Loogle!
Result
Found 430 declarations whose name contains "ofReal". Of these, 150 have a name containing "Complex." and "ofReal".
- Complex.ofReal π Mathlib.Data.Complex.Basic
(r : β) : β - Complex.ofReal_injective π Mathlib.Data.Complex.Basic
: Function.Injective Complex.ofReal - Complex.ofReal_re π Mathlib.Data.Complex.Basic
(r : β) : (βr).re = r - Complex.ofRealHom π Mathlib.Data.Complex.Basic
: β β+* β - Complex.ofReal_im π Mathlib.Data.Complex.Basic
(r : β) : (βr).im = 0 - Complex.ofReal_nnratCast π Mathlib.Data.Complex.Basic
(q : ββ₯0) : ββq = βq - Complex.ofReal_ratCast π Mathlib.Data.Complex.Basic
(q : β) : ββq = βq - Complex.ofReal_def π Mathlib.Data.Complex.Basic
(r : β) : βr = { re := r, im := 0 } - Complex.ofReal_inj π Mathlib.Data.Complex.Basic
{z w : β} : βz = βw β z = w - Complex.ofReal_inv π Mathlib.Data.Complex.Basic
(r : β) : βrβ»ΒΉ = (βr)β»ΒΉ - Complex.ofReal_neg π Mathlib.Data.Complex.Basic
(r : β) : β(-r) = -βr - Complex.ofReal.eq_1 π Mathlib.Data.Complex.Basic
(r : β) : βr = { re := r, im := 0 } - Complex.ofReal_intCast π Mathlib.Data.Complex.Basic
(n : β€) : ββn = βn - Complex.ofReal_one π Mathlib.Data.Complex.Basic
: β1 = 1 - Complex.ofReal_zero π Mathlib.Data.Complex.Basic
: β0 = 0 - Complex.ofReal_natCast π Mathlib.Data.Complex.Basic
(n : β) : ββn = βn - Complex.ofReal_eq_one π Mathlib.Data.Complex.Basic
{z : β} : βz = 1 β z = 1 - Complex.ofReal_eq_zero π Mathlib.Data.Complex.Basic
{z : β} : βz = 0 β z = 0 - Complex.ofReal_ne_one π Mathlib.Data.Complex.Basic
{z : β} : βz β 1 β z β 1 - Complex.ofReal_ne_zero π Mathlib.Data.Complex.Basic
{z : β} : βz β 0 β z β 0 - Complex.im_mul_ofReal π Mathlib.Data.Complex.Basic
(z : β) (r : β) : (z * βr).im = z.im * r - Complex.im_ofReal_mul π Mathlib.Data.Complex.Basic
(r : β) (z : β) : (βr * z).im = r * z.im - Complex.ofReal_add π Mathlib.Data.Complex.Basic
(r s : β) : β(r + s) = βr + βs - Complex.ofReal_mul π Mathlib.Data.Complex.Basic
(r s : β) : β(r * s) = βr * βs - Complex.ofReal_sub π Mathlib.Data.Complex.Basic
(r s : β) : β(r - s) = βr - βs - Complex.re_mul_ofReal π Mathlib.Data.Complex.Basic
(z : β) (r : β) : (z * βr).re = z.re * r - Complex.re_ofReal_mul π Mathlib.Data.Complex.Basic
(r : β) (z : β) : (βr * z).re = r * z.re - Complex.ofReal_ofNat π Mathlib.Data.Complex.Basic
(n : β) [n.AtLeastTwo] : β(OfNat.ofNat n) = OfNat.ofNat n - Complex.div_ofReal_im π Mathlib.Data.Complex.Basic
(z : β) (x : β) : (z / βx).im = z.im / x - Complex.div_ofReal_re π Mathlib.Data.Complex.Basic
(z : β) (x : β) : (z / βx).re = z.re / x - Complex.ofRealHom_eq_coe π Mathlib.Data.Complex.Basic
(r : β) : Complex.ofRealHom r = βr - Complex.ofReal_div π Mathlib.Data.Complex.Basic
(r s : β) : β(r / s) = βr / βs - Complex.ofReal_zpow π Mathlib.Data.Complex.Basic
(r : β) (n : β€) : β(r ^ n) = βr ^ n - Complex.ofReal_nsmul π Mathlib.Data.Complex.Basic
(n : β) (r : β) : β(n β’ r) = n β’ βr - Complex.ofReal_pow π Mathlib.Data.Complex.Basic
(r : β) (n : β) : β(r ^ n) = βr ^ n - Complex.ofReal_mul' π Mathlib.Data.Complex.Basic
(r : β) (z : β) : βr * z = { re := r * z.re, im := r * z.im } - Complex.ofReal_comp_neg π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (f : Ξ± β β) : Complex.ofReal β (-f) = -Complex.ofReal β f - Complex.ofReal_zsmul π Mathlib.Data.Complex.Basic
(n : β€) (r : β) : β(n β’ r) = n β’ βr - Complex.conj_ofReal π Mathlib.Data.Complex.Basic
(r : β) : (starRingEnd β) βr = βr - Complex.div_ofReal π Mathlib.Data.Complex.Basic
