Loogle!
Result
Found 461 declarations whose name contains "ofReal". Of these, 159 have a name containing "Complex." and "ofReal".
- Complex.ofReal π Mathlib.Data.Complex.Basic
(r : β) : β - Complex.ofReal_injective π Mathlib.Data.Complex.Basic
: Function.Injective Complex.ofReal - Complex.ofReal_re π Mathlib.Data.Complex.Basic
(r : β) : (βr).re = r - Complex.ofRealHom π Mathlib.Data.Complex.Basic
: β β+* β - Complex.ofReal_im π Mathlib.Data.Complex.Basic
(r : β) : (βr).im = 0 - Complex.ofReal_intCast π Mathlib.Data.Complex.Basic
(n : β€) : ββn = βn - Complex.ofReal_natCast π Mathlib.Data.Complex.Basic
(n : β) : ββn = βn - Complex.ofReal_nnratCast π Mathlib.Data.Complex.Basic
(q : ββ₯0) : ββq = βq - Complex.ofReal_ratCast π Mathlib.Data.Complex.Basic
(q : β) : ββq = βq - Complex.ofReal_def π Mathlib.Data.Complex.Basic
(r : β) : βr = { re := r, im := 0 } - Complex.ofReal_inj π Mathlib.Data.Complex.Basic
{z w : β} : βz = βw β z = w - Complex.ofReal_inv π Mathlib.Data.Complex.Basic
(r : β) : βrβ»ΒΉ = (βr)β»ΒΉ - Complex.ofReal_neg π Mathlib.Data.Complex.Basic
(r : β) : β(-r) = -βr - Complex.ofReal.eq_1 π Mathlib.Data.Complex.Basic
(r : β) : βr = { re := r, im := 0 } - Complex.ofReal_one π Mathlib.Data.Complex.Basic
: β1 = 1 - Complex.ofReal_zero π Mathlib.Data.Complex.Basic
: β0 = 0 - Complex.ofReal_eq_one π Mathlib.Data.Complex.Basic
{z : β} : βz = 1 β z = 1 - Complex.ofReal_eq_zero π Mathlib.Data.Complex.Basic
{z : β} : βz = 0 β z = 0 - Complex.ofReal_ne_one π Mathlib.Data.Complex.Basic
{z : β} : βz β 1 β z β 1 - Complex.ofReal_ne_zero π Mathlib.Data.Complex.Basic
{z : β} : βz β 0 β z β 0 - Complex.ofReal_ofNat π Mathlib.Data.Complex.Basic
(n : β) [n.AtLeastTwo] : β(OfNat.ofNat n) = OfNat.ofNat n - Complex.im_mul_ofReal π Mathlib.Data.Complex.Basic
(z : β) (r : β) : (z * βr).im = z.im * r - Complex.im_ofReal_mul π Mathlib.Data.Complex.Basic
(r : β) (z : β) : (βr * z).im = r * z.im - Complex.ofReal_add π Mathlib.Data.Complex.Basic
(r s : β) : β(r + s) = βr + βs - Complex.ofReal_mul π Mathlib.Data.Complex.Basic
(r s : β) : β(r * s) = βr * βs - Complex.ofReal_sub π Mathlib.Data.Complex.Basic
(r s : β) : β(r - s) = βr - βs - Complex.re_mul_ofReal π Mathlib.Data.Complex.Basic
(z : β) (r : β) : (z * βr).re = z.re * r - Complex.re_ofReal_mul π Mathlib.Data.Complex.Basic
(r : β) (z : β) : (βr * z).re = r * z.re - Complex.div_ofReal_im π Mathlib.Data.Complex.Basic
(z : β) (x : β) : (z / βx).im = z.im / x - Complex.div_ofReal_re π Mathlib.Data.Complex.Basic
(z : β) (x : β) : (z / βx).re = z.re / x - Complex.ofRealHom_eq_coe π Mathlib.Data.Complex.Basic
(r : β) : Complex.ofRealHom r = βr - Complex.ofReal_div π Mathlib.Data.Complex.Basic
(r s : β) : β(r / s) = βr / βs - Complex.ofReal_zpow π Mathlib.Data.Complex.Basic
(r : β) (n : β€) : β(r ^ n) = βr ^ n - Complex.ofReal_nsmul π Mathlib.Data.Complex.Basic
(n : β) (r : β) : β(n β’ r) = n β’ βr - Complex.ofReal_pow π Mathlib.Data.Complex.Basic
(r : β) (n : β) : β(r ^ n) = βr ^ n - Complex.ofReal_mul' π Mathlib.Data.Complex.Basic
