Loogle!
Result
Found 3152 declarations mentioning FunLike. Of these, 825 have a name containing "Class". Of these, 92 match your pattern(s).
- AddHomClass 📋 Mathlib.Algebra.Group.Hom.Defs
(F : Type u_10) (M : outParam (Type u_11)) (N : outParam (Type u_12)) [Add M] [Add N] [FunLike F M N] : Prop - AddMonoidHomClass 📋 Mathlib.Algebra.Group.Hom.Defs
(F : Type u_10) (M : outParam (Type u_11)) (N : outParam (Type u_12)) [AddZero M] [AddZero N] [FunLike F M N] : Prop - MonoidHomClass 📋 Mathlib.Algebra.Group.Hom.Defs
(F : Type u_10) (M : outParam (Type u_11)) (N : outParam (Type u_12)) [MulOne M] [MulOne N] [FunLike F M N] : Prop - MulHomClass 📋 Mathlib.Algebra.Group.Hom.Defs
(F : Type u_10) (M : outParam (Type u_11)) (N : outParam (Type u_12)) [Mul M] [Mul N] [FunLike F M N] : Prop - OneHomClass 📋 Mathlib.Algebra.Group.Hom.Defs
(F : Type u_10) (M : outParam (Type u_11)) (N : outParam (Type u_12)) [One M] [One N] [FunLike F M N] : Prop - ZeroHomClass 📋 Mathlib.Algebra.Group.Hom.Defs
(F : Type u_10) (M : outParam (Type u_11)) (N : outParam (Type u_12)) [Zero M] [Zero N] [FunLike F M N] : Prop - MonoidWithZeroHomClass 📋 Mathlib.Algebra.GroupWithZero.Hom
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [MulZeroOneClass α] [MulZeroOneClass β] [FunLike F α β] : Prop - NonUnitalRingHomClass 📋 Mathlib.Algebra.Ring.Hom.Defs
(F : Type u_5) (α : outParam (Type u_6)) (β : outParam (Type u_7)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [FunLike F α β] : Prop - RingHomClass 📋 Mathlib.Algebra.Ring.Hom.Defs
(F : Type u_5) (α : outParam (Type u_6)) (β : outParam (Type u_7)) [NonAssocSemiring α] [NonAssocSemiring β] [FunLike F α β] : Prop - RelHomClass 📋 Mathlib.Order.RelIso.Basic
(F : Type u_5) {α : outParam (Type u_6)} {β : outParam (Type u_7)} (r : outParam (α → α → Prop)) (s : outParam (β → β → Prop)) [FunLike F α β] : Prop - OrderHomClass 📋 Mathlib.Order.Hom.Basic
(F : Type u_6) (α : outParam (Type u_7)) (β : outParam (Type u_8)) [LE α] [LE β] [FunLike F α β] : Prop - NonarchimedeanHomClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [Add α] [LinearOrder β] [FunLike F α β] : Prop - NonnegHomClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [Zero β] [LE β] [FunLike F α β] : Prop - AddGroupNormClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [AddGroup α] [AddCommMonoid β] [PartialOrder β] [FunLike F α β] : Prop - AddGroupSeminormClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [AddGroup α] [AddCommMonoid β] [PartialOrder β] [FunLike F α β] : Prop - GroupNormClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [Group α] [AddCommMonoid β] [PartialOrder β] [FunLike F α β] : Prop - GroupSeminormClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [Group α] [AddCommMonoid β] [PartialOrder β] [FunLike F α β] : Prop - MulLEAddHomClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [Mul α] [Add β] [LE β] [FunLike F α β] : Prop - MulRingNormClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [NonAssocRing