(z : β) (x : β) : z / βx = { re := z.re / x, im := z.im / x } - Complex.normSq_ofReal π Mathlib.Data.Complex.Basic
(r : β) : Complex.normSq βr = r * r - Complex.ofReal_comp_add π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (f g : Ξ± β β) : Complex.ofReal β (f + g) = Complex.ofReal β f + Complex.ofReal β g - Complex.ofReal_comp_mul π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (f g : Ξ± β β) : Complex.ofReal β (f * g) = Complex.ofReal β f * Complex.ofReal β g - Complex.ofReal_comp_sub π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (f g : Ξ± β β) : Complex.ofReal β (f - g) = Complex.ofReal β f - Complex.ofReal β g - Complex.ofReal_qsmul π Mathlib.Data.Complex.Basic
(q : β) (r : β) : β(q β’ r) = q β’ βr - Complex.ofReal_comp_nsmul π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (n : β) (f : Ξ± β β) : Complex.ofReal β (n β’ f) = n β’ Complex.ofReal β f - Complex.ofReal_comp_pow π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (f : Ξ± β β) (n : β) : Complex.ofReal β (f ^ n) = Complex.ofReal β f ^ n - Complex.ofReal_comp_zsmul π Mathlib.Data.Complex.Basic
{Ξ± : Type u_1} (n : β€) (f : Ξ± β β) : Complex.ofReal β (n β’ f) = n β’ Complex.ofReal β f - Complex.ofReal_nnqsmul π Mathlib.Data.Complex.Basic
(q : ββ₯0) (r : β) : β(q β’ r) = q β’ βr - Complex.ofReal_prod π Mathlib.Data.Complex.BigOperators
{Ξ± : Type u_1} (s : Finset Ξ±) (f : Ξ± β β) : β(β i β s, f i) = β i β s, β(f i) - Complex.ofReal_sum π Mathlib.Data.Complex.BigOperators
{Ξ± : Type u_1} (s : Finset Ξ±) (f : Ξ± β β) : β(β i β s, f i) = β i β s, β(f i) - Complex.ofReal_balance π Mathlib.Data.Complex.BigOperators
{Ξ± : Type u_1} [Fintype Ξ±] (f : Ξ± β β) (a : Ξ±) : β(Fintype.balance f a) = Fintype.balance (Complex.ofReal β f) a - Complex.ofReal_comp_balance π Mathlib.Data.Complex.BigOperators
{ΞΉ : Type u_2} [Fintype ΞΉ] (f : ΞΉ β β) : Complex.ofReal β Fintype.balance f = Fintype.balance (Complex.ofReal β f) - Complex.ofReal_expect π Mathlib.Data.Complex.BigOperators
{Ξ± : Type u_1} (s : Finset Ξ±) (f : Ξ± β β) : β(s.expect fun i => f i) = s.expect fun i => β(f i) - Complex.instAlgebraOfReal π Mathlib.Data.Complex.Module
{R : Type u_1} [CommSemiring R] [Algebra R β] : Algebra R β - Complex.ofRealAm π Mathlib.Data.Complex.Module
: β ββ[β] β - Complex.instIsCentralScalarOfReal π Mathlib.Data.Complex.Module
{R : Type u_1} [SMul R β] [SMul Rα΅α΅α΅ β] [IsCentralScalar R β] : IsCentralScalar R β - Complex.instSMulCommClassOfReal π Mathlib.Data.Complex.Module
{R : Type u_1} {S : Type u_2} [SMul R β] [SMul S β] [SMulCommClass R S β] : SMulCommClass R S β - Complex.instDistribMulActionOfReal π Mathlib.Data.Complex.Module
{R : Type u_1} [Semiring R] [DistribMulAction R β] : DistribMulAction R β - Complex.instIsScalarTowerOfReal π Mathlib.Data.Complex.Module
{R : Type u_1} {S : Type u_2} [SMul R S] [SMul R β] [SMul S β] [IsScalarTower R S β] : IsScalarTower R S β - Complex.ofRealAm_coe π Mathlib.Data.Complex.Module
: βComplex.ofRealAm = Complex.ofReal - Complex.abs_ofReal π Mathlib.Data.Complex.Norm
(r : β) : ββrβ = βrβ - Complex.monotone_ofReal π Mathlib.Data.Complex.Order
: Monotone Complex.ofReal - Complex.eq_re_of_ofReal_le π Mathlib.Data.Complex.Order
{r : β} {z : β} (hz : βr β€ z) : z = βz.re - Complex.isometry_ofReal π Mathlib.Analysis.Complex.Basic
: Isometry Complex.ofReal - Complex.isUniformEmbedding_ofReal π Mathlib.Analysis.Complex.Basic