(r : β) (z : β) : βr * z = { re := r * z.re, im := r * z.im } - Complex.ofReal_comp_neg π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (f : Ξ± β β) : Complex.ofReal β (-f) = -Complex.ofReal β f - Complex.ofReal_zsmul π Mathlib.Data.Complex.Basic
(n : β€) (r : β) : β(n β’ r) = n β’ βr - Complex.conj_ofReal π Mathlib.Data.Complex.Basic
(r : β) : (starRingEnd β) βr = βr - Complex.div_ofReal π Mathlib.Data.Complex.Basic
(z : β) (x : β) : z / βx = { re := z.re / x, im := z.im / x } - Complex.normSq_ofReal π Mathlib.Data.Complex.Basic
(r : β) : Complex.normSq βr = r * r - Complex.ofReal_comp_add π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (f g : Ξ± β β) : Complex.ofReal β (f + g) = Complex.ofReal β f + Complex.ofReal β g - Complex.ofReal_comp_mul π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (f g : Ξ± β β) : Complex.ofReal β (f * g) = Complex.ofReal β f * Complex.ofReal β g - Complex.ofReal_comp_sub π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (f g : Ξ± β β) : Complex.ofReal β (f - g) = Complex.ofReal β f - Complex.ofReal β g - Complex.ofReal_comp_nsmul π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (n : β) (f : Ξ± β β) : Complex.ofReal β (n β’ f) = n β’ Complex.ofReal β f - Complex.ofReal_comp_pow π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (f : Ξ± β β) (n : β) : Complex.ofReal β (f ^ n) = Complex.ofReal β f ^ n - Complex.ofReal_qsmul π Mathlib.Data.Complex.Basic
(q : β) (r : β) : β(q β’ r) = q β’ βr - Complex.ofReal_comp_zsmul π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (n : β€) (f : Ξ± β β) : Complex.ofReal β (n β’ f) = n β’ Complex.ofReal β f - Complex.ofReal_nnqsmul π Mathlib.Data.Complex.Basic
(q : ββ₯0) (r : β) : β(q β’ r) = q β’ βr - Complex.normSq_ofReal_add_I_mul_sqrt_one_sub π Mathlib.Analysis.Complex.Norm
{x : β} (hx : βxβ β€ 1) : Complex.normSq (βx + Complex.I * ββ(1 - x ^ 2)) = 1 - Complex.normSq_ofReal_sub_I_mul_sqrt_one_sub π Mathlib.Analysis.Complex.Norm
{x : β} (hx : βxβ β€ 1) : Complex.normSq (βx - Complex.I * ββ(1 - x ^ 2)) = 1 - Complex.monotone_ofReal π Mathlib.Analysis.Complex.Order
: Monotone Complex.ofReal - Complex.eq_re_of_ofReal_le π Mathlib.Analysis.Complex.Order
{r : β} {z : β} (hz : βr β€ z) : z = βz.re - Complex.ofReal_prod π Mathlib.Data.Complex.BigOperators
{Ξ± : Type u_1} (s : Finset Ξ±) (f : Ξ± β β) : β(β i β s, f i) = β i β s, β(f i) - Complex.ofReal_sum π Mathlib.Data.Complex.BigOperators
{Ξ± : Type u_1} (s : Finset Ξ±) (f : Ξ± β β) : β(β i β s, f i) = β i β s, β(f i) - Complex.ofReal_balance π Mathlib.Data.Complex.BigOperators
{Ξ± : Type u_1} [Fintype Ξ±] (f : Ξ± β β) (a : Ξ±) : β(Fintype.balance f a) = Fintype.balance (Complex.ofReal β f) a - Complex.ofReal_comp_balance π Mathlib.Data.Complex.BigOperators
{ΞΉ : Type u_2} [Fintype ΞΉ] (f : ΞΉ β β) : Complex.ofReal β Fintype.balance f = Fintype.balance (Complex.ofReal β f) - Complex.ofReal_expect π Mathlib.Data.Complex.BigOperators
{Ξ± : Type u_1} (s : Finset Ξ±) (f : Ξ± β β) : β(s.expect fun i => f i) = s.expect fun i => β(f i) - Complex.instAlgebraOfReal π Mathlib.LinearAlgebra.Complex.Module
{R : Type u_1} [CommSemiring R] [Algebra R β] : Algebra R β - Complex.ofRealAm π Mathlib.LinearAlgebra.Complex.Module