α] [Semiring β] [PartialOrder β] [FunLike F α β] : Prop - MulRingSeminormClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [NonAssocRing α] [Semiring β] [PartialOrder β] [FunLike F α β] : Prop - RingNormClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [NonUnitalNonAssocRing α] [Semiring β] [PartialOrder β] [FunLike F α β] : Prop - RingSeminormClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [NonUnitalNonAssocRing α] [Semiring β] [PartialOrder β] [FunLike F α β] : Prop - SubadditiveHomClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [Add α] [Add β] [LE β] [FunLike F α β] : Prop - SubmultiplicativeHomClass 📋 Mathlib.Algebra.Order.Hom.Basic
(F : Type u_7) (α : outParam (Type u_8)) (β : outParam (Type u_9)) [Mul α] [Mul β] [LE β] [FunLike F α β] : Prop - AddConstMapClass 📋 Mathlib.Algebra.AddConstMap.Basic
(F : Type u_1) (G : outParam (Type u_2)) (H : outParam (Type u_3)) [Add G] [Add H] (a : outParam G) (b : outParam H) [FunLike F G H] : Prop - BotHomClass 📋 Mathlib.Order.Hom.Bounded
(F : Type u_6) (α : outParam (Type u_7)) (β : outParam (Type u_8)) [Bot α] [Bot β] [FunLike F α β] : Prop - TopHomClass 📋 Mathlib.Order.Hom.Bounded
(F : Type u_6) (α : outParam (Type u_7)) (β : outParam (Type u_8)) [Top α] [Top β] [FunLike F α β] : Prop - BoundedOrderHomClass 📋 Mathlib.Order.Hom.Bounded
(F : Type u_6) (α : Type u_7) (β : Type u_8) [LE α] [LE β] [BoundedOrder α] [BoundedOrder β] [FunLike F α β] : Prop - InfHomClass 📋 Mathlib.Order.Hom.Lattice
(F : Type u_6) (α : Type u_7) (β : Type u_8) [Min α] [Min β] [FunLike F α β] : Prop - LatticeHomClass 📋 Mathlib.Order.Hom.Lattice
(F : Type u_6) (α : Type u_7) (β : Type u_8) [Lattice α] [Lattice β] [FunLike F α β] : Prop - SupHomClass 📋 Mathlib.Order.Hom.Lattice
(F : Type u_6) (α : Type u_7) (β : Type u_8) [Max α] [Max β] [FunLike F α β] : Prop - InfTopHomClass 📋 Mathlib.Order.Hom.BoundedLattice
(F : Type u_6) (α : Type u_7) (β : Type u_8) [Min α] [Min β] [Top α] [Top β] [FunLike F α β] : Prop - SupBotHomClass 📋 Mathlib.Order.Hom.BoundedLattice
(F : Type u_6) (α : Type u_7) (β : Type u_8) [Max α] [Max β] [Bot α] [Bot β] [FunLike F α β] : Prop - BoundedLatticeHomClass 📋 Mathlib.Order.Hom.BoundedLattice
(F : Type u_6) (α : Type u_7) (β : Type u_8) [Lattice α] [Lattice β] [BoundedOrder α] [BoundedOrder β] [FunLike F α β] : Prop - AddActionHomClass 📋 Mathlib.GroupTheory.GroupAction.Hom
(F : Type u_8) (M : outParam (Type u_9)) (X : outParam (Type u_10)) (Y : outParam (Type u_11)) [VAdd M X] [VAdd M Y] [FunLike F X Y] : Prop - MulActionHomClass 📋 Mathlib.GroupTheory.GroupAction.Hom
(F : Type u_8) (M : outParam (Type u_9)) (X : outParam (Type u_10)) (Y : outParam (Type u_11)) [SMul M X] [SMul M Y] [FunLike F X Y] : Prop - AddActionSemiHomClass 📋 Mathlib.GroupTheory.GroupAction.Hom
(F : Type u_8) {M : outParam (Type u_9)} {N : outParam (Type u_10)} (φ : outParam (M → N)) (X : outParam (Type u_11)) (Y : outParam (Type u_12)) [VAdd M X] [VAdd N Y] [FunLike F X Y] : Prop - MulActionSemiHomClass 📋 Mathlib.GroupTheory.GroupAction.Hom
