeometry.StructureSheaf
{R : Type u} [CommRing R] {S : Type u} [CommRing S] (f : R β+* S) (U : TopologicalSpace.Opens β(AlgebraicGeometry.PrimeSpectrum.Top R)) (V : TopologicalSpace.Opens β(AlgebraicGeometry.PrimeSpectrum.Top S)) (hUV : V.carrier β β(PrimeSpectrum.comap f) β»ΒΉ' U.carrier) : β((AlgebraicGeometry.Spec.structureSheaf R).val.obj (Opposite.op U)) β+* β((AlgebraicGeometry.Spec.structureSheaf S).val.obj (Opposite.op V)) - AlgebraicGeometry.Scheme.IdealSheafData.comap π Mathlib.AlgebraicGeometry.IdealSheaf.Functorial
{X Y : AlgebraicGeometry.Scheme} (I : Y.IdealSheafData) (f : X βΆ Y) : X.IdealSheafData - AlgebraicGeometry.Scheme.IdealSheafData.comapIso π Mathlib.AlgebraicGeometry.IdealSheaf.Functorial
{X Y : AlgebraicGeometry.Scheme} (I : Y.IdealSheafData) (f : X βΆ Y) : (I.comap f).subscheme β CategoryTheory.Limits.pullback f I.subschemeΞΉ - AddValuation.comap π Mathlib.RingTheory.Valuation.Basic
{R : Type u_3} {Ξβ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Ξβ] {S : Type u_6} [Ring S] (f : S β+* R) (v : AddValuation R Ξβ) : AddValuation S Ξβ - Valuation.comap π Mathlib.RingTheory.Valuation.Basic
{R : Type u_3} {Ξβ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Ξβ] {S : Type u_7} [Ring S] (f : S β+* R) (v : Valuation R Ξβ) : Valuation S Ξβ - ValuationSubring.comap π Mathlib.RingTheory.Valuation.ValuationSubring
{K : Type u} [Field K] {L : Type u_1} [Field L] (A : ValuationSubring L) (f : K β+* L) : ValuationSubring K - ConvexCone.comap π Mathlib.Geometry.Convex.Cone.Basic
{R : Type u_2} {M : Type u_4} {N : Type u_5} [Semiring R] [PartialOrder R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : M ββ[R] N) (C : ConvexCone R N) : ConvexCone R M - LocallyConstant.comap π Mathlib.Topology.LocallyConstant.Basic
{X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) (g : LocallyConstant Y Z) : LocallyConstant X Z - PointedCone.comap π Mathlib.Geometry.Convex.Cone.Pointed
{R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [PartialOrder R] [IsOrderedRing R] [AddCommMonoid E] [Module R E] [AddCommMonoid F] [Module R F] (f : E ββ[R] F) (C : PointedCone R F) : PointedCone R E - ClosedSubmodule.comap π Mathlib.Topology.Algebra.Module.ClosedSubmodule
{R : Type u_2} {M : Type u_3} {N : Type u_4} [Semiring R] [AddCommMonoid M] [TopologicalSpace M] [Module R M] [AddCommMonoid N] [TopologicalSpace N] [Module R N] (f : M βL[R] N) (s : ClosedSubmodule R N) : ClosedSubmodule R M - ProperCone.comap π Mathlib.Analysis.Convex.Cone.Basic
{R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [PartialOrder R] [IsOrderedRing R] [AddCommMonoid E] [TopologicalSpace E] [Module R E] [AddCommMonoid F] [TopologicalSpace F] [Module R F] (f : E βL[R] F) (C : ProperCone R F) : ProperCone R E - OpenAddSubgroup.comap π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] (f : G β+ N) (hf : Continuous βf) (H : OpenAddSubgroup N) : OpenAddSubgroup G - OpenSubgroup.comap π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] (f : G β* N) (hf : Continuous βf) (H : OpenSubgroup N) : OpenSubgroup G - Matroid.comap π Mathlib.Data.Matroid.Map
{Ξ± : Type u_1} {Ξ² : Type u_2} (N : Matroid Ξ²) (f : Ξ± β Ξ²) : Matroid Ξ± - Matroid.comapOn π Mathlib.Data.Matroid.Map
{Ξ± : Type u_1} {Ξ² : Type u_2} (N : Matroid Ξ²) (E : Set Ξ±) (f : Ξ± β Ξ²) : Matroid Ξ± - CategoryTheory.Subgroupoid.comap π Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] {D : Type u_1} [CategoryTheory.Groupoid D] (Ο : CategoryTheory.Functor C D) (S : CategoryTheory.Subgroupoid D) : CategoryTheory.Subgroupoid C - Mod_.comap π Mathlib.CategoryTheory.Monoidal.Mod_
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.MonoidalCategory C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] [CategoryTheory.MonoidalCategory.MonoidalLeftAction C D] {A B : C} [Mon_Class A] [Mon_Class B] (f : A βΆ B) [IsMon_Hom f] : CategoryTheory.Functor (Mod_ D B) (Mod_ D A) - SimpleGraph.comap π Mathlib.Combinatorics.SimpleGraph.Maps