: β ββ[β] β - Complex.instIsCentralScalarOfReal π Mathlib.LinearAlgebra.Complex.Module
{R : Type u_1} [SMul R β] [SMul Rα΅α΅α΅ β] [IsCentralScalar R β] : IsCentralScalar R β - Complex.instSMulCommClassOfReal π Mathlib.LinearAlgebra.Complex.Module
{R : Type u_1} {S : Type u_2} [SMul R β] [SMul S β] [SMulCommClass R S β] : SMulCommClass R S β - Complex.instDistribMulActionOfReal π Mathlib.LinearAlgebra.Complex.Module
{R : Type u_1} [Semiring R] [DistribMulAction R β] : DistribMulAction R β - Complex.instIsScalarTowerOfReal π Mathlib.LinearAlgebra.Complex.Module
{R : Type u_1} {S : Type u_2} [SMul R S] [SMul R β] [SMul S β] [IsScalarTower R S β] : IsScalarTower R S β - Complex.ofRealAm_coe π Mathlib.LinearAlgebra.Complex.Module
: βComplex.ofRealAm = Complex.ofReal - Complex.isometry_ofReal π Mathlib.Analysis.Complex.Basic
: Isometry Complex.ofReal - Complex.isUniformEmbedding_ofReal π Mathlib.Analysis.Complex.Basic
: IsUniformEmbedding Complex.ofReal - Complex.ofReal_mem_slitPlane π Mathlib.Analysis.Complex.Basic
{x : β} : βx β Complex.slitPlane β 0 < x - Complex.continuous_ofReal π Mathlib.Analysis.Complex.Basic
: Continuous Complex.ofReal - Complex.instNormedAlgebraOfReal π Mathlib.Analysis.Complex.Basic
{R : Type u_1} [NormedField R] [NormedAlgebra R β] : NormedAlgebra R β - Complex.neg_ofReal_mem_slitPlane π Mathlib.Analysis.Complex.Basic
{x : β} : -βx β Complex.slitPlane β x < 0 - Complex.ofReal_eq_re_of_isSelfAdjoint π Mathlib.Analysis.Complex.Basic
{x : β} {y : β} (hx : IsSelfAdjoint x) : y = x.re β βy = x - Complex.re_eq_ofReal_of_isSelfAdjoint π Mathlib.Analysis.Complex.Basic
{x : β} {y : β} (hx : IsSelfAdjoint x) : x.re = y β x = βy - Complex.ringHom_eq_ofReal_of_continuous π Mathlib.Analysis.Complex.Basic
{f : β β+* β} (h : Continuous βf) : f = Complex.ofRealHom - Complex.summable_ofReal π Mathlib.Analysis.Complex.Basic
{Ξ± : Type u_1} {L : SummationFilter Ξ±} {f : Ξ± β β} : Summable (fun x => β(f x)) L β Summable f L - Complex.hasSum_ofReal π Mathlib.Analysis.Complex.Basic
{Ξ± : Type u_1} {L : SummationFilter Ξ±} {f : Ξ± β β} {x : β} : HasSum (fun x => β(f x)) (βx) L β HasSum f x L - Complex.ofReal_tsum π Mathlib.Analysis.Complex.Basic
{Ξ± : Type u_1} {L : SummationFilter Ξ±} (f : Ξ± β β) : β(β'[L] (a : Ξ±), f a) = β'[L] (a : Ξ±), β(f a) - Complex.ofRealLI π Mathlib.Analysis.Complex.Basic
: β ββα΅’[β] β - Complex.ofRealCLM π Mathlib.Analysis.Complex.Basic
: β βL[β] β - Complex.ofRealLI_apply π Mathlib.Analysis.Complex.Basic
(x : β) : Complex.ofRealLI x = βx - Complex.ofRealCLM_coe π Mathlib.Analysis.Complex.Basic
: βComplex.ofRealCLM = Complex.ofRealAm.toLinearMap - Complex.ofRealCLM_apply π Mathlib.Analysis.Complex.Basic
