Loogle!
Result
Found 34 declarations whose name contains "BoundedSMul".
- IsBoundedSMul 📋 Mathlib.Topology.MetricSpace.Algebra
(α : Type u_1) (β : Type u_2) [PseudoMetricSpace α] [PseudoMetricSpace β] [Zero α] [Zero β] [SMul α β] : Prop - NNReal.isBoundedSMul 📋 Mathlib.Topology.MetricSpace.Algebra
: IsBoundedSMul NNReal NNReal - Real.isBoundedSMul 📋 Mathlib.Topology.MetricSpace.Algebra
: IsBoundedSMul ℝ ℝ - IsBoundedSMul.toUniformContinuousConstSMul 📋 Mathlib.Topology.MetricSpace.Algebra
{α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] [Zero α] [Zero β] [SMul α β] [IsBoundedSMul α β] : UniformContinuousConstSMul α β - IsBoundedSMul.continuousSMul 📋 Mathlib.Topology.MetricSpace.Algebra
{α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] [Zero α] [Zero β] [SMul α β] [IsBoundedSMul α β] : ContinuousSMul α β - IsBoundedSMul.op 📋 Mathlib.Topology.MetricSpace.Algebra
{α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] [Zero α] [Zero β] [SMul α β] [IsBoundedSMul α β] [SMul αᵐᵒᵖ β] [IsCentralScalar α β] : IsBoundedSMul αᵐᵒᵖ β - Pi.instIsBoundedSMul 📋 Mathlib.Topology.MetricSpace.Algebra
{ι : Type u_3} [Fintype ι] {α : Type u_4} {β : ι → Type u_5} [PseudoMetricSpace α] [(i : ι) → PseudoMetricSpace (β i)] [Zero α] [(i : ι) → Zero (β i)] [(i : ι) → SMul α (β i)] [∀ (i : ι), IsBoundedSMul α (β i)] : IsBoundedSMul α ((i : ι) → β i) - Prod.instIsBoundedSMul 📋 Mathlib.Topology.MetricSpace.Algebra
{α : Type u_4} {β : Type u_5} {γ : Type u_6} [PseudoMetricSpace α] [PseudoMetricSpace β] [PseudoMetricSpace γ] [Zero α] [Zero β] [Zero γ] [SMul α β] [SMul α γ] [IsBoundedSMul α β] [IsBoundedSMul α γ] : IsBoundedSMul α (β × γ) - Pi.instIsBoundedSMul' 📋 Mathlib.Topology.MetricSpace.Algebra
{ι : Type u_3} [Fintype ι] {α : ι → Type u_4} {β : ι → Type u_5} [(i : ι) → PseudoMetricSpace (α i)] [(i : ι) → PseudoMetricSpace (β i)] [(i : ι) → Zero (α i)] [(i : ι) → Zero (β i)] [(i : ι) → SMul (α i) (β i)] [∀ (i : ι), IsBoundedSMul (α i) (β i)] : IsBoundedSMul ((i : ι) → α i) ((i : ι) → β i) - instIsBoundedSMulSeparationQuotient 📋 Mathlib.Topology.MetricSpace.Algebra
{α : Type u_4} {β : Type u_5} [PseudoMetricSpace α] [PseudoMetricSpace β] [Zero α] [Zero β] [SMul α β] [IsBoundedSMul α β] : IsBoundedSMul α (SeparationQuotient β) - IsBoundedSMul.dist_pair_smul' 📋 Mathlib.Topology.MetricSpace.Algebra
{α : Type u_1} {β : Type u_2} {inst✝ : PseudoMetricSpace α} {inst✝¹ : PseudoMetricSpace β} {inst✝² : Zero α} {inst✝³ : Zero β} {inst✝⁴ : SMul α β} [self : IsBoundedSMul α β] (x₁ x₂ : α) (y : β) : dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 - IsBoundedSMul.dist_smul_pair' 📋 Mathlib.Topology.MetricSpace.Algebra
{α : Type u_1} {β : Type u_2} {inst✝ : PseudoMetricSpace α} {inst✝¹ : PseudoMetricSpace β} {inst✝² : Zero α} {inst✝³ : Zero β} {inst✝⁴ : SMul α β} [self : IsBoundedSMul α β] (x : α) (y₁ y₂ : β) : dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ - IsBoundedSMul.mk 📋 Mathlib.Topology.MetricSpace.Algebra
