Loogle!
Result
Found 36148 declarations mentioning Eq and DFunLike.coe. Of these, 1215 have a name containing "_coe". Of these, 203 match your pattern(s). Of these, only the first 200 are shown.
- EquivLike.coe_coe π Mathlib.Logic.Equiv.Defs
{Ξ± : Sort u} {Ξ² : Sort v} {F : Sort u_1} [EquivLike F Ξ± Ξ²] (e : F) : ββe = βe - AddHom.coe_coe π Mathlib.Algebra.Group.Hom.Defs
{M : Type u_4} {N : Type u_5} {F : Type u_9} [Add M] [Add N] [FunLike F M N] [AddHomClass F M N] (f : F) : ββf = βf - AddMonoidHom.coe_coe π Mathlib.Algebra.Group.Hom.Defs
{M : Type u_4} {N : Type u_5} {F : Type u_9} [AddZero M] [AddZero N] [FunLike F M N] [AddMonoidHomClass F M N] (f : F) : ββf = βf - MonoidHom.coe_coe π Mathlib.Algebra.Group.Hom.Defs
{M : Type u_4} {N : Type u_5} {F : Type u_9} [MulOne M] [MulOne N] [FunLike F M N] [MonoidHomClass F M N] (f : F) : ββf = βf - MulHom.coe_coe π Mathlib.Algebra.Group.Hom.Defs
{M : Type u_4} {N : Type u_5} {F : Type u_9} [Mul M] [Mul N] [FunLike F M N] [MulHomClass F M N] (f : F) : ββf = βf - OneHom.coe_coe π Mathlib.Algebra.Group.Hom.Defs
{M : Type u_4} {N : Type u_5} {F : Type u_9} [One M] [One N] [FunLike F M N] [OneHomClass F M N] (f : F) : ββf = βf - ZeroHom.coe_coe π Mathlib.Algebra.Group.Hom.Defs
{M : Type u_4} {N : Type u_5} {F : Type u_9} [Zero M] [Zero N] [FunLike F M N] [ZeroHomClass F M N] (f : F) : ββf = βf - AddMonoidHom.toZeroHom_coe π Mathlib.Algebra.Group.Hom.Defs
{M : Type u_4} {N : Type u_5} [AddZero M] [AddZero N] (f : M β+ N) : ββf = βf - MonoidHom.toOneHom_coe π Mathlib.Algebra.Group.Hom.Defs
{M : Type u_4} {N : Type u_5} [MulOne M] [MulOne N] (f : M β* N) : ββf = βf - Equiv.permCongrHom_coe π Mathlib.Algebra.Group.End
{Ξ± : Type u_4} {Ξ² : Type u_5} (e : Ξ± β Ξ²) : βe.permCongrHom = βe.permCongr - MonoidWithZeroHom.coe_coe π Mathlib.Algebra.GroupWithZero.Hom
{F : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [MulZeroOneClass Ξ±] [MulZeroOneClass Ξ²] [FunLike F Ξ± Ξ²] [MonoidWithZeroHomClass F Ξ± Ξ²] (f : F) : ββf = βf - MonoidWithZeroHom.toZeroHom_coe π Mathlib.Algebra.GroupWithZero.Hom
{Ξ± : Type u_2} {Ξ² : Type u_3} [MulZeroOneClass Ξ±] [MulZeroOneClass Ξ²] (f : Ξ± β*β Ξ²) : ββf = βf - RingHom.coe_coe π Mathlib.Algebra.Ring.Hom.Defs
{Ξ± : Type u_2} {Ξ² : Type u_3} {xβ : NonAssocSemiring Ξ±} {xβΒΉ : NonAssocSemiring Ξ²} {F : Type u_5} [FunLike F Ξ± Ξ²] [RingHomClass F Ξ± Ξ²] (f : F) : ββf = βf - RingHom.toMonoidWithZeroHom_eq_coe π Mathlib.Algebra.Ring.Hom.Defs
