Loogle!
Result
Found 455 declarations whose name contains "_apply_coe". Of these, only the first 200 are shown.
- Equiv.sumIsLeft_symm_apply_coe π Mathlib.Logic.Equiv.Defs
{Ξ± : Type u_1} {Ξ² : Type u_2} (a : Ξ±) : β(Equiv.sumIsLeft.symm a) = Sum.inl a - Equiv.sumIsRight_symm_apply_coe π Mathlib.Logic.Equiv.Defs
{Ξ± : Type u_1} {Ξ² : Type u_2} (b : Ξ²) : β(Equiv.sumIsRight.symm b) = Sum.inr b - Equiv.optionIsSomeEquiv_symm_apply_coe π Mathlib.Logic.Equiv.Option
(Ξ± : Type u_4) (x : Ξ±) : β((Equiv.optionIsSomeEquiv Ξ±).symm x) = some x - Equiv.optionSubtype_symm_apply_apply_coe π Mathlib.Logic.Equiv.Option
{Ξ± : Type u_1} {Ξ² : Type u_2} [DecidableEq Ξ²] (x : Ξ²) (e : Ξ± β { y // y β x }) (a : Ξ±) : β((Equiv.optionSubtype x).symm e) (some a) = β(e a) - Equiv.subtypeEquivRight_apply_coe π Mathlib.Logic.Equiv.Basic
{Ξ± : Sort u_1} {p q : Ξ± β Prop} (e : β (x : Ξ±), p x β q x) (a : { a // p a }) : β((Equiv.subtypeEquivRight e) a) = βa - Equiv.subtypeEquivRight_symm_apply_coe π Mathlib.Logic.Equiv.Basic
{Ξ± : Sort u_1} {p q : Ξ± β Prop} (e : β (x : Ξ±), p x β q x) (b : { b // q b }) : β((Equiv.subtypeEquivRight e).symm b) = βb - Equiv.sigmaSubtype_symm_apply_coe_fst π Mathlib.Logic.Equiv.Basic
{Ξ± : Type u_9} {Ξ² : Ξ± β Type u_10} (a : Ξ±) (b : Ξ² a) : (β((Equiv.sigmaSubtype a).symm b)).fst = a - Equiv.sigmaSubtype_symm_apply_coe_snd π Mathlib.Logic.Equiv.Basic
{Ξ± : Type u_9} {Ξ² : Ξ± β Type u_10} (a : Ξ±) (b : Ξ² a) : (β((Equiv.sigmaSubtype a).symm b)).snd = b - Equiv.subtypeSubtypeEquivSubtype_apply_coe π Mathlib.Logic.Equiv.Basic
{Ξ± : Type u_9} {p q : Ξ± β Prop} (h : β {x : Ξ±}, q x β p x) (aβ : { x // q βx }) : β((Equiv.subtypeSubtypeEquivSubtype h) aβ) = ββaβ - Equiv.subtypeSubtypeEquivSubtype_symm_apply_coe_coe π Mathlib.Logic.Equiv.Basic
{Ξ± : Type u_9} {p q : Ξ± β Prop} (h : β {x : Ξ±}, q x β p x) (aβ : Subtype q) : ββ((Equiv.subtypeSubtypeEquivSubtype h).symm aβ) = βaβ - Equiv.subtypeSubtypeEquivSubtypeExists_apply_coe π Mathlib.Logic.Equiv.Basic
{Ξ± : Sort u_1} (p : Ξ± β Prop) (q : Subtype p β Prop) (a : Subtype q) : β((Equiv.subtypeSubtypeEquivSubtypeExists p q) a) = ββa - Equiv.subtypeSubtypeEquivSubtypeInter_apply_coe π Mathlib.Logic.Equiv.Basic
{Ξ± : Type u} (p q : Ξ± β Prop) (aβ : { x // q βx }) : β((Equiv.subtypeSubtypeEquivSubtypeInter p q) aβ) = ββaβ - Equiv.subtypeSubtypeEquivSubtypeInter_symm_apply_coe_coe π Mathlib.Logic.Equiv.Basic
{Ξ± : Type u} (p q : Ξ± β Prop) (aβ : { x // p x β§ q x }) : ββ((Equiv.subtypeSubtypeEquivSubtypeInter p q).symm aβ) = βaβ - Equiv.subtypeSubtypeEquivSubtypeExists_symm_apply_coe_coe π Mathlib.Logic.Equiv.Basic
{Ξ± : Sort u_1} (p : Ξ± β Prop) (q : Subtype p β Prop) (a : { a // β (h : p a), q β¨a, hβ© }) : ββ((Equiv.subtypeSubtypeEquivSubtypeExists p q).symm a) = βa - Equiv.subtypePreimage_symm_apply_coe_pos π Mathlib.Logic.Equiv.Basic
{Ξ± : Sort u_1} {Ξ² : Sort u_4} (p : Ξ± β Prop) [DecidablePred p] (xβ : { a // p a } β Ξ²) (x : { a // Β¬p a } β Ξ²) (a : Ξ±) (h : p a) : β((Equiv.subtypePreimage p xβ).symm x) a = xβ β¨a, hβ© - Equiv.subtypePreimage_symm_apply_coe_neg π Mathlib.Logic.Equiv.Basic
{Ξ± : Sort u_1} {Ξ² : Sort u_4} (p : Ξ± β Prop) [DecidablePred p] (xβ : { a // p a } β Ξ²) (x : { a // Β¬p a } β Ξ²) (a : Ξ±) (h : Β¬p a) : β((Equiv.subtypePreimage p xβ).symm x) a = x β¨a, hβ© - Equiv.subtypePreimage_symm_apply_coe π Mathlib.Logic.Equiv.Basic
{Ξ± : Sort u_1} {Ξ² : Sort u_4} (p : Ξ± β Prop) [DecidablePred p] (xβ : { a // p a } β Ξ²) (x : { a // Β¬p a } β Ξ²) (a : Ξ±) : β((Equiv.subtypePreimage p xβ).symm x) a = if h : p a then xβ β¨a, hβ© else x β¨a, hβ© - unitsEquivProdSubtype_apply_coe π Mathlib.Algebra.Group.Units.Equiv
(Ξ± : Type u_2) [Monoid Ξ±] (u : Ξ±Λ£) : β((unitsEquivProdSubtype Ξ±) u) = (βu, βuβ»ΒΉ) - Equiv.Perm.ofSubtype_apply_coe π Mathlib.Algebra.Group.End
{Ξ± : Type u_4} {p : Ξ± β Prop} [DecidablePred p] (f : Equiv.Perm (Subtype p)) (x : Subtype p) : (Equiv.Perm.ofSubtype f) βx = β(f x) - Equiv.Perm.subtypeEquivSubtypePerm_apply_coe π Mathlib.Algebra.Group.End
{Ξ± : Type u_4} (p : Ξ± β Prop) [DecidablePred p] (f : Equiv.Perm (Subtype p)) : β((Equiv.Perm.subtypeEquivSubtypePerm p) f) = Equiv.Perm.ofSubtype f - Subtype.impEmbedding_apply_coe π Mathlib.Logic.Embedding.Basic
{Ξ± : Type u_1} (p q : Ξ± β Prop) (h : β (x : Ξ±), p x β q x) (x : { x // p x }) : β((Subtype.impEmbedding p q h) x) = βx - Subtype.orderEmbedding_apply_coe π Mathlib.Order.Hom.Basic
{Ξ± : Type u_2} [Preorder Ξ±] {p q : Ξ± β Prop} (h : β (a : Ξ±), p a β q a) (x : { x // p x }) : β((Subtype.orderEmbedding h) x) = βx - OrderHom.dual_apply_coe π Mathlib.Order.Hom.Basic
{Ξ± : Type u_2} {Ξ² : Type u_3} [Preorder Ξ±] [Preorder Ξ²] (f : Ξ± βo Ξ²) (aβ : Ξ±α΅α΅) : (OrderHom.dual f) aβ = (βOrderDual.toDual β βf β βOrderDual.ofDual) aβ - OrderHom.dual_symm_apply_coe π Mathlib.Order.Hom.Basic
{Ξ± : Type u_2} {Ξ² : Type u_3} [Preorder Ξ±] [Preorder Ξ²] (f : Ξ±α΅α΅ βo Ξ²α΅α΅) (aβ : Ξ±) : (OrderHom.dual.symm f) aβ = (βOrderDual.ofDual β βf β βOrderDual.toDual) aβ - WithZero.withZeroUnitsEquiv_symm_apply_coe π Mathlib.Algebra.GroupWithZero.WithZero
{G : Type u_4} [GroupWithZero G] [DecidablePred fun a => a = 0] (a : GΛ£) : WithZero.withZeroUnitsEquiv.symm βa = βa - WithBot.toDual_apply_coe π Mathlib.Order.WithBot