{α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] [Zero α] [Zero β] [SMul α β] (dist_smul_pair' : ∀ (x : α) (y₁ y₂ : β), dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂) (dist_pair_smul' : ∀ (x₁ x₂ : α) (y : β), dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0) : IsBoundedSMul α β - NonUnitalSeminormedRing.isBoundedSMul 📋 Mathlib.Analysis.Normed.MulAction
{α : Type u_1} [NonUnitalSeminormedRing α] : IsBoundedSMul α α - NonUnitalSeminormedRing.isBoundedSMulOpposite 📋 Mathlib.Analysis.Normed.MulAction
{α : Type u_1} [NonUnitalSeminormedRing α] : IsBoundedSMul αᵐᵒᵖ α - NormSMulClass.toIsBoundedSMul 📋 Mathlib.Analysis.Normed.MulAction
{α : Type u_1} {β : Type u_2} [SeminormedRing α] [SeminormedAddCommGroup β] [Module α β] [NormSMulClass α β] : IsBoundedSMul α β - IsBoundedSMul.of_norm_smul_le 📋 Mathlib.Analysis.Normed.MulAction
{α : Type u_1} {β : Type u_2} [SeminormedRing α] [SeminormedAddCommGroup β] [Module α β] (h : ∀ (r : α) (x : β), ‖r • x‖ ≤ ‖r‖ * ‖x‖) : IsBoundedSMul α β - IsBoundedSMul.of_nnnorm_smul_le 📋 Mathlib.Analysis.Normed.MulAction
{α : Type u_1} {β : Type u_2} [SeminormedRing α] [SeminormedAddCommGroup β] [Module α β] (h : ∀ (r : α) (x : β), ‖r • x‖₊ ≤ ‖r‖₊ * ‖x‖₊) : IsBoundedSMul α β - IsBoundedSMul.of_enorm_smul_le 📋 Mathlib.Analysis.Normed.MulAction
{α : Type u_1} {β : Type u_2} [SeminormedRing α] [SeminormedAddCommGroup β] [Module α β] (h : ∀ (r : α) (x : β), ‖r • x‖ₑ ≤ ‖r‖ₑ * ‖x‖ₑ) : IsBoundedSMul α β - NormedSpace.toIsBoundedSMul 📋 Mathlib.Analysis.Normed.Module.Basic
{𝕜 : Type u_1} {E : Type u_3} [NormedField 𝕜] [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] : IsBoundedSMul 𝕜 E - Submodule.Quotient.instIsBoundedSMul 📋 Mathlib.Analysis.Normed.Group.Quotient
{M : Type u_1} [SeminormedAddCommGroup M] {R : Type u_3} [Ring R] [Module R M] (S : Submodule R M) (𝕜 : Type u_4) [SeminormedCommRing 𝕜] [Module 𝕜 M] [IsBoundedSMul 𝕜 M] [SMul 𝕜 R] [IsScalarTower 𝕜 R M] : IsBoundedSMul 𝕜 (M ⧸ S) - MeasureTheory.Lp.instIsBoundedSMul 📋 Mathlib.MeasureTheory.Function.LpSpace.Basic
{α : Type u_1} {𝕜 : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] [Fact (1 ≤ p)] : IsBoundedSMul 𝕜 ↥(MeasureTheory.Lp E p μ) - MeasureTheory.Lp.simpleFunc.isBoundedSMul 📋 Mathlib.MeasureTheory.Function.SimpleFuncDenseLp
{α : Type u_1} {E : Type u_4} {𝕜 : Type u_6} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] [Fact (1 ≤ p)] : IsBoundedSMul 𝕜 ↥(MeasureTheory.Lp.simpleFunc E p μ) - BoundedContinuousFunction.instIsBoundedSMul 📋 Mathlib.Topology.ContinuousMap.Bounded.Basic
{α : Type u} {β : Type v} {𝕜 : Type u_2} [PseudoMetricSpace 𝕜] [TopologicalSpace α] [PseudoMetricSpace β] [Zero 𝕜] [Zero β] [SMul 𝕜 β] [IsBoundedSMul 𝕜 β] : IsBoundedSMul 𝕜 (BoundedContinuousFunction α β) - BoundedContinuousFunction.instIsBoundedSMul_1 📋 Mathlib.Topology.ContinuousMap.Bounded.Normed