: IsUniformEmbedding Complex.ofReal - Complex.ofReal_mem_slitPlane π Mathlib.Analysis.Complex.Basic
{x : β} : βx β Complex.slitPlane β 0 < x - Complex.continuous_ofReal π Mathlib.Analysis.Complex.Basic
: Continuous Complex.ofReal - Complex.instNormedAlgebraOfReal π Mathlib.Analysis.Complex.Basic
{R : Type u_1} [NormedField R] [NormedAlgebra R β] : NormedAlgebra R β - Complex.neg_ofReal_mem_slitPlane π Mathlib.Analysis.Complex.Basic
{x : β} : -βx β Complex.slitPlane β x < 0 - Complex.summable_ofReal π Mathlib.Analysis.Complex.Basic
{Ξ± : Type u_1} {f : Ξ± β β} : (Summable fun x => β(f x)) β Summable f - Complex.hasSum_ofReal π Mathlib.Analysis.Complex.Basic
{Ξ± : Type u_1} {f : Ξ± β β} {x : β} : HasSum (fun x => β(f x)) βx β HasSum f x - Complex.ofReal_tsum π Mathlib.Analysis.Complex.Basic
{Ξ± : Type u_1} (f : Ξ± β β) : β(β' (a : Ξ±), f a) = β' (a : Ξ±), β(f a) - Complex.ringHom_eq_ofReal_of_continuous π Mathlib.Analysis.Complex.Basic
{f : β β+* β} (h : Continuous βf) : f = Complex.ofRealHom - Complex.ofRealLI π Mathlib.Analysis.Complex.Basic
: β ββα΅’[β] β - Complex.ofRealCLM π Mathlib.Analysis.Complex.Basic
: β βL[β] β - Complex.ofRealCLM_coe π Mathlib.Analysis.Complex.Basic
: βComplex.ofRealCLM = Complex.ofRealAm.toLinearMap - Complex.ofRealCLM_apply π Mathlib.Analysis.Complex.Basic
(x : β) : Complex.ofRealCLM x = βx - Complex.isTheta_ofReal π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} (f : Ξ± β β) (l : Filter Ξ±) : (fun x => β(f x)) =Ξ[l] f - Complex.isBigO_ofReal_left π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β β} {g : Ξ± β E} : (fun x => β(f x)) =O[l] g β f =O[l] g - Complex.isBigO_ofReal_right π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β E} {g : Ξ± β β} : (f =O[l] fun x => β(g x)) β f =O[l] g - Complex.isLittleO_ofReal_left π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β β} {g : Ξ± β E} : (fun x => β(f x)) =o[l] g β f =o[l] g - Complex.isLittleO_ofReal_right π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β E} {g : Ξ± β β} : (f =o[l] fun x => β(g x)) β f =o[l] g - Complex.isTheta_ofReal_left π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β β} {g : Ξ± β E} : (fun x => β(f x)) =Ξ[l] g β f =Ξ[l] g - Complex.isTheta_ofReal_right π Mathlib.Analysis.Complex.Asymptotics
{Ξ± : Type u_1} {E : Type u_2} [Norm E] {l : Filter Ξ±} {f : Ξ± β E} {g : Ξ± β β} : (f =Ξ[l] fun x => β(g x)) β f =Ξ[l] g - Complex.isBigO_comp_ofReal_nhds π Mathlib.Analysis.Complex.Asymptotics
{f g : β β β} {x : β} (h : f =O[nhds βx] g) : (fun y => f βy) =O[nhds x] fun y => g βy - Complex.isBigO_comp_ofReal_nhds_ne π Mathlib.Analysis.Complex.Asymptotics
{f g : β β β} {x : β} (h : f =O[nhdsWithin βx {βx}αΆ] g) : (fun y => f βy) =O[nhdsWithin x {x}αΆ] fun y => g βy - Complex.exp_ofReal_re π Mathlib.Data.Complex.Exponential
(x : β) : (Complex.exp βx).re = Real.exp x - Complex.ofReal_exp π Mathlib.Data.Complex.Exponential
(x : β) : β(Real.exp x) = Complex.exp βx - Complex.abs_exp_ofReal π Mathlib.Data.Complex.Exponential
(x : β) : βComplex.exp βxβ = Real.exp x - Complex.norm_exp_ofReal π Mathlib.Data.Complex.Exponential
(x : β) : βComplex.exp βxβ = Real.exp x - Complex.ofReal_exp_ofReal_re π Mathlib.Data.Complex.Exponential
(x : β) : β(Complex.exp βx).re = Complex.exp βx - Complex.exp_ofReal_im π Mathlib.Data.Complex.Exponential