{Ξ± : Type u_1} (a : Ξ±) : WithBot.toDual βa = β(OrderDual.toDual a) - WithTop.toDual_apply_coe π Mathlib.Order.WithBot
{Ξ± : Type u_1} (a : Ξ±) : WithTop.toDual βa = β(OrderDual.toDual a) - WithBot.ofDual_apply_coe π Mathlib.Order.WithBot
{Ξ± : Type u_1} (a : Ξ±α΅α΅) : WithBot.ofDual βa = β(OrderDual.ofDual a) - WithTop.ofDual_apply_coe π Mathlib.Order.WithBot
{Ξ± : Type u_1} (a : Ξ±α΅α΅) : WithTop.ofDual βa = β(OrderDual.ofDual a) - Equiv.withBotSubtypeNe_symm_apply_coe π Mathlib.Order.WithBot
{Ξ± : Type u_1} (x : Ξ±) : β(Equiv.withBotSubtypeNe.symm x) = βx - Equiv.withTopSubtypeNe_symm_apply_coe π Mathlib.Order.WithBot
{Ξ± : Type u_1} (x : Ξ±) : β(Equiv.withTopSubtypeNe.symm x) = βx - Equiv.ofLeftInverse_apply_coe π Mathlib.Logic.Equiv.Set
{Ξ± : Sort u_3} {Ξ² : Type u_4} (f : Ξ± β Ξ²) (f_inv : Nonempty Ξ± β Ξ² β Ξ±) (hf : β (h : Nonempty Ξ±), Function.LeftInverse (f_inv h) f) (a : Ξ±) : β((Equiv.ofLeftInverse f f_inv hf) a) = f a - Equiv.Set.rangeInl_symm_apply_coe π Mathlib.Logic.Equiv.Set
(Ξ± : Type u_3) (Ξ² : Type u_4) (x : Ξ±) : β((Equiv.Set.rangeInl Ξ± Ξ²).symm x) = Sum.inl x - Equiv.Set.rangeInr_symm_apply_coe π Mathlib.Logic.Equiv.Set
(Ξ± : Type u_3) (Ξ² : Type u_4) (x : Ξ²) : β((Equiv.Set.rangeInr Ξ± Ξ²).symm x) = Sum.inr x - Equiv.Set.univPi_apply_coe π Mathlib.Logic.Equiv.Set
{Ξ± : Type u_3} {Ξ² : Ξ± β Type u_4} (s : (a : Ξ±) β Set (Ξ² a)) (f : β(Set.univ.pi s)) (a : Ξ±) : β((Equiv.Set.univPi s) f a) = βf a - Equiv.Set.univPi_symm_apply_coe π Mathlib.Logic.Equiv.Set
{Ξ± : Type u_3} {Ξ² : Ξ± β Type u_4} (s : (a : Ξ±) β Set (Ξ² a)) (f : (a : Ξ±) β β(s a)) (a : Ξ±) : β((Equiv.Set.univPi s).symm f) a = β(f a) - Equiv.image_apply_coe π Mathlib.Logic.Equiv.Set
{Ξ± : Type u_3} {Ξ² : Type u_4} (e : Ξ± β Ξ²) (s : Set Ξ±) (x : βs) : β((e.image s) x) = e βx - Equiv.Set.rangeSplittingImageEquiv_symm_apply_coe π Mathlib.Logic.Equiv.Set
{Ξ± : Type u_3} {Ξ² : Type u_4} (f : Ξ± β Ξ²) (s : Set β(Set.range f)) (x : βs) : β((Equiv.Set.rangeSplittingImageEquiv f s).symm x) = Set.rangeSplitting f βx - Equiv.Set.rangeSplittingImageEquiv_apply_coe_coe π Mathlib.Logic.Equiv.Set
{Ξ± : Type u_3} {Ξ² : Type u_4} (f : Ξ± β Ξ²) (s : Set β(Set.range f)) (x : β(Set.rangeSplitting f '' s)) : ββ((Equiv.Set.rangeSplittingImageEquiv f s) x) = f βx - Equiv.image_symm_apply_coe π Mathlib.Logic.Equiv.Set
{Ξ± : Type u_3} {Ξ² : Type u_4} (e : Ξ± β Ξ²) (s : Set Ξ±) (y : β(βe '' s)) : β((e.image s).symm y) = e.symm βy - unitsEquivNeZero_apply_coe π Mathlib.Algebra.GroupWithZero.Units.Equiv
{Gβ : Type u_1} [GroupWithZero Gβ] (a : GβΛ£) : β(unitsEquivNeZero a) = βa - Nonneg.unitsEquivPos_apply_coe π Mathlib.Algebra.Order.Nonneg.Field
(R : Type u_2) [DivisionSemiring R] [PartialOrder R] [IsStrictOrderedRing R] [PosMulReflectLT R] (r : { r // 0 β€ r }Λ£) : β((Nonneg.unitsEquivPos R) r) = ββr - Nonneg.val_unitsEquivPos_symm_apply_coe π Mathlib.Algebra.Order.Nonneg.Field
(R : Type u_2) [DivisionSemiring R] [PartialOrder R] [IsStrictOrderedRing R] [PosMulReflectLT R] (r : { r // 0 < r }) : ββ((Nonneg.unitsEquivPos R).symm r) = βr - Nonneg.val_inv_unitsEquivPos_symm_apply_coe π Mathlib.Algebra.Order.Nonneg.Field
(R : Type u_2) [DivisionSemiring R] [PartialOrder R] [IsStrictOrderedRing R] [PosMulReflectLT R] (r : { r // 0 < r }) : ββ((Nonneg.unitsEquivPos R).symm r)β»ΒΉ = (βr)β»ΒΉ - Equiv.finsetSubtypeComm_apply_coe π Mathlib.Data.Finset.Image
{Ξ± : Type u_1} (p : Ξ± β Prop) (s : Finset { a // p a }) : β((Equiv.finsetSubtypeComm p) s) = Finset.map { toFun := fun a => βa, inj' := β― } s - finCongr_apply_coe π Mathlib.Data.Fin.SuccPred
{n m : β} (h : m = n) (k : Fin m) : β((finCongr h) k) = βk - finCongr_symm_apply_coe π Mathlib.Data.Fin.SuccPred
{n m : β} (h : m = n) (k : Fin n) : β((finCongr h).symm k) = βk - List.Nodup.getEquiv_apply_coe π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [DecidableEq Ξ±] (l : List Ξ±) (H : l.Nodup) (i : Fin l.length) : β((List.Nodup.getEquiv l H) i) = l.get i - OrderIso.finsetSetFinite_apply_coe π Mathlib.Data.Set.Finite.Basic
{Ξ± : Type u} (s : Finset Ξ±) : β(OrderIso.finsetSetFinite s) = βs - Set.Finite.subtypeEquivToFinset_apply_coe π Mathlib.Data.Set.Finite.Basic
{Ξ± : Type u} {s : Set Ξ±} (hs : s.Finite) (a : { a // a β s }) : β(hs.subtypeEquivToFinset a) = βa - Set.Finite.subtypeEquivToFinset_symm_apply_coe π Mathlib.Data.Set.Finite.Basic
{Ξ± : Type u} {s : Set Ξ±} (hs : s.Finite) (b : { b // b β hs.toFinset }) : β(hs.subtypeEquivToFinset.symm b) = βb - AddSubmonoid.addUnitsTypeEquivIsAddUnitAddSubmonoid_apply_coe π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} [AddMonoid M] (x : AddUnits M) : β(AddSubmonoid.addUnitsTypeEquivIsAddUnitAddSubmonoid x) = βx - Submonoid.unitsTypeEquivIsUnitSubmonoid_apply_coe π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} [Monoid M] (x : MΛ£) : β(Submonoid.unitsTypeEquivIsUnitSubmonoid x) = βx - AddSubmonoid.topEquiv_symm_apply_coe π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_5} [AddZeroClass M] (x : M) : β(AddSubmonoid.topEquiv.symm x) = x - Submonoid.topEquiv_symm_apply_coe π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_5} [MulOneClass M] (x : M) : β(Submonoid.topEquiv.symm x) = x - AddMonoidHom.addSubmonoidMap_apply_coe π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M β+ N) (M' : AddSubmonoid M) (x : β₯M') : β((f.addSubmonoidMap M') x) = f βx - MonoidHom.submonoidMap_apply_coe π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M β* N) (M' : Submonoid M) (x : β₯M') : β((f.submonoidMap M') x) = f βx - AddMonoidHom.addSubmonoidComap_apply_coe π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M β+ N) (N' : AddSubmonoid N) (x : β₯(AddSubmonoid.comap f N')) : β((f.addSubmonoidComap N') x) = f βx - MonoidHom.submonoidComap_apply_coe π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M β* N) (N' : Submonoid N) (x : β₯(Submonoid.comap f N')) : β((f.submonoidComap N') x) = f βx - AddSubgroup.topEquiv_symm_apply_coe π Mathlib.Algebra.Group.Subgroup.Lattice
{G : Type u_1} [AddGroup G] (x : G) : β(AddSubgroup.topEquiv.symm x) = x - Subgroup.topEquiv_symm_apply_coe π Mathlib.Algebra.Group.Subgroup.Lattice
{G : Type u_1} [Group G] (x : G) : β(Subgroup.topEquiv.symm x) = x - AddMonoidHom.addSubgroupMap_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) (x : β₯H.toAddSubmonoid) : β((f.addSubgroupMap H) x) = f βx - MonoidHom.subgroupMap_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (H : Subgroup G) (x : β₯H.toSubmonoid) : β((f.subgroupMap H) x) = f βx - AddMonoidHom.addSubgroupComap_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H' : AddSubgroup G') (x : β₯(AddSubmonoid.comap f H'.toAddSubmonoid)) : β((f.addSubgroupComap H') x) = f βx - MonoidHom.subgroupComap_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (H' : Subgroup G') (x : β₯(Submonoid.comap f H'.toSubmonoid)) : β((f.subgroupComap H') x) = f βx - AddSubgroup.addSubgroupOfEquivOfLe_symm_apply_coe_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_7} [AddGroup G] {H K : AddSubgroup G} (h : H β€ K) (g : β₯H) : ββ((AddSubgroup.addSubgroupOfEquivOfLe h).symm g) = βg - Subgroup.subgroupOfEquivOfLe_symm_apply_coe_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_7} [Group G] {H K : Subgroup G} (h : H β€ K) (g : β₯H) : ββ((Subgroup.subgroupOfEquivOfLe h).symm g) = βg - AddSubgroup.addSubgroupOfEquivOfLe_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_7} [AddGroup G] {H K : AddSubgroup G} (h : H β€ K) (g : β₯(H.addSubgroupOf K)) : β((AddSubgroup.addSubgroupOfEquivOfLe h) g) = ββg - Subgroup.subgroupOfEquivOfLe_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_7} [Group G] {H K : Subgroup G} (h : H β€ K) (g : β₯(H.subgroupOf K)) : β((Subgroup.subgroupOfEquivOfLe h) g) = ββg - AddSubgroup.MapSubtype.orderIso_apply_coe π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] (H : AddSubgroup G) (H' : AddSubgroup β₯H) : β((AddSubgroup.MapSubtype.orderIso H) H') = AddSubgroup.map H.subtype H' - Subgroup.MapSubtype.orderIso_apply_coe π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] (H : Subgroup G) (H' : Subgroup β₯H) : β((Subgroup.MapSubtype.orderIso H) H') = Subgroup.map H.subtype H' - AddSubsemigroup.equivOp_apply_coe π Mathlib.Algebra.Group.Subsemigroup.MulOpposite
{M : Type u_2} [Add M] (H : AddSubsemigroup M) (a : β₯H) : β(H.equivOp a) = AddOpposite.op βa - Subsemigroup.equivOp_apply_coe π Mathlib.Algebra.Group.Subsemigroup.MulOpposite
{M : Type u_2} [Mul M] (H : Subsemigroup M) (a : β₯H) : β(H.equivOp a) = MulOpposite.op βa - AddSubsemigroup.equivOp_symm_apply_coe π Mathlib.Algebra.Group.Subsemigroup.MulOpposite
{M : Type u_2} [Add M] (H : AddSubsemigroup M) (b : β₯H.op) : β(H.equivOp.symm b) = AddOpposite.unop βb - Subsemigroup.equivOp_symm_apply_coe π Mathlib.Algebra.Group.Subsemigroup.MulOpposite
{M : Type u_2} [Mul M] (H : Subsemigroup M) (b : β₯H.op) : β(H.equivOp.symm b) = MulOpposite.unop βb - AddSubmonoid.equivOp_apply_coe π Mathlib.Algebra.Group.Submonoid.MulOpposite
{M : Type u_2} [AddZeroClass M] (H : AddSubmonoid M) (a : β₯H) : β(H.equivOp a) = AddOpposite.op βa - Submonoid.equivOp_apply_coe π Mathlib.Algebra.Group.Submonoid.MulOpposite
{M : Type u_2} [MulOneClass M] (H : Submonoid M) (a : β₯H) : β(H.equivOp a) = MulOpposite.op βa - AddSubmonoid.equivOp_symm_apply_coe π Mathlib.Algebra.Group.Submonoid.MulOpposite
{M : Type u_2} [AddZeroClass M] (H : AddSubmonoid M) (b : β₯H.op) : β(H.equivOp.symm b) = AddOpposite.unop βb - Submonoid.equivOp_symm_apply_coe π Mathlib.Algebra.Group.Submonoid.MulOpposite
{M : Type u_2} [MulOneClass M] (H : Submonoid M) (b : β₯H.op) : β(H.equivOp.symm b) = MulOpposite.unop βb - AddSubgroup.equivOp_apply_coe π Mathlib.Algebra.Group.Subgroup.MulOpposite
{G : Type u_2} [AddGroup G] (H : AddSubgroup G) (a : β₯H) : β(H.equivOp a) = AddOpposite.op βa - Subgroup.equivOp_apply_coe π Mathlib.Algebra.Group.Subgroup.MulOpposite
{G : Type u_2} [Group G] (H : Subgroup G) (a : β₯H) : β(H.equivOp a) = MulOpposite.op βa - AddSubgroup.equivOp_symm_apply_coe π Mathlib.Algebra.Group.Subgroup.MulOpposite
{G : Type u_2} [AddGroup G] (H : AddSubgroup G) (b : β₯H.op) : β(H.equivOp.symm b) = AddOpposite.unop βb - Subgroup.equivOp_symm_apply_coe π Mathlib.Algebra.Group.Subgroup.MulOpposite
{G : Type u_2} [Group G] (H : Subgroup G) (b : β₯H.op) : β(H.equivOp.symm b) = MulOpposite.unop βb - Set.embeddingOfSubset_apply_coe π Mathlib.Logic.Embedding.Set