{α : Type u} {β : Type v} {𝕜 : Type u_1} [NormedField 𝕜] [TopologicalSpace α] [SeminormedAddCommGroup β] [NormedSpace 𝕜 β] : IsBoundedSMul (BoundedContinuousFunction α 𝕜) (BoundedContinuousFunction α β) - ContinuousMap.instIsBoundedSMul 📋 Mathlib.Topology.ContinuousMap.Compact
{α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {R : Type u_4} [Zero R] [Zero β] [PseudoMetricSpace R] [SMul R β] [IsBoundedSMul R β] : IsBoundedSMul R C(α, β) - WithLp.instProdIsBoundedSMul 📋 Mathlib.Analysis.Normed.Lp.ProdLp
(p : ENNReal) (𝕜 : Type u_1) (α : Type u_2) (β : Type u_3) [hp : Fact (1 ≤ p)] [SeminormedAddCommGroup α] [SeminormedAddCommGroup β] [SeminormedRing 𝕜] [Module 𝕜 α] [Module 𝕜 β] [IsBoundedSMul 𝕜 α] [IsBoundedSMul 𝕜 β] : IsBoundedSMul 𝕜 (WithLp p (α × β)) - PiLp.instIsBoundedSMul 📋 Mathlib.Analysis.Normed.Lp.PiLp
(p : ENNReal) (𝕜 : Type u_1) {ι : Type u_2} (β : ι → Type u_4) [hp : Fact (1 ≤ p)] [Fintype ι] [SeminormedRing 𝕜] [(i : ι) → SeminormedAddCommGroup (β i)] [(i : ι) → Module 𝕜 (β i)] [∀ (i : ι), IsBoundedSMul 𝕜 (β i)] : IsBoundedSMul 𝕜 (PiLp p β) - UniformSpace.Completion.instIsBoundedSMul 📋 Mathlib.Topology.MetricSpace.Completion
{α : Type u} [PseudoMetricSpace α] {M : Type u_1} [Zero M] [Zero α] [SMul M α] [PseudoMetricSpace M] [IsBoundedSMul M α] : IsBoundedSMul M (UniformSpace.Completion α) - Matrix.frobeniusIsBoundedSMul 📋 Mathlib.Analysis.Matrix
{R : Type u_1} {m : Type u_3} {n : Type u_4} {α : Type u_5} [Fintype m] [Fintype n] [SeminormedRing R] [SeminormedAddCommGroup α] [Module R α] [IsBoundedSMul R α] : IsBoundedSMul R (Matrix m n α) - Matrix.isBoundedSMul 📋 Mathlib.Analysis.Matrix
{R : Type u_1} {m : Type u_3} {n : Type u_4} {α : Type u_5} [Fintype m] [Fintype n] [SeminormedRing R] [SeminormedAddCommGroup α] [Module R α] [IsBoundedSMul R α] : IsBoundedSMul R (Matrix m n α) - Matrix.linftyOpIsBoundedSMul 📋 Mathlib.Analysis.Matrix
{R : Type u_1} {m : Type u_3} {n : Type u_4} {α : Type u_5} [Fintype m] [Fintype n] [SeminormedRing R] [SeminormedAddCommGroup α] [Module R α] [IsBoundedSMul R α] : IsBoundedSMul R (Matrix m n α) - lp.instIsBoundedSMulSubtypePreLpMemAddSubgroup 📋 Mathlib.Analysis.Normed.Lp.lpSpace
{𝕜 : Type u_1} {α : Type u_3} {E : α → Type u_4} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), IsBoundedSMul 𝕜 (E i)] [Fact (1 ≤ p)] : IsBoundedSMul 𝕜 ↥(lp E p) - TrivSqZeroExt.instL1IsBoundedSMul 📋 Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
{S : Type u_2} {R : Type u_3} {M : Type u_4} [SeminormedCommRing S] [SeminormedRing R] [SeminormedAddCommGroup M] [Algebra S R] [Module S M] [IsBoundedSMul S R] [IsBoundedSMul S M] [Module R M] [IsBoundedSMul R M] [Module Rᵐᵒᵖ M] [IsBoundedSMul Rᵐᵒᵖ M] [SMulCommClass R Rᵐᵒᵖ M] : IsBoundedSMul S (TrivSqZeroExt R M)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 187ba29 serving mathlib revision 7f8f0b7