(x : β) : (Complex.exp βx).im = 0 - Complex.cos_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.cos βx).re = Real.cos x - Complex.cosh_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.cosh βx).re = Real.cosh x - Complex.ofReal_cos π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Real.cos x) = Complex.cos βx - Complex.ofReal_cosh π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Real.cosh x) = Complex.cosh βx - Complex.ofReal_cot π Mathlib.Data.Complex.Trigonometric
(x : β) : βx.cot = (βx).cot - Complex.ofReal_sin π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Real.sin x) = Complex.sin βx - Complex.ofReal_sinh π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Real.sinh x) = Complex.sinh βx - Complex.ofReal_tan π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Real.tan x) = Complex.tan βx - Complex.ofReal_tanh π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Real.tanh x) = Complex.tanh βx - Complex.sin_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.sin βx).re = Real.sin x - Complex.sinh_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.sinh βx).re = Real.sinh x - Complex.tan_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.tan βx).re = Real.tan x - Complex.tanh_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.tanh βx).re = Real.tanh x - Complex.ofReal_cos_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Complex.cos βx).re = Complex.cos βx - Complex.ofReal_cosh_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Complex.cosh βx).re = Complex.cosh βx - Complex.ofReal_cot_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : β(βx).cot.re = (βx).cot - Complex.ofReal_sin_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Complex.sin βx).re = Complex.sin βx - Complex.ofReal_sinh_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Complex.sinh βx).re = Complex.sinh βx - Complex.ofReal_tan_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Complex.tan βx).re = Complex.tan βx - Complex.ofReal_tanh_ofReal_re π Mathlib.Data.Complex.Trigonometric
(x : β) : β(Complex.tanh βx).re = Complex.tanh βx - Complex.cos_ofReal_im π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.cos βx).im = 0 - Complex.cosh_ofReal_im π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.cosh βx).im = 0 - Complex.sin_ofReal_im π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.sin βx).im = 0 - Complex.sinh_ofReal_im π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.sinh βx).im = 0 - Complex.tan_ofReal_im π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.tan βx).im = 0 - Complex.tanh_ofReal_im π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.tanh βx).im = 0 - Complex.exp_ofReal_mul_I_im π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.exp (βx * Complex.I)).im = Real.sin x - Complex.exp_ofReal_mul_I_re π Mathlib.Data.Complex.Trigonometric
(x : β) : (Complex.exp (βx * Complex.I)).re = Real.cos x - Complex.abs_exp_ofReal_mul_I π Mathlib.Data.Complex.Trigonometric
(x : β) : βComplex.exp (βx * Complex.I)β = 1 - Complex.norm_exp_ofReal_mul_I π Mathlib.Data.Complex.Trigonometric
(x : β) : βComplex.exp (βx * Complex.I)β = 1 - Complex.arg_ofReal_of_neg π Mathlib.Analysis.SpecialFunctions.Complex.Arg
{x : β} (hx : x < 0) : (βx).arg = Real.pi - Complex.arg_ofReal_of_nonneg π Mathlib.Analysis.SpecialFunctions.Complex.Arg
{x : β} (hx : 0 β€ x) : (βx).arg = 0 - Complex.log_ofReal_re π Mathlib.Analysis.SpecialFunctions.Complex.Log
(x : β) : (Complex.log βx).re = Real.log x - Complex.ofReal_log π Mathlib.Analysis.SpecialFunctions.Complex.Log