(F : Type u_8) {M : outParam (Type u_9)} {N : outParam (Type u_10)} (φ : outParam (M → N)) (X : outParam (Type u_11)) (Y : outParam (Type u_12)) [SMul M X] [SMul N Y] [FunLike F X Y] : Prop - DistribMulActionHomClass 📋 Mathlib.GroupTheory.GroupAction.Hom
(F : Type u_10) (M : outParam (Type u_11)) (A : outParam (Type u_12)) (B : outParam (Type u_13)) [Monoid M] [AddMonoid A] [AddMonoid B] [DistribMulAction M A] [DistribMulAction M B] [FunLike F A B] : Prop - DistribMulActionSemiHomClass 📋 Mathlib.GroupTheory.GroupAction.Hom
(F : Type u_10) {M : outParam (Type u_11)} {N : outParam (Type u_12)} (φ : outParam (M → N)) (A : outParam (Type u_13)) (B : outParam (Type u_14)) [Monoid M] [Monoid N] [AddMonoid A] [AddMonoid B] [DistribMulAction M A] [DistribMulAction N B] [FunLike F A B] : Prop - MulSemiringActionHomClass 📋 Mathlib.GroupTheory.GroupAction.Hom
(F : Type u_15) {M : outParam (Type u_16)} [Monoid M] (R : outParam (Type u_17)) (S : outParam (Type u_18)) [Semiring R] [Semiring S] [DistribMulAction M R] [DistribMulAction M S] [FunLike F R S] : Prop - MulSemiringActionSemiHomClass 📋 Mathlib.GroupTheory.GroupAction.Hom
(F : Type u_15) {M : outParam (Type u_16)} {N : outParam (Type u_17)} [Monoid M] [Monoid N] (φ : outParam (M → N)) (R : outParam (Type u_18)) (S : outParam (Type u_19)) [Semiring R] [Semiring S] [DistribMulAction M R] [DistribMulAction N S] [FunLike F R S] : Prop - LinearMapClass 📋 Mathlib.Algebra.Module.LinearMap.Defs
(F : Type u_14) (R : outParam (Type u_15)) (M : Type u_16) (M₂ : Type u_17) [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] [FunLike F M M₂] : Prop - SemilinearMapClass 📋 Mathlib.Algebra.Module.LinearMap.Defs
(F : Type u_14) {R : outParam (Type u_15)} {S : outParam (Type u_16)} [Semiring R] [Semiring S] (σ : outParam (R →+* S)) (M : outParam (Type u_17)) (M₂ : outParam (Type u_18)) [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module S M₂] [FunLike F M M₂] : Prop - CompleteLatticeHomClass 📋 Mathlib.Order.Hom.CompleteLattice
(F : Type u_8) (α : Type u_9) (β : Type u_10) [CompleteLattice α] [CompleteLattice β] [FunLike F α β] : Prop - FrameHomClass 📋 Mathlib.Order.Hom.CompleteLattice
(F : Type u_8) (α : Type u_9) (β : Type u_10) [CompleteLattice α] [CompleteLattice β] [FunLike F α β] : Prop - sInfHomClass 📋 Mathlib.Order.Hom.CompleteLattice
(F : Type u_8) (α : Type u_9) (β : Type u_10) [InfSet α] [InfSet β] [FunLike F α β] : Prop - sSupHomClass 📋 Mathlib.Order.Hom.CompleteLattice
(F : Type u_8) (α : Type u_9) (β : Type u_10) [SupSet α] [SupSet β] [FunLike F α β] : Prop - AlgHomClass 📋 Mathlib.Algebra.Algebra.Hom
(F : Type u_1) (R : outParam (Type u_2)) (A : outParam (Type u_3)) (B : outParam (Type u_4)) [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [FunLike F A B] : Prop - NonUnitalAlgHomClass 📋 Mathlib.Algebra.Algebra.NonUnitalHom