{Ξ± : Type u_1} (s t : Set Ξ±) (h : s β t) (x : βs) : β((s.embeddingOfSubset t h) x) = βx - Equiv.restrictPreimageFinset_apply_coe π Mathlib.Data.Finset.Preimage
{Ξ± : Type u} {Ξ² : Type v} (e : Ξ± β Ξ²) (s : Finset Ξ²) (a : β₯(s.preimage βe β―)) : β((e.restrictPreimageFinset s) a) = e βa - Equiv.restrictPreimageFinset_symm_apply_coe π Mathlib.Data.Finset.Preimage
{Ξ± : Type u} {Ξ² : Type v} (e : Ξ± β Ξ²) (s : Finset Ξ²) (b : β₯s) : β((e.restrictPreimageFinset s).symm b) = e.symm βb - WithBot.subtypeOrderIso_apply_coe π Mathlib.Order.Hom.WithTopBot
{Ξ± : Type u_1} [PartialOrder Ξ±] [OrderBot Ξ±] [DecidablePred fun x => x = β₯] (a : { a // a β β₯ }) : WithBot.subtypeOrderIso βa = βa - WithTop.subtypeOrderIso_apply_coe π Mathlib.Order.Hom.WithTopBot
{Ξ± : Type u_1} [PartialOrder Ξ±] [OrderTop Ξ±] [DecidablePred fun x => x = β€] (a : { a // a β β€ }) : WithTop.subtypeOrderIso βa = βa - AddSubmonoid.centerCongr_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddZeroClass N] (e : M β+ N) (r : β₯(AddSubsemigroup.center M)) : β((AddSubmonoid.centerCongr e) r) = e βr - Submonoid.centerCongr_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} {N : Type u_1} [MulOneClass M] [MulOneClass N] (e : M β* N) (r : β₯(Subsemigroup.center M)) : β((Submonoid.centerCongr e) r) = e βr - AddSubmonoid.centerToAddOpposite_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} [AddZeroClass M] (r : β₯(AddSubsemigroup.center M)) : β(AddSubmonoid.centerToAddOpposite r) = AddOpposite.op βr - Submonoid.centerToMulOpposite_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} [MulOneClass M] (r : β₯(Subsemigroup.center M)) : β(Submonoid.centerToMulOpposite r) = MulOpposite.op βr - AddSubmonoid.centerCongr_symm_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} {N : Type u_1} [AddZeroClass M] [AddZeroClass N] (e : M β+ N) (s : β₯(AddSubsemigroup.center N)) : β((AddSubmonoid.centerCongr e).symm s) = e.symm βs - Submonoid.centerCongr_symm_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} {N : Type u_1} [MulOneClass M] [MulOneClass N] (e : M β* N) (s : β₯(Subsemigroup.center N)) : β((Submonoid.centerCongr e).symm s) = e.symm βs - AddSubsemigroup.centerCongr_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} {N : Type u_1} [Add M] [Add N] (e : M β+ N) (r : β₯(AddSubsemigroup.center M)) : β((AddSubsemigroup.centerCongr e) r) = e βr - Subsemigroup.centerCongr_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} {N : Type u_1} [Mul M] [Mul N] (e : M β* N) (r : β₯(Subsemigroup.center M)) : β((Subsemigroup.centerCongr e) r) = e βr - AddSubmonoid.centerToAddOpposite_symm_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} [AddZeroClass M] (r : β₯(AddSubsemigroup.center Mα΅α΅α΅)) : β(AddSubmonoid.centerToAddOpposite.symm r) = AddOpposite.unop βr - Submonoid.centerToMulOpposite_symm_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} [MulOneClass M] (r : β₯(Subsemigroup.center Mα΅α΅α΅)) : β(Submonoid.centerToMulOpposite.symm r) = MulOpposite.unop βr - val_addUnitsCenterToCenterAddUnits_apply_coe π Mathlib.GroupTheory.Submonoid.Center
(M : Type u_1) [AddMonoid M] (n : AddUnits β₯(AddSubmonoid.center M)) : ββ((addUnitsCenterToCenterAddUnits M) n) = ββn - val_unitsCenterToCenterUnits_apply_coe π Mathlib.GroupTheory.Submonoid.Center
(M : Type u_1) [Monoid M] (n : (β₯(Submonoid.center M))Λ£) : ββ((unitsCenterToCenterUnits M) n) = ββn - AddSubsemigroup.centerCongr_symm_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} {N : Type u_1} [Add M] [Add N] (e : M β+ N) (s : β₯(AddSubsemigroup.center N)) : β((AddSubsemigroup.centerCongr e).symm s) = e.symm βs - Subsemigroup.centerCongr_symm_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} {N : Type u_1} [Mul M] [Mul N] (e : M β* N) (s : β₯(Subsemigroup.center N)) : β((Subsemigroup.centerCongr e).symm s) = e.symm βs - AddSubsemigroup.centerToAddOpposite_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} [Add M] (r : β₯(AddSubsemigroup.center M)) : β(AddSubsemigroup.centerToAddOpposite r) = AddOpposite.op βr - Subsemigroup.centerToMulOpposite_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} [Mul M] (r : β₯(Subsemigroup.center M)) : β(Subsemigroup.centerToMulOpposite r) = MulOpposite.op βr - AddSubsemigroup.centerToAddOpposite_symm_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} [Add M] (r : β₯(AddSubsemigroup.center Mα΅α΅α΅)) : β(AddSubsemigroup.centerToAddOpposite.symm r) = AddOpposite.unop βr - Subsemigroup.centerToMulOpposite_symm_apply_coe π Mathlib.GroupTheory.Submonoid.Center
{M : Type u_2} [Mul M] (r : β₯(Subsemigroup.center Mα΅α΅α΅)) : β(Subsemigroup.centerToMulOpposite.symm r) = MulOpposite.unop βr - AddSubgroup.centerCongr_apply_coe π Mathlib.GroupTheory.Subgroup.Center
{G : Type u_1} [AddGroup G] {H : Type u_2} [AddGroup H] (e : G β+ H) (r : β₯(AddSubsemigroup.center G)) : β((AddSubgroup.centerCongr e) r) = e βr - Subgroup.centerCongr_apply_coe π Mathlib.GroupTheory.Subgroup.Center
{G : Type u_1} [Group G] {H : Type u_2} [Group H] (e : G β* H) (r : β₯(Subsemigroup.center G)) : β((Subgroup.centerCongr e) r) = e βr - AddSubgroup.centerToAddOpposite_apply_coe π Mathlib.GroupTheory.Subgroup.Center