(x : β) : Complex.ofRealCLM x = βx - Complex.isTheta_ofReal π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} (f : Ξ± β β) (l : Filter Ξ±) : (fun x => β(f x)) =Ξ[l] f - Complex.isBigO_ofReal_left π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β β} {g : Ξ± β E} : (fun x => β(f x)) =O[l] g β f =O[l] g - Complex.isBigO_ofReal_right π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β E} {g : Ξ± β β} : (f =O[l] fun x => β(g x)) β f =O[l] g - Complex.isLittleO_ofReal_left π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β β} {g : Ξ± β E} : (fun x => β(f x)) =o[l] g β f =o[l] g - Complex.isLittleO_ofReal_right π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β E} {g : Ξ± β β} : (f =o[l] fun x => β(g x)) β f =o[l] g - Complex.isTheta_ofReal_left π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β β} {g : Ξ± β E} : (fun x => β(f x)) =Ξ[l] g β f =Ξ[l] g - Complex.isTheta_ofReal_right π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β E} {g : Ξ± β β} : (f =Ξ[l] fun x => β(g x)) β f =Ξ[l] g - Complex.isBigO_comp_ofReal_nhds π Mathlib.Analysis.Complex.Asymptotics
{f g : β β β} {x : β} (h : f =O[nhds βx] g) : (fun y => f βy) =O[nhds x] fun y => g βy - Complex.isBigO_comp_ofReal_nhds_ne π Mathlib.Analysis.Complex.Asymptotics
{f g : β β β} {x : β} (h : f =O[nhdsWithin βx {βx}αΆ] g) : (fun y => f βy) =O[nhdsWithin x {x}αΆ] fun y => g βy - Complex.exp_ofReal_re π Mathlib.Analysis.Complex.Exponential
(x : β) : (Complex.exp βx).re = Real.exp x - Complex.ofReal_exp π Mathlib.Analysis.Complex.Exponential
(x : β) : β(Real.exp x) = Complex.exp βx - Complex.norm_exp_ofReal π Mathlib.Analysis.Complex.Exponential
(x : β) : βComplex.exp βxβ = Real.exp x - Complex.ofReal_exp_ofReal_re π Mathlib.Analysis.Complex.Exponential
(x : β) : β(Complex.exp βx).re = Complex.exp βx - Complex.exp_ofReal_im π Mathlib.Analysis.Complex.Exponential
(x : β) : (Complex.exp βx).im = 0 - Complex.cos_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.cos βx).re = Real.cos x - Complex.cosh_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.cosh βx).re = Real.cosh x - Complex.ofReal_cos π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Real.cos x) = Complex.cos βx - Complex.ofReal_cosh π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Real.cosh x) = Complex.cosh βx - Complex.ofReal_cot π Mathlib.Analysis.Complex.Trigonometric
(x : β) : βx.cot = (βx).cot - Complex.ofReal_sin π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Real.sin x) = Complex.sin βx - Complex.ofReal_sinh π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Real.sinh x) = Complex.sinh βx - Complex.ofReal_tan π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Real.tan x) = Complex.tan βx - Complex.ofReal_tanh π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Real.tanh x) = Complex.tanh βx - Complex.sin_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.sin βx).re = Real.sin x - Complex.sinh_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.sinh βx).re = Real.sinh x - Complex.tan_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.tan βx).re = Real.tan x - Complex.tanh_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.tanh βx).re = Real.tanh x - Complex.ofReal_cos_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Complex.cos βx).re = Complex.cos βx - Complex.ofReal_cosh_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Complex.cosh βx).re = Complex.cosh βx - Complex.ofReal_cot_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(βx).cot.re = (βx).cot - Complex.ofReal_sin_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Complex.sin βx).re = Complex.sin βx - Complex.ofReal_sinh_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Complex.sinh βx).re = Complex.sinh βx - Complex.ofReal_tan_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Complex.tan βx).re = Complex.tan βx - Complex.ofReal_tanh_ofReal_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : β(Complex.tanh βx).re = Complex.tanh βx - Complex.cos_ofReal_im π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.cos βx).im = 0 - Complex.cosh_ofReal_im π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.cosh βx).im = 0 - Complex.sin_ofReal_im π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.sin βx).im = 0 - Complex.sinh_ofReal_im π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.sinh βx).im = 0 - Complex.tan_ofReal_im π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.tan βx).im = 0 - Complex.tanh_ofReal_im π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.tanh βx).im = 0 - Complex.exp_ofReal_mul_I_im π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.exp (βx * Complex.I)).im = Real.sin x - Complex.exp_ofReal_mul_I_re π Mathlib.Analysis.Complex.Trigonometric
(x : β) : (Complex.exp (βx * Complex.I)).re = Real.cos x - Complex.norm_exp_I_mul_ofReal π Mathlib.Analysis.Complex.Trigonometric
(x : β) : βComplex.exp (Complex.I * βx)β = 1 - Complex.norm_exp_ofReal_mul_I π Mathlib.Analysis.Complex.Trigonometric
(x : β) : βComplex.exp (βx * Complex.I)β = 1 - Complex.nnnorm_exp_I_mul_ofReal π Mathlib.Analysis.Complex.Trigonometric
(x : β) : βComplex.exp (Complex.I * βx)ββ = 1 - Complex.nnnorm_exp_ofReal_mul_I π Mathlib.Analysis.Complex.Trigonometric
(x : β) : βComplex.exp (βx * Complex.I)ββ = 1 - Complex.enorm_exp_I_mul_ofReal π Mathlib.Analysis.Complex.Trigonometric
(x : β) : βComplex.exp (Complex.I * βx)ββ = 1 - Complex.enorm_exp_ofReal_mul_I π Mathlib.Analysis.Complex.Trigonometric
(x : β) : βComplex.exp (βx * Complex.I)ββ = 1 - Complex.norm_exp_I_mul_ofReal_sub_one π Mathlib.Analysis.Complex.Trigonometric
(x : β) : βComplex.exp (Complex.I * βx) - 1β = β2 * Real.sin (x / 2)β - Complex.arg_ofReal_of_neg π Mathlib.Analysis.SpecialFunctions.Complex.Arg
{x : β} (hx : x < 0) : (βx).arg = Real.pi - Complex.arg_ofReal_of_nonneg π Mathlib.Analysis.SpecialFunctions.Complex.Arg
{x : β} (hx : 0 β€ x) : (βx).arg = 0 - Complex.log_ofReal_re π Mathlib.Analysis.SpecialFunctions.Complex.Log
(x : β) : (Complex.log βx).re = Real.log x - Complex.ofReal_log π Mathlib.Analysis.SpecialFunctions.Complex.Log
{x : β} (hx : 0 β€ x) : β(Real.log x) = Complex.log βx - Complex.log_mul_ofReal π Mathlib.Analysis.SpecialFunctions.Complex.Log
(r : β) (hr : 0 < r) (x : β) (hx : x β 0) : Complex.log (x * βr) = β(Real.log r) + Complex.log x - Complex.log_ofReal_mul π Mathlib.Analysis.SpecialFunctions.Complex.Log
{r : β} (hr : 0 < r) {x : β} (hx : x β 0) : Complex.log (βr * x) = β(Real.log r) + Complex.log x - Complex.mul_cpow_ofReal_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Complex