{Ξ± : Type u_2} {Ξ² : Type u_3} {xβ : NonAssocSemiring Ξ±} {xβΒΉ : NonAssocSemiring Ξ²} (f : Ξ± β+* Ξ²) : βf.toMonoidWithZeroHom = βf - RelEmbedding.ofMonotone_coe π Mathlib.Order.RelIso.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {r : Ξ± β Ξ± β Prop} {s : Ξ² β Ξ² β Prop} [IsTrichotomous Ξ± r] [IsAsymm Ξ² s] (f : Ξ± β Ξ²) (H : β (a b : Ξ±), r a b β s (f a) (f b)) : β(RelEmbedding.ofMonotone f H) = f - RelEmbedding.ofMapRelIff_coe π Mathlib.Order.RelIso.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {r : Ξ± β Ξ± β Prop} {s : Ξ² β Ξ² β Prop} (f : Ξ± β Ξ²) [IsAntisymm Ξ± r] [IsRefl Ξ² s] (hf : β (a b : Ξ±), s (f a) (f b) β r a b) : β(RelEmbedding.ofMapRelIff f hf) = f - OrderHom.id_coe π Mathlib.Order.Hom.Basic
{Ξ± : Type u_2} [Preorder Ξ±] : βOrderHom.id = id - OrderHom.Subtype.val_coe π Mathlib.Order.Hom.Basic
{Ξ± : Type u_2} [Preorder Ξ±] (p : Ξ± β Prop) : β(OrderHom.Subtype.val p) = Subtype.val - OrderHomClass.coe_coe π Mathlib.Order.Hom.Basic
{Ξ± : Type u_2} {Ξ² : Type u_3} [Preorder Ξ±] [Preorder Ξ²] {F : Type u_6} [FunLike F Ξ± Ξ²] [OrderHomClass F Ξ± Ξ²] (f : F) : ββf = βf - Pi.evalOrderHom_coe π Mathlib.Order.Hom.Basic
{ΞΉ : Type u_6} {Ο : ΞΉ β Type u_7} [(i : ΞΉ) β Preorder (Ο i)] (i : ΞΉ) : β(Pi.evalOrderHom i) = Function.eval i - OrderEmbedding.toOrderHom_coe π Mathlib.Order.Hom.Basic
{X : Type u_6} {Y : Type u_7} [Preorder X] [Preorder Y] (f : X βͺo Y) : βf.toOrderHom = βf - OrderHom.const_coe_coe π Mathlib.Order.Hom.Basic
(Ξ± : Type u_6) [Preorder Ξ±] {Ξ² : Type u_7} [Preorder Ξ²] (b : Ξ²) : β((OrderHom.const Ξ±) b) = Function.const Ξ± b - OrderHom.comp_coe π Mathlib.Order.Hom.Basic
{Ξ± : Type u_2} {Ξ² : Type u_3} {Ξ³ : Type u_4} [Preorder Ξ±] [Preorder Ξ²] [Preorder Ξ³] (g : Ξ² βo Ξ³) (f : Ξ± βo Ξ²) : β(g.comp f) = βg β βf - OrderHom.coeFnHom_coe π Mathlib.Order.Hom.Basic
{Ξ± : Type u_2} {Ξ² : Type u_3} [Preorder Ξ±] [Preorder Ξ²] : βOrderHom.coeFnHom = fun f => βf - OrderHom.apply_coe π Mathlib.Order.Hom.Basic
{Ξ± : Type u_2} {Ξ² : Type u_3} [Preorder Ξ±] [Preorder Ξ²] (x : Ξ±) : β(OrderHom.apply x) = Function.eval x β fun f => βf - RelHom.toOrderHom_coe π Mathlib.Order.Hom.Basic
{Ξ± : Type u_2} {Ξ² : Type u_3} [PartialOrder Ξ±] [Preorder Ξ²] (f : (fun x1 x2 => x1 < x2) βr fun x1 x2 => x1 < x2) : βf.toOrderHom = βf - OrderHom.compβ_coe_coe_coe π Mathlib.Order.Hom.Basic
{Ξ± : Type u_2} {Ξ² : Type u_3} {Ξ³ : Type u_4} [Preorder Ξ±] [Preorder Ξ²] [Preorder Ξ³] (x : Ξ² βo Ξ³) (aβ : Ξ± βo Ξ²) : β((OrderHom.compβ x) aβ) = βx β βaβ - NNRat.coe_coeHom π Mathlib.Data.NNRat.Defs
: βNNRat.coeHom = NNRat.cast - PNat.coe_coeMonoidHom π Mathlib.Data.PNat.Basic
: βPNat.coeMonoidHom = PNat.val - Finset.coe_coeEmb π Mathlib.Data.Finset.Defs