(G : Type u_1) [AddGroup G] (r : β₯(AddSubsemigroup.center G)) : β((AddSubgroup.centerToAddOpposite G) r) = AddOpposite.op βr - Subgroup.centerToMulOpposite_apply_coe π Mathlib.GroupTheory.Subgroup.Center
(G : Type u_1) [Group G] (r : β₯(Subsemigroup.center G)) : β((Subgroup.centerToMulOpposite G) r) = MulOpposite.op βr - AddSubgroup.centerCongr_symm_apply_coe π Mathlib.GroupTheory.Subgroup.Center
{G : Type u_1} [AddGroup G] {H : Type u_2} [AddGroup H] (e : G β+ H) (s : β₯(AddSubsemigroup.center H)) : β((AddSubgroup.centerCongr e).symm s) = e.symm βs - Subgroup.centerCongr_symm_apply_coe π Mathlib.GroupTheory.Subgroup.Center
{G : Type u_1} [Group G] {H : Type u_2} [Group H] (e : G β* H) (s : β₯(Subsemigroup.center H)) : β((Subgroup.centerCongr e).symm s) = e.symm βs - AddSubgroup.centerToAddOpposite_symm_apply_coe π Mathlib.GroupTheory.Subgroup.Center
(G : Type u_1) [AddGroup G] (r : β₯(AddSubsemigroup.center Gα΅α΅α΅)) : β((AddSubgroup.centerToAddOpposite G).symm r) = AddOpposite.unop βr - Subgroup.centerToMulOpposite_symm_apply_coe π Mathlib.GroupTheory.Subgroup.Center
(G : Type u_1) [Group G] (r : β₯(Subsemigroup.center Gα΅α΅α΅)) : β((Subgroup.centerToMulOpposite G).symm r) = MulOpposite.unop βr - Subgroup.normalizerMonoidHom_apply_apply_coe π Mathlib.GroupTheory.Subgroup.Centralizer
{G : Type u_1} [Group G] (H : Subgroup G) (x : β₯H.normalizer) (aβ : β₯H) : β((H.normalizerMonoidHom x) aβ) = βx * βaβ * (βx)β»ΒΉ - Subgroup.normalizerMonoidHom_apply_symm_apply_coe π Mathlib.GroupTheory.Subgroup.Centralizer
{G : Type u_1} [Group G] (H : Subgroup G) (x : β₯H.normalizer) (aβ : β₯H) : β((MulEquiv.symm (H.normalizerMonoidHom x)) aβ) = (βx)β»ΒΉ * βaβ * βx - val_unitsCentralizerEquiv_apply_coe π Mathlib.GroupTheory.GroupAction.ConjAct
(M : Type u_2) [Monoid M] (x : MΛ£) (aβ : (β₯(Submonoid.centralizer {βx}))Λ£) : ββ((unitsCentralizerEquiv M x) aβ) = ββaβ - val_unitsCentralizerEquiv_symm_apply_coe π Mathlib.GroupTheory.GroupAction.ConjAct
(M : Type u_2) [Monoid M] (x : MΛ£) (aβ : β₯(MulAction.stabilizer (ConjAct MΛ£) x)) : ββ((unitsCentralizerEquiv M x).symm aβ) = β(ConjAct.ofConjAct βaβ) - Subgroup.equivSMul_apply_coe π Mathlib.Algebra.Group.Subgroup.Pointwise
{Ξ± : Type u_1} {G : Type u_2} [Group G] [Group Ξ±] [MulDistribMulAction Ξ± G] (a : Ξ±) (H : Subgroup G) (x : ββH.toSubmonoid) : β((Subgroup.equivSMul a H) x) = a β’ βx - Subgroup.equivSMul_symm_apply_coe π Mathlib.Algebra.Group.Subgroup.Pointwise
{Ξ± : Type u_1} {G : Type u_2} [Group G] [Group Ξ±] [MulDistribMulAction Ξ± G] (a : Ξ±) (H : Subgroup G) (y : β(ββ(MulDistribMulAction.toMulEquiv G a) '' βH.toSubmonoid)) : β((Subgroup.equivSMul a H).symm y) = aβ»ΒΉ β’ βy - AddSubgroup.orderIsoAddCon_symm_apply_coe π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} [AddGroup G] (c : AddCon G) : β((RelIso.symm AddSubgroup.orderIsoAddCon) c) = c.addSubgroup - Subgroup.orderIsoCon_symm_apply_coe π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} [Group G] (c : Con G) : β((RelIso.symm Subgroup.orderIsoCon) c) = c.subgroup - Submodule.topEquiv_symm_apply_coe π Mathlib.Algebra.Module.Submodule.Lattice
{R : Type u_1} {M : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] (x : M) : β(Submodule.topEquiv.symm x) = x - LinearMap.submoduleComap_apply_coe π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (f : M ββ[R] Mβ) (q : Submodule R Mβ) (c : β₯(Submodule.comap f q)) : β((f.submoduleComap q) c) = f βc - Submodule.comapSubtypeEquivOfLe_apply_coe π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] {p q : Submodule R M} (hpq : p β€ q) (x : β₯(Submodule.comap q.subtype p)) : β((Submodule.comapSubtypeEquivOfLe hpq) x) = ββx - AddHom.codRestrict_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} {Ο : Type u_4} [Add M] [Add N] [SetLike Ο N] [AddMemClass Ο N] (f : M ββ+ N) (S : Ο) (h : β (x : M), f x β S) (n : M) : β((f.codRestrict S h) n) = f n - MulHom.codRestrict_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} {Ο : Type u_4} [Mul M] [Mul N] [SetLike Ο N] [MulMemClass Ο N] (f : M ββ* N) (S : Ο) (h : β (x : M), f x β S) (n : M) : β((f.codRestrict S h) n) = f n - AddSubsemigroup.topEquiv_symm_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} [Add M] (x : M) : β(AddSubsemigroup.topEquiv.symm x) = x - Subsemigroup.topEquiv_symm_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} [Mul M] (x : M) : β(Subsemigroup.topEquiv.symm x) = x - AddHom.subsemigroupMap_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ββ+ N) (M' : AddSubsemigroup M) (x : β₯M') : β((f.subsemigroupMap M') x) = f βx - MulHom.subsemigroupMap_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ββ* N) (M' : Subsemigroup M) (x : β₯M') : β((f.subsemigroupMap M') x) = f βx - AddHom.subsemigroupComap_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ββ+ N) (N' : AddSubsemigroup N) (x : β₯(AddSubsemigroup.comap f N')) : β((f.subsemigroupComap N') x) = f βx - MulHom.subsemigroupComap_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ββ* N) (N' : Subsemigroup N) (x : β₯(Subsemigroup.comap f N')) : β((f.subsemigroupComap N') x) = f βx - AddEquiv.subsemigroupMap_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (e : M β+ N) (S : AddSubsemigroup M) (x : β₯S) : β((e.subsemigroupMap S) x) = e βx - MulEquiv.subsemigroupMap_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (e : M β* N) (S : Subsemigroup M) (x : β₯S) : β((e.subsemigroupMap S) x) = e βx - AddEquiv.subsemigroupMap_symm_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (e : M β+ N) (S : AddSubsemigroup M) (x : β₯(AddSubsemigroup.map (βe) S)) : β((e.subsemigroupMap S).symm x) = e.symm βx - MulEquiv.subsemigroupMap_symm_apply_coe π Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (e : M β* N) (S : Subsemigroup M) (x : β₯(Subsemigroup.map (βe) S)) : β((e.subsemigroupMap S).symm x) = e.symm βx - NonUnitalSubsemiring.topEquiv_symm_apply_coe π Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} [NonUnitalNonAssocSemiring R] (x : R) : β(NonUnitalSubsemiring.topEquiv.symm x) = x - NonUnitalSubsemiring.centerCongr_apply_coe π Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (e : R β+* S) (r : β₯(Subsemigroup.center R)) : β((NonUnitalSubsemiring.centerCongr e) r) = e βr - RingEquiv.nonUnitalSubsemiringMap_apply_coe π Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (e : R β+* S) (s : NonUnitalSubsemiring R) (x : ββs.toAddSubmonoid) : β((e.nonUnitalSubsemiringMap s) x) = e βx - NonUnitalSubsemiring.centerToMulOpposite_apply_coe π Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} [NonUnitalNonAssocSemiring R] (r : β₯(Subsemigroup.center R)) : β(NonUnitalSubsemiring.centerToMulOpposite r) = MulOpposite.op βr - NonUnitalSubsemiring.centerCongr_symm_apply_coe π Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (e : R β+* S) (s : β₯(Subsemigroup.center S)) : β((NonUnitalSubsemiring.centerCongr e).symm s) = (βe).symm βs - RingEquiv.nonUnitalSubsemiringMap_symm_apply_coe π Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (e : R β+* S) (s : NonUnitalSubsemiring R) (y : β(ββe.toAddEquiv '' βs.toAddSubmonoid)) : β((e.nonUnitalSubsemiringMap s).symm y) = (βe).symm βy - NonUnitalSubsemiring.centerToMulOpposite_symm_apply_coe π Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} [NonUnitalNonAssocSemiring R] (r : β₯(Subsemigroup.center Rα΅α΅α΅)) : β(NonUnitalSubsemiring.centerToMulOpposite.symm r) = MulOpposite.unop βr - Subsemiring.topEquiv_symm_apply_coe π Mathlib.Algebra.Ring.Subsemiring.Basic
{R : Type u} [NonAssocSemiring R] (r : R) : β(Subsemiring.topEquiv.symm r) = r - Subsemiring.centerCongr_apply_coe π Mathlib.Algebra.Ring.Subsemiring.Basic
{R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] (e : R β+* S) (r : β₯(Subsemigroup.center R)) : β((Subsemiring.centerCongr e) r) = e βr - Subsemiring.centerToMulOpposite_apply_coe π Mathlib.Algebra.Ring.Subsemiring.Basic
{R : Type u} [NonAssocSemiring R] (r : β₯(Subsemigroup.center R)) : β(Subsemiring.centerToMulOpposite r) = MulOpposite.op βr - Subsemiring.centerCongr_symm_apply_coe π Mathlib.Algebra.Ring.Subsemiring.Basic
{R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] (e : R β+* S) (s : β₯(Subsemigroup.center S)) : β((Subsemiring.centerCongr e).symm s) = (βe).symm βs - Subsemiring.centerToMulOpposite_symm_apply_coe π Mathlib.Algebra.Ring.Subsemiring.Basic
{R : Type u} [NonAssocSemiring R] (r : β₯(Subsemigroup.center Rα΅α΅α΅)) : β(Subsemiring.centerToMulOpposite.symm r) = MulOpposite.unop βr - RingEquiv.subsemiringMap_apply_coe π Mathlib.Algebra.Ring.Subsemiring.Basic
{R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] (e : R β+* S) (s : Subsemiring R) (x : β₯s) : β((e.subsemiringMap s) x) = e βx - RingEquiv.subsemiringMap_symm_apply_coe π Mathlib.Algebra.Ring.Subsemiring.Basic
{R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] (e : R β+* S) (s : Subsemiring R) (x : β₯(Subsemiring.map e.toRingHom s)) : β((e.subsemiringMap s).symm x) = e.symm βx - RingEquiv.restrict_apply_coe π Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] {ΟR : Type u_1} {ΟS : Type u_2} [SetLike ΟR R] [SetLike ΟS S] [SubsemiringClass ΟR R] [SubsemiringClass ΟS S] (e : R β+* S) (s' : ΟR) (s : ΟS) (h : β (x : R), x β s' β e x β s) (aβ : β₯s') : β((e.restrict s' s h) aβ) = e βaβ - RingEquiv.restrict_symm_apply_coe π Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] {ΟR : Type u_1} {ΟS : Type u_2} [SetLike ΟR R] [SetLike ΟS S] [SubsemiringClass ΟR R] [SubsemiringClass ΟS S] (e : R β+* S) (s' : ΟR) (s : ΟS) (h : β (x : R), x β s' β e x β s) (a : β₯s) : β((e.restrict s' s h).symm a) = e.symm βa - Subring.topEquiv_symm_apply_coe π Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} [Ring R] (r : R) : β(Subring.topEquiv.symm r) = r - Subring.centerCongr_apply_coe π Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (e : R β+* S) (r : β₯(Subsemigroup.center R)) : β((Subring.centerCongr e) r) = e βr - Subring.centerToMulOpposite_apply_coe π Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} [Ring R] (r : β₯(Subsemigroup.center R)) : β(Subring.centerToMulOpposite r) = MulOpposite.op βr - Subring.centerCongr_symm_apply_coe π Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (e : R β+* S) (s : β₯(Subsemigroup.center S)) : β((Subring.centerCongr e).symm s) = (βe).symm βs - Subring.centerToMulOpposite_symm_apply_coe π Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} [Ring R] (r : β₯(Subsemigroup.center Rα΅α΅α΅)) : β(Subring.centerToMulOpposite.symm r) = MulOpposite.unop βr - AlgEquiv.coe_apply_coe_coe_symm_apply π Mathlib.Algebra.Algebra.Equiv
