Loogle!
Result
Found 2152 declarations mentioning Equiv, Equiv.symm, and Eq. Of these, 78 have a name containing ".symm_". Of these, 14 match your pattern(s).
- Equiv.symm_symm 📋 Mathlib.Logic.Equiv.Defs
{α : Sort u} {β : Sort v} (e : α ≃ β) : e.symm.symm = e - Equiv.symm_eq_iff_trans_eq_refl 📋 Mathlib.Logic.Equiv.Defs
{α : Sort u} {β : Sort v} {f : α ≃ β} {g : β ≃ α} : f.symm = g ↔ f.trans g = Equiv.refl α - Equiv.symm_swap 📋 Mathlib.Logic.Equiv.Basic
{α : Sort u_1} [DecidableEq α] (a b : α) : Equiv.symm (Equiv.swap a b) = Equiv.swap a b - Function.Involutive.symm_eq_self_of_involutive 📋 Mathlib.Logic.Equiv.Basic
{α : Sort u_1} (f : Equiv.Perm α) (h : Function.Involutive ⇑f) : Equiv.symm f = f - AddEquiv.symm_addMonoidHomCongrLeftEquiv 📋 Mathlib.Algebra.Group.Equiv.Basic
{M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_8} [AddZeroClass M₁] [AddZeroClass M₂] [AddMonoid N] (e : M₁ ≃+ M₂) : e.addMonoidHomCongrLeftEquiv.symm = e.symm.addMonoidHomCongrLeftEquiv - MulEquiv.symm_monoidHomCongrLeftEquiv 📋 Mathlib.Algebra.Group.Equiv.Basic
{M₁ : Type u_5} {M₂ : Type u_6} {N : Type u_8} [MulOneClass M₁] [MulOneClass M₂] [Monoid N] (e : M₁ ≃* M₂) : e.monoidHomCongrLeftEquiv.symm = e.symm.monoidHomCongrLeftEquiv - AddEquiv.symm_addMonoidHomCongrRightEquiv 📋 Mathlib.Algebra.Group.Equiv.Basic
{M : Type u_4} {N₁ : Type u_9} {N₂ : Type u_10} [AddZeroClass M] [AddMonoid N₁] [AddMonoid N₂] (e : N₁ ≃+ N₂) : e.addMonoidHomCongrRightEquiv.symm = e.symm.addMonoidHomCongrRightEquiv - MulEquiv.symm_monoidHomCongrRightEquiv 📋 Mathlib.Algebra.Group.Equiv.Basic
{M : Type u_4} {N₁ : Type u_9} {N₂ : Type u_10} [MulOneClass M] [Monoid N₁] [Monoid N₂] (e : N₁ ≃* N₂) : e.monoidHomCongrRightEquiv.symm = e.symm.monoidHomCongrRightEquiv - Equiv.symm_divLeft 📋 Mathlib.Algebra.Group.Units.Equiv
{G : Type u_5} [CommGroup G] (a : G) : (Equiv.divLeft a).symm = Equiv.divLeft a - Equiv.symm_subLeft 📋 Mathlib.Algebra.Group.Units.Equiv
{G : Type u_5} [AddCommGroup G] (a : G) : (Equiv.subLeft a).symm = Equiv.subLeft a - Flag.symm_map 📋 Mathlib.Order.Preorder.Chain
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (e : α ≃o β) : (Flag.map e).symm = Flag.map e.symm - AlgEquiv.symm_toEquiv_eq_symm 📋 Mathlib.Algebra.Algebra.Equiv
{R : Type uR} {A₁ : Type uA₁} {A₂ : Type uA₂} [CommSemiring R] [Semiring A₁] [Semiring A₂] [Algebra R A₁] [Algebra R A₂] {e : A₁ ≃ₐ[R] A₂} : (↑e).symm = ↑e.symm - Equiv.symm_simpleGraph 📋 Mathlib.Combinatorics.SimpleGraph.Maps
{V : Type u_1} {W : Type u_2} (e : V ≃ W) : e.simpleGraph.symm = e.symm.simpleGraph - DFA.symm_reindex 📋 Mathlib.Computability.DFA
{α : Type u} {σ : Type v} {σ' : Type u_2} (g : σ ≃ σ') : (DFA.reindex g).symm = DFA.reindex g.symm
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454