Loogle!
Result
Found 1551 declarations mentioning LT. Of these, 480 have a name containing "Std.". Of these, 18 match your pattern(s).
- Std.LawfulOrderLT 📋 Init.Data.Order.Classes
(α : Type u) [LT α] [LE α] : Prop - Std.PRange.LawfulUpwardEnumerableLT 📋 Init.Data.Range.Polymorphic.UpwardEnumerable
(α : Type u) [Std.PRange.UpwardEnumerable α] [LT α] : Prop - Std.Rxo.IsAlwaysFinite 📋 Init.Data.Range.Polymorphic.PRange
(α : Type u) [Std.PRange.UpwardEnumerable α] [LT α] : Prop - Std.Rcc.LawfulRcoIntersection 📋 Init.Data.Range.Polymorphic.PRange
(α : Type w) [LT α] [LE α] [Std.Rcc.HasRcoIntersection α] : Prop - Std.Rci.LawfulRcoIntersection 📋 Init.Data.Range.Polymorphic.PRange
(α : Type w) [LT α] [LE α] [Std.Rci.HasRcoIntersection α] : Prop - Std.Rco.LawfulRcoIntersection 📋 Init.Data.Range.Polymorphic.PRange
(α : Type w) [LT α] [LE α] [Std.Rco.HasRcoIntersection α] : Prop - Std.Ric.LawfulRcoIntersection 📋 Init.Data.Range.Polymorphic.PRange
(α : Type w) [LT α] [LE α] [Std.Ric.HasRcoIntersection α] : Prop - Std.Rio.LawfulRcoIntersection 📋 Init.Data.Range.Polymorphic.PRange
(α : Type w) [LT α] [LE α] [Std.Rio.HasRcoIntersection α] : Prop - Std.Roc.LawfulRcoIntersection 📋 Init.Data.Range.Polymorphic.PRange
(α : Type w) [LT α] [LE α] [Std.Roc.HasRcoIntersection α] : Prop - Std.Roi.LawfulRcoIntersection 📋 Init.Data.Range.Polymorphic.PRange
(α : Type w) [LT α] [LE α] [Std.Roi.HasRcoIntersection α] : Prop - Std.Roo.LawfulRcoIntersection 📋 Init.Data.Range.Polymorphic.PRange
(α : Type w) [LT α] [LE α] [Std.Roo.HasRcoIntersection α] : Prop - Std.Rxo.LawfulHasSize 📋 Init.Data.Range.Polymorphic.Basic
(α : Type u) [LT α] [Std.PRange.UpwardEnumerable α] [Std.Rxo.HasSize α] : Prop - Std.LawfulLTOrd 📋 Batteries.Classes.Order
(α : Type u_1) [LT α] [Ord α] : Prop - Std.LawfulLTCmp 📋 Batteries.Classes.Order
{α : Type u_1} [LT α] (cmp : α → α → Ordering) : Prop - Std.LawfulOrd 📋 Batteries.Classes.Order
(α : Type u_1) [LE α] [LT α] [Ord α] : Prop - Std.LawfulCmp 📋 Batteries.Classes.Order
{α : Type u_1} [LE α] [LT α] (cmp : α → α → Ordering) : Prop - Std.LawfulBOrd 📋 Batteries.Classes.Order
(α : Type u_1) [LE α] [LT α] [BEq α] [Ord α] : Prop - Std.LawfulBCmp 📋 Batteries.Classes.Order
{α : Type u_1} [LE α] [LT α] [BEq α] (cmp : α → α → Ordering) : Prop
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision abad10c