{R : Type uR} {Aβ : Type uAβ} {Aβ : Type uAβ} [CommSemiring R] [Semiring Aβ] [Semiring Aβ] [Algebra R Aβ] [Algebra R Aβ] {F : Type u_1} [EquivLike F Aβ Aβ] [AlgEquivClass F R Aβ Aβ] (f : F) (x : Aβ) : f ((βf).symm x) = x - AlgEquiv.coe_coe_symm_apply_coe_apply π Mathlib.Algebra.Algebra.Equiv
{R : Type uR} {Aβ : Type uAβ} {Aβ : Type uAβ} [CommSemiring R] [Semiring Aβ] [Semiring Aβ] [Algebra R Aβ] [Algebra R Aβ] {F : Type u_1} [EquivLike F Aβ Aβ] [AlgEquivClass F R Aβ Aβ] (f : F) (x : Aβ) : (βf).symm (f x) = x - nonZeroDivisorsEquivUnits_symm_apply_coe π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{Gβ : Type u_1} [GroupWithZero Gβ] (u : GβΛ£) : β(nonZeroDivisorsEquivUnits.symm u) = βu - val_unitsNonZeroDivisorsEquiv_symm_apply_coe π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{Mβ : Type u_1} [MonoidWithZero Mβ] (u : MβΛ£) : ββ(unitsNonZeroDivisorsEquiv.symm u) = βu - val_inv_unitsNonZeroDivisorsEquiv_symm_apply_coe π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{Mβ : Type u_1} [MonoidWithZero Mβ] (u : MβΛ£) : ββ(unitsNonZeroDivisorsEquiv.symm u)β»ΒΉ = βuβ»ΒΉ - infIccOrderIsoIccSup_apply_coe π Mathlib.Order.ModularLattice
{Ξ± : Type u_1} [Lattice Ξ±] [IsModularLattice Ξ±] (a b : Ξ±) (x : β(Set.Icc (a β b) a)) : β((infIccOrderIsoIccSup a b) x) = βx β b - infIooOrderIsoIooSup_apply_coe π Mathlib.Order.ModularLattice
{Ξ± : Type u_1} [Lattice Ξ±] [IsModularLattice Ξ±] (a b : Ξ±) (c : β(Set.Ioo (a β b) a)) : β((infIooOrderIsoIooSup a b) c) = βc β b - infIccOrderIsoIccSup_symm_apply_coe π Mathlib.Order.ModularLattice
{Ξ± : Type u_1} [Lattice Ξ±] [IsModularLattice Ξ±] (a b : Ξ±) (x : β(Set.Icc b (a β b))) : β((RelIso.symm (infIccOrderIsoIccSup a b)) x) = a β βx - infIooOrderIsoIooSup_symm_apply_coe π Mathlib.Order.ModularLattice
{Ξ± : Type u_1} [Lattice Ξ±] [IsModularLattice Ξ±] (a b : Ξ±) (c : β(Set.Ioo b (a β b))) : β((RelIso.symm (infIooOrderIsoIooSup a b)) c) = a β βc - Submodule.inclusionSpan_apply_coe π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {M : Type u_4} (S : Type u_7) [Semiring R] [AddCommMonoid M] [Module R M] [Semiring S] [SMul R S] [Module S M] [IsScalarTower R S M] (p : Submodule R M) (x : β₯p) : β((Submodule.inclusionSpan S p) x) = βx - Finsupp.restrictSupportEquiv_symm_apply_coe π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} (s : Set Ξ±) (M : Type u_12) [AddCommMonoid M] [DecidablePred fun x => x β s] (f : βs ββ M) : β((Finsupp.restrictSupportEquiv s M).symm f) = f.extendDomain - Finsupp.supportedEquivFinsupp_symm_apply_coe π Mathlib.LinearAlgebra.Finsupp.Supported
{Ξ± : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (s : Set Ξ±) [DecidablePred fun x => x β s] (f : βs ββ M) : β((Finsupp.supportedEquivFinsupp s).symm f) = f.extendDomain - Finsupp.supportedEquivFinsupp_symm_apply_coe_support_val π Mathlib.LinearAlgebra.Finsupp.Supported
{Ξ± : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (s : Set Ξ±) (aβ : βs ββ M) : (β((Finsupp.supportedEquivFinsupp s).symm aβ)).support.val = Multiset.map Subtype.val aβ.support.val - Finsupp.supportedEquivFinsupp_symm_apply_coe_apply π Mathlib.LinearAlgebra.Finsupp.Supported
{Ξ± : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (s : Set Ξ±) (aβ : βs ββ M) (a : Ξ±) : β((Finsupp.supportedEquivFinsupp s).symm aβ) a = if h : a β s then aβ β¨a, hβ© else 0 - LinearIndependent.linearCombinationEquiv_apply_coe π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (aβ : ΞΉ ββ R) : β(hv.linearCombinationEquiv aβ) = (Finsupp.linearCombination R v) aβ - Submodule.fstEquiv_symm_apply_coe π Mathlib.LinearAlgebra.Prod
(R : Type u) (M : Type v) (Mβ : Type w) [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (m : M) : β((Submodule.fstEquiv R M Mβ).symm m) = (m, 0) - Submodule.sndEquiv_symm_apply_coe π Mathlib.LinearAlgebra.Prod
(R : Type u) (M : Type v) (Mβ : Type w) [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (n : Mβ) : β((Submodule.sndEquiv R M Mβ).symm n) = (0, n) - LinearMap.kerComplementEquivRange_apply_coe π Mathlib.LinearAlgebra.Prod
{R : Type u_3} {M : Type u_4} {Mβ : Type u_5} [Ring R] [AddCommGroup M] [AddCommGroup Mβ] [Module R M] [Module R Mβ] (f : M ββ[R] Mβ) {C : Submodule R M} (h : IsCompl C f.ker) (aβ : β₯C) : β((f.kerComplementEquivRange h) aβ) = f βaβ - Finset.Nat.antidiagonalEquivFin_symm_apply_coe π Mathlib.Data.Finset.NatAntidiagonal
(n : β) (xβ : Fin (n + 1)) : β((Finset.Nat.antidiagonalEquivFin n).symm xβ) = (βxβ, n - βxβ) - Ordinal.enum_symm_apply_coe π Mathlib.SetTheory.Ordinal.Basic
{Ξ± : Type u} (r : Ξ± β Ξ± β Prop) [IsWellOrder Ξ± r] (aβ : Ξ±) : β((Ordinal.enum r).symm aβ) = (Ordinal.typein r).toRelEmbedding aβ - Ordinal.ToType.mk_symm_apply_coe π Mathlib.SetTheory.Ordinal.Basic
{o : Ordinal.{u_1}} (x : o.ToType) : β((RelIso.symm Ordinal.ToType.mk) x) = (Ordinal.typein fun x1 x2 => x1 < x2).toRelEmbedding x - Ordinal.isInitialIso_symm_apply_coe π Mathlib.SetTheory.Cardinal.Aleph
(x : Cardinal.{u_1}) : β((RelIso.symm Ordinal.isInitialIso) x) = x.ord - DFinsupp.subtypeSupportEqEquiv_apply_coe π Mathlib.Data.DFinsupp.Defs