(F : Type u_1) (R : outParam (Type u_2)) (A : outParam (Type u_3)) (B : outParam (Type u_4)) [Monoid R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [DistribMulAction R A] [DistribMulAction R B] [FunLike F A B] : Prop - NonUnitalAlgSemiHomClass 📋 Mathlib.Algebra.Algebra.NonUnitalHom
(F : Type u_1) {R : outParam (Type u_2)} {S : outParam (Type u_3)} [Monoid R] [Monoid S] (φ : outParam (R →* S)) (A : outParam (Type u_4)) (B : outParam (Type u_5)) [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [DistribMulAction R A] [DistribMulAction S B] [FunLike F A B] : Prop - StarHomClass 📋 Mathlib.Algebra.Star.Basic
(F : Type u_1) (R : outParam (Type u_2)) (S : outParam (Type u_3)) [Star R] [Star S] [FunLike F R S] : Prop - NonUnitalStarRingHomClass 📋 Mathlib.Algebra.Star.StarRingHom
(F : Type u_1) (A : outParam (Type u_2)) (B : outParam (Type u_3)) [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] [FunLike F A B] [NonUnitalRingHomClass F A B] : Prop - ContinuousMapClass 📋 Mathlib.Topology.ContinuousMap.Defs
(F : Type u_1) (X : outParam (Type u_2)) (Y : outParam (Type u_3)) [TopologicalSpace X] [TopologicalSpace Y] [FunLike F X Y] : Prop - ContinuousLinearMapClass 📋 Mathlib.Topology.Algebra.Module.LinearMap
(F : Type u_1) (R : outParam (Type u_2)) [Semiring R] (M : outParam (Type u_3)) [TopologicalSpace M] [AddCommMonoid M] (M₂ : outParam (Type u_4)) [TopologicalSpace M₂] [AddCommMonoid M₂] [Module R M] [Module R M₂] [FunLike F M M₂] : Prop - ContinuousSemilinearMapClass 📋 Mathlib.Topology.Algebra.Module.LinearMap
(F : Type u_1) {R : outParam (Type u_2)} {S : outParam (Type u_3)} [Semiring R] [Semiring S] (σ : outParam (R →+* S)) (M : outParam (Type u_4)) [TopologicalSpace M] [AddCommMonoid M] (M₂ : outParam (Type u_5)) [TopologicalSpace M₂] [AddCommMonoid M₂] [Module R M] [Module S M₂] [FunLike F M M₂] : Prop - IsometryClass 📋 Mathlib.Topology.MetricSpace.Isometry
(F : Type u_3) (α : outParam (Type u_4)) (β : outParam (Type u_5)) [PseudoEMetricSpace α] [PseudoEMetricSpace β] [FunLike F α β] : Prop - CoalgHomClass 📋 Mathlib.RingTheory.Coalgebra.Hom
(F : Type u_1) (R : outParam (Type u_2)) (A : outParam (Type u_3)) (B : outParam (Type u_4)) [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] : Prop - BialgHomClass 📋 Mathlib.RingTheory.Bialgebra.Hom
(F : Type u_1) (R : outParam (Type u_2)) (A : outParam (Type u_3)) (B : outParam (Type u_4)) [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] : Prop - BiheytingHomClass 📋 Mathlib.Order.Heyting.Hom
(F : Type u_6) (α : Type u_7) (β : Type u_8) [BiheytingAlgebra α] [BiheytingAlgebra β] [FunLike F α β] : Prop - CoheytingHomClass 📋 Mathlib.Order.Heyting.Hom
(F : Type u_6) (α : Type u_7) (β : Type u_8) [CoheytingAlgebra α] [CoheytingAlgebra β] [FunLike F α β] : Prop - HeytingHomClass 📋 Mathlib.Order.Heyting.Hom
(F : Type u_6) (α : Type u_7) (β : Type u_8) [HeytingAlgebra α] [HeytingAlgebra β] [FunLike F α β] : Prop - SpectralMapClass 📋 Mathlib.Topology.Spectral.Hom