{V : Type u_1} {W : Type u_2} (f : V β W) (G : SimpleGraph W) : SimpleGraph V - SimpleGraph.Hom.comap π Mathlib.Combinatorics.SimpleGraph.Maps
{V : Type u_1} {W : Type u_2} (f : V β W) (G : SimpleGraph W) : SimpleGraph.comap f G βg G - SimpleGraph.Embedding.comap π Mathlib.Combinatorics.SimpleGraph.Maps
{V : Type u_1} {W : Type u_2} (f : V βͺ W) (G : SimpleGraph W) : SimpleGraph.comap (βf) G βͺg G - SimpleGraph.Iso.comap π Mathlib.Combinatorics.SimpleGraph.Maps
{V : Type u_1} {W : Type u_2} (f : V β W) (G : SimpleGraph W) : SimpleGraph.comap (βf.toEmbedding) G βg G - SimpleGraph.Subgraph.comap π Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G βg G') (H : G'.Subgraph) : G.Subgraph - DFA.comap π Mathlib.Computability.DFA
{Ξ± : Type u} {Ο : Type v} {Ξ±' : Type u_1} (f : Ξ±' β Ξ±) (M : DFA Ξ± Ο) : DFA Ξ±' Ο - DiscreteQuotient.comap π Mathlib.Topology.DiscreteQuotient
{X : Type u_2} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) (S : DiscreteQuotient Y) : DiscreteQuotient X - LocallyConstant.comapAddMonoidHom π Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [AddZeroClass Z] (f : C(X, Y)) : LocallyConstant Y Z β+ LocallyConstant X Z - LocallyConstant.comapMonoidHom π Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [MulOneClass Z] (f : C(X, Y)) : LocallyConstant Y Z β* LocallyConstant X Z - LocallyConstant.comapRingHom π Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Semiring Z] (f : C(X, Y)) : LocallyConstant Y Z β+* LocallyConstant X Z - LocallyConstant.comapβ π Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [CommSemiring R] [Semiring Z] [Algebra R Z] (f : C(X, Y)) : LocallyConstant Y Z ββ[R] LocallyConstant X Z - LocallyConstant.comapβ π Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [Semiring R] [AddCommMonoid Z] [Module R Z] (f : C(X, Y)) : LocallyConstant Y Z ββ[R] LocallyConstant X Z - Filter.Realizer.comap π Mathlib.Data.Analysis.Filter
{Ξ± : Type u_1} {Ξ² : Type u_2} (m : Ξ± β Ξ²) {f : Filter Ξ²} (F : f.Realizer) : (Filter.comap m f).Realizer - FirstOrder.Language.Substructure.comap π Mathlib.ModelTheory.Substructures
{L : FirstOrder.Language} {M : Type w} {N : Type u_1} [L.Structure M] [L.Structure N] (Ο : L.Hom M N) (S : L.Substructure N) : L.Substructure M - SingularManifold.comap π Mathlib.Geometry.Manifold.Bordism
{X : Type u_1} [TopologicalSpace X] {k : WithTop ββ} {E : Type u_4} {H : Type u_5} {M : Type u_6} [NormedAddCommGroup E] [NormedSpace β E] [FiniteDimensional β E] [TopologicalSpace H] {I : ModelWithCorners β E H} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I k M] [CompactSpace M] [BoundarylessManifold I M] (s : SingularManifold X k I) {Ο : M β s.M} (hΟ : Continuous Ο) : SingularManifold X k I - NumberField.InfinitePlace.comap π Mathlib.NumberTheory.NumberField.InfinitePlace.Ramification
{k : Type u_1} [Field k] {K : Type u_2} [Field K] (w : NumberField.InfinitePlace K) (f : k β+* K) : NumberField.InfinitePlace k - CompleteSublattice.comap π Mathlib.Order.CompleteSublattice
{Ξ± : Type u_1} {Ξ² : Type u_2} [CompleteLattice Ξ±] [CompleteLattice Ξ²] (f : CompleteLatticeHom Ξ± Ξ²) (L : CompleteSublattice Ξ²) : CompleteSublattice Ξ± - ProbabilityTheory.Kernel.comapRight π Mathlib.Probability.Kernel.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {mΞ± : MeasurableSpace Ξ±} {mΞ² : MeasurableSpace Ξ²} {Ξ³ : Type u_4} {mΞ³ : MeasurableSpace Ξ³} {f : Ξ³ β Ξ²} (ΞΊ : ProbabilityTheory.Kernel Ξ± Ξ²) (hf : MeasurableEmbedding f) : ProbabilityTheory.Kernel Ξ± Ξ³ - ProbabilityTheory.Kernel.comap π Mathlib.Probability.Kernel.Composition.MapComap
{Ξ± : Type u_1} {Ξ² : Type u_2} {mΞ± : MeasurableSpace Ξ±} {mΞ² : MeasurableSpace Ξ²} {Ξ³ : Type u_4} {mΞ³ : MeasurableSpace Ξ³} (ΞΊ : ProbabilityTheory.Kernel Ξ± Ξ²) (g : Ξ³ β Ξ±) (hg : Measurable g) : ProbabilityTheory.Kernel Ξ³ Ξ²
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 2c2d6a2
serving mathlib revision 6625861