{a b : β} (ha : 0 β€ a) (hb : 0 β€ b) (r : β) : (βa * βb) ^ r = βa ^ r * βb ^ r - Complex.norm_ofReal_cpow_eventually_eq_atTop π Mathlib.Analysis.SpecialFunctions.Pow.Real
(c : β) : (fun t => ββt ^ cβ) =αΆ [Filter.atTop] fun t => t ^ c.re - Complex.ofReal_cpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y : β) : β(x ^ y) = βx ^ βy - Complex.inv_natCast_cpow_ofReal_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{n : β} (hn : n β 0) (x : β) : 0 < (βn ^ βx)β»ΒΉ - Complex.cpow_ofReal_im π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) (y : β) : (x ^ βy).im = βxβ ^ y * Real.sin (x.arg * y) - Complex.cpow_ofReal_re π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) (y : β) : (x ^ βy).re = βxβ ^ y * Real.cos (x.arg * y) - Complex.cpow_mul_ofReal_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y : β) (z : β) : βx ^ (βy * z) = β(x ^ y) ^ z - Complex.ofReal_cpow_of_nonpos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : x β€ 0) (y : β) : βx ^ y = (-βx) ^ y * Complex.exp (βReal.pi * Complex.I * y) - Complex.cpow_ofReal π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) (y : β) : x ^ βy = β(βxβ ^ y) * (β(Real.cos (x.arg * y)) + β(Real.sin (x.arg * y)) * Complex.I) - Complex.continuous_ofReal_cpow_const π Mathlib.Analysis.SpecialFunctions.Pow.Continuity
{y : β} (hs : 0 < y.re) : Continuous fun x => βx ^ y - Complex.continuousAt_ofReal_cpow_const π Mathlib.Analysis.SpecialFunctions.Pow.Continuity
(x : β) (y : β) (h : 0 < y.re β¨ x β 0) : ContinuousAt (fun a => βa ^ y) x - Complex.continuousAt_ofReal_cpow π Mathlib.Analysis.SpecialFunctions.Pow.Continuity
(x : β) (y : β) (h : 0 < y.re β¨ x β 0) : ContinuousAt (fun p => βp.1 ^ p.2) (x, y) - Complex.measurable_ofReal π Mathlib.MeasureTheory.Function.SpecialFunctions.Basic
: Measurable Complex.ofReal - Complex.starConvex_ofReal_slitPlane π Mathlib.Analysis.Complex.Convex
{x : β} (hx : 0 < x) : StarConvex β (βx) Complex.slitPlane - Complex.deriv_ofReal_cpow_const π Mathlib.Analysis.SpecialFunctions.Pow.Deriv
{c : β} {x : β} (hx : x β 0) (hc : c β 0) : deriv (fun x => βx ^ c) x = c * βx ^ (c - 1) - Complex.ofRealCLM_norm π Mathlib.Analysis.Complex.OperatorNorm
: βComplex.ofRealCLMβ = 1 - Complex.ofRealCLM_nnnorm π Mathlib.Analysis.Complex.OperatorNorm
: βComplex.ofRealCLMββ = 1 - Complex.ofRealCLM_enorm π Mathlib.Analysis.Complex.OperatorNorm
: βComplex.ofRealCLMββ = 1 - Complex.Gamma_ofReal π Mathlib.Analysis.SpecialFunctions.Gamma.Basic
(s : β) : Complex.Gamma βs = β(Real.Gamma s) - Complex.GammaIntegral_ofReal π Mathlib.Analysis.SpecialFunctions.Gamma.Basic
(s : β) : (βs).GammaIntegral = β(β« (x : β) in Set.Ioi 0, Real.exp (-x) * x ^ (s - 1)) - Complex.ofRealLI.eq_1 π Mathlib.Analysis.SpecialFunctions.Gaussian.FourierTransform
: Complex.ofRealLI = { toLinearMap := Complex.ofRealAm.toLinearMap, norm_map' := Complex.norm_real } - Complex.ofReal_arctan π Mathlib.Analysis.SpecialFunctions.Complex.Arctan
(x : β) : β(Real.arctan x) = (βx).arctan
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 187ba29 serving mathlib revision 00a7199