(F : Type u_6) (α : Type u_7) (β : Type u_8) [TopologicalSpace α] [TopologicalSpace β] [FunLike F α β] : Prop - MeasureTheory.OuterMeasureClass 📋 Mathlib.MeasureTheory.OuterMeasure.Defs
(F : Type u_2) (α : outParam (Type u_3)) [FunLike F (Set α) ENNReal] : Prop - LocallyBoundedMapClass 📋 Mathlib.Topology.Bornology.Hom
(F : Type u_6) (α : outParam (Type u_7)) (β : outParam (Type u_8)) [Bornology α] [Bornology β] [FunLike F α β] : Prop - NonarchAddGroupNormClass 📋 Mathlib.Analysis.Normed.Group.Seminorm
(F : Type u_6) (α : outParam (Type u_7)) [AddGroup α] [FunLike F α ℝ] : Prop - NonarchAddGroupSeminormClass 📋 Mathlib.Analysis.Normed.Group.Seminorm
(F : Type u_6) (α : outParam (Type u_7)) [AddGroup α] [FunLike F α ℝ] : Prop - DilationClass 📋 Mathlib.Topology.MetricSpace.Dilation
(F : Type u_3) (α : outParam (Type u_4)) (β : outParam (Type u_5)) [PseudoEMetricSpace α] [PseudoEMetricSpace β] [FunLike F α β] : Prop - CocompactMapClass 📋 Mathlib.Topology.ContinuousMap.CocompactMap
(F : Type u_1) (α : outParam (Type u_2)) (β : outParam (Type u_3)) [TopologicalSpace α] [TopologicalSpace β] [FunLike F α β] : Prop - LinearIsometryClass 📋 Mathlib.Analysis.Normed.Operator.LinearIsometry
(𝓕 : Type u_11) (R : outParam (Type u_12)) (E : outParam (Type u_13)) (E₂ : outParam (Type u_14)) [Semiring R] [SeminormedAddCommGroup E] [SeminormedAddCommGroup E₂] [Module R E] [Module R E₂] [FunLike 𝓕 E E₂] : Prop - SemilinearIsometryClass 📋 Mathlib.Analysis.Normed.Operator.LinearIsometry
(𝓕 : Type u_11) {R : outParam (Type u_12)} {R₂ : outParam (Type u_13)} [Semiring R] [Semiring R₂] (σ₁₂ : outParam (R →+* R₂)) (E : outParam (Type u_14)) (E₂ : outParam (Type u_15)) [SeminormedAddCommGroup E] [SeminormedAddCommGroup E₂] [Module R E] [Module R₂ E₂] [FunLike 𝓕 E E₂] : Prop - SeminormClass 📋 Mathlib.Analysis.Seminorm
(F : Type u_12) (𝕜 : outParam (Type u_13)) (E : outParam (Type u_14)) [SeminormedRing 𝕜] [AddGroup E] [SMul 𝕜 E] [FunLike F E ℝ] : Prop - BoundedContinuousMapClass 📋 Mathlib.Topology.ContinuousMap.Bounded.Basic
(F : Type u_2) (α : outParam (Type u_3)) (β : outParam (Type u_4)) [TopologicalSpace α] [PseudoMetricSpace β] [FunLike F α β] : Prop - ValuationClass 📋 Mathlib.RingTheory.Valuation.Basic
(F : Type u_7) (R : outParam (Type u_5)) (Γ₀ : outParam (Type u_6)) [LinearOrderedCommMonoidWithZero Γ₀] [Ring R] [FunLike F R Γ₀] : Prop - CentroidHomClass 📋 Mathlib.Algebra.Ring.CentroidHom
(F : Type u_6) (α : outParam (Type u_7)) [NonUnitalNonAssocSemiring α] [FunLike F α α] : Prop - ZeroAtInftyContinuousMapClass 📋 Mathlib.Topology.ContinuousMap.ZeroAtInfty
(F : Type u_2) (α : outParam (Type u_3)) (β : outParam (Type u_4)) [TopologicalSpace α] [Zero β] [TopologicalSpace β] [FunLike F α β] : Prop - CompletelyPositiveMapClass 📋 Mathlib.Analysis.CStarAlgebra.CompletelyPositiveMap
(F : Type u_1) (A₁ : Type u_2) (A₂ : Type u_3) [NonUnitalCStarAlgebra A₁] [NonUnitalCStarAlgebra A₂] [PartialOrder A₁] [PartialOrder A₂] [StarOrderedRing A₁] [StarOrderedRing A₂] [FunLike F A₁ A₂] : Prop - MulCharClass 📋 Mathlib.NumberTheory.MulChar.Basic