{ΞΉ : Type u} {Ξ² : ΞΉ β Type v} [DecidableEq ΞΉ] [(i : ΞΉ) β Zero (Ξ² i)] [(i : ΞΉ) β (x : Ξ² i) β Decidable (x β 0)] (s : Finset ΞΉ) (xβ : { f // f.support = s }) (i : β₯s) : β((DFinsupp.subtypeSupportEqEquiv s) xβ i) = βxβ βi - DFinsupp.subtypeSupportEqEquiv_symm_apply_coe π Mathlib.Data.DFinsupp.Defs
{ΞΉ : Type u} {Ξ² : ΞΉ β Type v} [DecidableEq ΞΉ] [(i : ΞΉ) β Zero (Ξ² i)] [(i : ΞΉ) β (x : Ξ² i) β Decidable (x β 0)] (s : Finset ΞΉ) (f : (i : β₯s) β { x // x β 0 }) : β((DFinsupp.subtypeSupportEqEquiv s).symm f) = DFinsupp.mk s fun i => β(f i) - Submodule.isIdempotentElemEquiv_apply_coe π Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p : Submodule R E) (f : { f // IsIdempotentElem f β§ LinearMap.range f = p }) : β(p.isIdempotentElemEquiv f) = LinearMap.codRestrict p βf β― - Submodule.isIdempotentElemEquiv_symm_apply_coe π Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p : Submodule R E) (f : { f // β (x : β₯p), f βx = x }) : β(p.isIdempotentElemEquiv.symm f) = p.subtype ββ βf - Algebra.idealMap_apply_coe π Mathlib.RingTheory.Ideal.Maps
{R : Type u_1} [CommSemiring R] (S : Type u_2) [Semiring S] [Algebra R S] (I : Ideal R) (c : β₯I) : β((Algebra.idealMap S I) c) = (algebraMap R S) βc - NonUnitalSubring.topEquiv_symm_apply_coe π Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} [NonUnitalNonAssocRing R] (x : R) : β(NonUnitalSubring.topEquiv.symm x) = x - NonUnitalSubring.centerCongr_apply_coe π Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} [NonUnitalNonAssocRing R] {S : Type u_1} [NonUnitalNonAssocRing S] (e : R β+* S) (r : β₯(Subsemigroup.center R)) : β((NonUnitalSubring.centerCongr e) r) = e βr - NonUnitalSubring.centerToMulOpposite_apply_coe π Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} [NonUnitalNonAssocRing R] (r : β₯(Subsemigroup.center R)) : β(NonUnitalSubring.centerToMulOpposite r) = MulOpposite.op βr - NonUnitalSubring.centerCongr_symm_apply_coe π Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} [NonUnitalNonAssocRing R] {S : Type u_1} [NonUnitalNonAssocRing S] (e : R β+* S) (s : β₯(Subsemigroup.center S)) : β((NonUnitalSubring.centerCongr e).symm s) = (βe).symm βs - NonUnitalSubring.centerToMulOpposite_symm_apply_coe π Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} [NonUnitalNonAssocRing R] (r : β₯(Subsemigroup.center Rα΅α΅α΅)) : β(NonUnitalSubring.centerToMulOpposite.symm r) = MulOpposite.unop βr - AlgEquiv.subalgebraMap_apply_coe π Mathlib.Algebra.Algebra.Subalgebra.Basic
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (e : A ββ[R] B) (S : Subalgebra R A) (x : ββS.toAddSubmonoid) : β((e.subalgebraMap S) x) = e βx - AlgEquiv.subalgebraMap_symm_apply_coe π Mathlib.Algebra.Algebra.Subalgebra.Basic
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (e : A ββ[R] B) (S : Subalgebra R A) (y : β(ββe.toRingEquiv.toAddEquiv '' βS.toAddSubmonoid)) : β((e.subalgebraMap S).symm y) = (ββe).symm βy - Subalgebra.topEquiv_symm_apply_coe π Mathlib.Algebra.Algebra.Subalgebra.Lattice
{R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (a : A) : β(Subalgebra.topEquiv.symm a) = a - skewAdjointPart_apply_coe π Mathlib.Algebra.Star.Module
(R : Type u_1) {A : Type u_2} [Semiring R] [StarMul R] [TrivialStar R] [AddCommGroup A] [Module R A] [StarAddMonoid A] [StarModule R A] [Invertible 2] (x : A) : β((skewAdjointPart R) x) = β 2 β’ (x - star x) - selfAdjointPart_apply_coe π Mathlib.Algebra.Star.Module
(R : Type u_1) {A : Type u_2} [Semiring R] [StarMul R] [TrivialStar R] [AddCommGroup A] [Module R A] [StarAddMonoid A] [StarModule R A] [Invertible 2] (x : A) : β((selfAdjointPart R) x) = β 2 β’ (x + star x) - Unitization.inrRangeEquiv_apply_coe π Mathlib.Algebra.Algebra.Unitization
(R : Type u_1) (A : Type u_2) [CommSemiring R] [StarAddMonoid R] [NonUnitalSemiring A] [Star A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (a : A) : β((Unitization.inrRangeEquiv R A) a) = β(Unitization.inrNonUnitalStarAlgHom R A) a - Unitization.val_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe π Mathlib.Algebra.Algebra.Spectrum.Quasispectrum
(R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (x : (PreQuasiregular A)Λ£) : ββ((Unitization.unitsFstOne_mulEquiv_quasiregular R).symm x) = 1 + β(PreQuasiregular.equiv.symm βx) - Unitization.val_inv_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe π Mathlib.Algebra.Algebra.Spectrum.Quasispectrum
(R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (x : (PreQuasiregular A)Λ£) : β(β((Unitization.unitsFstOne_mulEquiv_quasiregular R).symm x))β»ΒΉ = 1 + β(PreQuasiregular.equiv.symm βxβ»ΒΉ) - Algebra.TensorProduct.liftEquiv_symm_apply_coe π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra S C] [Algebra R C] [IsScalarTower R S C] (f' : TensorProduct R A B ββ[S] C) : β(Algebra.TensorProduct.liftEquiv.symm f') = (f'.comp Algebra.TensorProduct.includeLeft, (AlgHom.restrictScalars R f').comp Algebra.TensorProduct.includeRight) - Subsemiring.addEquivOp_apply_coe π Mathlib.Algebra.Ring.Subsemiring.MulOpposite
{R : Type u_2} [NonAssocSemiring R] (S : Subsemiring R) (a : β₯S.toSubmonoid) : β(S.addEquivOp a) = MulOpposite.op βa
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454