{x : β} (hx : 0 β€ x) : β(Real.log x) = Complex.log βx - Complex.log_mul_ofReal π Mathlib.Analysis.SpecialFunctions.Complex.Log
(r : β) (hr : 0 < r) (x : β) (hx : x β 0) : Complex.log (x * βr) = β(Real.log r) + Complex.log x - Complex.log_ofReal_mul π Mathlib.Analysis.SpecialFunctions.Complex.Log
{r : β} (hr : 0 < r) {x : β} (hx : x β 0) : Complex.log (βr * x) = β(Real.log r) + Complex.log x - Complex.mul_cpow_ofReal_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Complex
{a b : β} (ha : 0 β€ a) (hb : 0 β€ b) (r : β) : (βa * βb) ^ r = βa ^ r * βb ^ r - Complex.norm_ofReal_cpow_eventually_eq_atTop π Mathlib.Analysis.SpecialFunctions.Pow.Real
(c : β) : (fun t => ββt ^ cβ) =αΆ [Filter.atTop] fun t => t ^ c.re - Complex.ofReal_cpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y : β) : β(x ^ y) = βx ^ βy - Complex.inv_natCast_cpow_ofReal_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{n : β} (hn : n β 0) (x : β) : 0 < (βn ^ βx)β»ΒΉ - Complex.cpow_ofReal_im π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) (y : β) : (x ^ βy).im = βxβ ^ y * Real.sin (x.arg * y) - Complex.cpow_ofReal_re π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) (y : β) : (x ^ βy).re = βxβ ^ y * Real.cos (x.arg * y) - Complex.cpow_mul_ofReal_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y : β) (z : β) : βx ^ (βy * z) = β(x ^ y) ^ z - Complex.ofReal_cpow_of_nonpos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : x β€ 0) (y : β) : βx ^ y = (-βx) ^ y * Complex.exp (βReal.pi * Complex.I * y) - Complex.cpow_ofReal π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) (y : β) : x ^ βy = β(βxβ ^ y) * (β(Real.cos (x.arg * y)) + β(Real.sin (x.arg * y)) * Complex.I) - Complex.continuous_ofReal_cpow_const π Mathlib.Analysis.SpecialFunctions.Pow.Continuity
{y : β} (hs : 0 < y.re) : Continuous fun x => βx ^ y - Complex.continuousAt_ofReal_cpow_const π Mathlib.Analysis.SpecialFunctions.Pow.Continuity
(x : β) (y : β) (h : 0 < y.re β¨ x β 0) : ContinuousAt (fun a => βa ^ y) x - Complex.continuousAt_ofReal_cpow π Mathlib.Analysis.SpecialFunctions.Pow.Continuity
(x : β) (y : β) (h : 0 < y.re β¨ x β 0) : ContinuousAt (fun p => βp.1 ^ p.2) (x, y) - Complex.measurable_ofReal π Mathlib.MeasureTheory.Function.SpecialFunctions.Basic
: Measurable Complex.ofReal - Complex.starConvex_ofReal_slitPlane π Mathlib.Analysis.Complex.Convex
{x : β} (hx : 0 < x) : StarConvex β (βx) Complex.slitPlane - Complex.deriv_ofReal_cpow_const π Mathlib.Analysis.SpecialFunctions.Pow.Deriv
{c : β} {x : β} (hx : x β 0) (hc : c β 0) : deriv (fun x => βx ^ c) x = c * βx ^ (c - 1) - Complex.ofRealCLM_norm π Mathlib.Analysis.Complex.OperatorNorm
: βComplex.ofRealCLMβ = 1 - Complex.ofRealCLM_nnnorm π Mathlib.Analysis.Complex.OperatorNorm
: βComplex.ofRealCLMββ = 1 - Complex.Gamma_ofReal π Mathlib.Analysis.SpecialFunctions.Gamma.Basic
(s : β) : Complex.Gamma βs = β(Real.Gamma s) - Complex.GammaIntegral_ofReal π Mathlib.Analysis.SpecialFunctions.Gamma.Basic
(s : β) : (βs).GammaIntegral = β(β« (x : β) in Set.Ioi 0, Real.exp (-x) * x ^ (s - 1)) - Complex.ofRealLI.eq_1 π Mathlib.Analysis.SpecialFunctions.Gaussian.FourierTransform
: Complex.ofRealLI = { toLinearMap := Complex.ofRealAm.toLinearMap, norm_map' := Complex.norm_real } - Complex.ofReal_arctan π Mathlib.Analysis.SpecialFunctions.Complex.Arctan
(x : β) : β(Real.arctan x) = (βx).arctan
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65