(F : Type u_3) (R : outParam (Type u_4)) (R' : outParam (Type u_5)) [CommMonoid R] [CommMonoidWithZero R'] [FunLike F R R'] : Prop - AlgebraNormClass 📋 Mathlib.Analysis.Normed.Unbundled.AlgebraNorm
(F : Type u_1) (R : outParam (Type u_2)) [SeminormedCommRing R] (S : outParam (Type u_3)) [Ring S] [Algebra R S] [FunLike F S ℝ] : Prop - MulAlgebraNormClass 📋 Mathlib.Analysis.Normed.Unbundled.AlgebraNorm
(F : Type u_1) (R : outParam (Type u_2)) [SeminormedCommRing R] (S : outParam (Type u_3)) [Ring S] [Algebra R S] [FunLike F S ℝ] : Prop - SimpleGraph.HomClass 📋 Mathlib.Combinatorics.SimpleGraph.Maps
{V : Type u_1} {W : Type u_2} (F : Type u_4) (G : SimpleGraph V) (H : SimpleGraph W) [FunLike F V W] : Prop - FirstOrder.Language.HomClass 📋 Mathlib.ModelTheory.Basic
(L : outParam FirstOrder.Language) (F : Type u_3) (M : outParam (Type u_4)) (N : outParam (Type u_5)) [FunLike F M N] [L.Structure M] [L.Structure N] : Prop - FirstOrder.Language.StrongHomClass 📋 Mathlib.ModelTheory.Basic
(L : outParam FirstOrder.Language) (F : Type u_3) (M : outParam (Type u_4)) (N : outParam (Type u_5)) [FunLike F M N] [L.Structure M] [L.Structure N] : Prop - CompactlySupportedContinuousMapClass 📋 Mathlib.Topology.ContinuousMap.CompactlySupported
(F : Type u_5) (α : outParam (Type u_6)) (β : outParam (Type u_7)) [TopologicalSpace α] [Zero β] [TopologicalSpace β] [FunLike F α β] : Prop - SlashInvariantFormClass 📋 Mathlib.NumberTheory.ModularForms.SlashInvariantForms
(F : Type u_1) (Γ : outParam (Subgroup (GL (Fin 2) ℝ))) (k : outParam ℤ) [FunLike F UpperHalfPlane ℂ] : Prop - CuspFormClass 📋 Mathlib.NumberTheory.ModularForms.Basic
(F : Type u_2) (Γ : outParam (Subgroup (GL (Fin 2) ℝ))) (k : outParam ℤ) [FunLike F UpperHalfPlane ℂ] : Prop - ModularFormClass 📋 Mathlib.NumberTheory.ModularForms.Basic
(F : Type u_2) (Γ : outParam (Subgroup (GL (Fin 2) ℝ))) (k : outParam ℤ) [FunLike F UpperHalfPlane ℂ] : Prop - NucleusClass 📋 Mathlib.Order.Nucleus
(F : Type u_2) (X : Type u_3) [SemilatticeInf X] [FunLike F X X] : Prop - ContinuousOpenMapClass 📋 Mathlib.Topology.Hom.Open
(F : Type u_6) (α : outParam (Type u_7)) (β : outParam (Type u_8)) [TopologicalSpace α] [TopologicalSpace β] [FunLike F α β] : Prop - ContinuousOrderHomClass 📋 Mathlib.Topology.Order.Hom.Basic
(F : Type u_6) (α : outParam (Type u_7)) (β : outParam (Type u_8)) [Preorder α] [Preorder β] [TopologicalSpace α] [TopologicalSpace β] [FunLike F α β] : Prop - PseudoEpimorphismClass 📋 Mathlib.Topology.Order.Hom.Esakia
(F : Type u_6) (α : outParam (Type u_7)) (β : outParam (Type u_8)) [Preorder α] [Preorder β] [FunLike F α β] : Prop - EsakiaHomClass 📋 Mathlib.Topology.Order.Hom.Esakia
(F : Type u_6) (α : outParam (Type u_7)) (β : outParam (Type u_8)) [TopologicalSpace α] [Preorder α] [TopologicalSpace β] [Preorder β] [FunLike F α β] : Prop
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454