{Ξ± : Type u_1} : βFinset.coeEmb = SetLike.coe - InfHom.subtypeVal_coe π Mathlib.Order.Hom.Lattice
{Ξ² : Type u_3} [SemilatticeInf Ξ²] {P : Ξ² β Prop} (Pinf : β β¦x y : Ξ²β¦, P x β P y β P (x β y)) : β(InfHom.subtypeVal Pinf) = Subtype.val - SupHom.subtypeVal_coe π Mathlib.Order.Hom.Lattice
{Ξ² : Type u_3} [SemilatticeSup Ξ²] {P : Ξ² β Prop} (Psup : β β¦x y : Ξ²β¦, P x β P y β P (x β y)) : β(SupHom.subtypeVal Psup) = Subtype.val - LatticeHom.subtypeVal_coe π Mathlib.Order.Hom.Lattice
{Ξ² : Type u_3} [Lattice Ξ²] {P : Ξ² β Prop} (Psup : β β¦x y : Ξ²β¦, P x β P y β P (x β y)) (Pinf : β β¦x y : Ξ²β¦, P x β P y β P (x β y)) : β(LatticeHom.subtypeVal Psup Pinf) = Subtype.val - BoundedLatticeHom.subtypeVal_coe π Mathlib.Order.Hom.BoundedLattice
{Ξ² : Type u_3} [Lattice Ξ²] [BoundedOrder Ξ²] {P : Ξ² β Prop} (Pbot : P β₯) (Ptop : P β€) (Psup : β β¦x y : Ξ²β¦, P x β P y β P (x β y)) (Pinf : β β¦x y : Ξ²β¦, P x β P y β P (x β y)) : β(BoundedLatticeHom.subtypeVal Pbot Ptop Psup Pinf) = Subtype.val - InfTopHom.subtypeVal_coe π Mathlib.Order.Hom.BoundedLattice
{Ξ² : Type u_3} [SemilatticeInf Ξ²] [OrderTop Ξ²] {P : Ξ² β Prop} (Ptop : P β€) (Pinf : β β¦x y : Ξ²β¦, P x β P y β P (x β y)) : β(InfTopHom.subtypeVal Ptop Pinf) = Subtype.val - SupBotHom.subtypeVal_coe π Mathlib.Order.Hom.BoundedLattice
{Ξ² : Type u_3} [SemilatticeSup Ξ²] [OrderBot Ξ²] {P : Ξ² β Prop} (Pbot : P β₯) (Psup : β β¦x y : Ξ²β¦, P x β P y β P (x β y)) : β(SupBotHom.subtypeVal Pbot Psup) = Subtype.val - OrderHom.withBotMap_coe π Mathlib.Order.Hom.WithTopBot
{Ξ± : Type u_1} {Ξ² : Type u_2} [Preorder Ξ±] [Preorder Ξ²] (f : Ξ± βo Ξ²) : βf.withBotMap = WithBot.map βf - OrderHom.withTopMap_coe π Mathlib.Order.Hom.WithTopBot
{Ξ± : Type u_1} {Ξ² : Type u_2} [Preorder Ξ±] [Preorder Ξ²] (f : Ξ± βo Ξ²) : βf.withTopMap = WithTop.map βf - FreeAbelianGroup.ofMulHom_coe π Mathlib.GroupTheory.FreeAbelianGroup
{Ξ± : Type u} [Monoid Ξ±] : βFreeAbelianGroup.ofMulHom = FreeAbelianGroup.of - FreeAbelianGroup.liftMonoid_coe π Mathlib.GroupTheory.FreeAbelianGroup
{Ξ± : Type u} {R : Type u_2} [Monoid Ξ±] [Ring R] (f : Ξ± β* R) : β(FreeAbelianGroup.liftMonoid f) = β(FreeAbelianGroup.lift βf) - FreeAbelianGroup.liftMonoid_symm_coe π Mathlib.GroupTheory.FreeAbelianGroup
{Ξ± : Type u} {R : Type u_2} [Monoid Ξ±] [Ring R] (f : FreeAbelianGroup Ξ± β+* R) : β(FreeAbelianGroup.liftMonoid.symm f) = FreeAbelianGroup.lift.symm βf - MulSemiringActionHom.coe_fn_coe π Mathlib.GroupTheory.GroupAction.Hom
{M : Type u_1} [Monoid M] {N : Type u_2} [Monoid N] {Ο : M β* N} {R : Type u_10} [Semiring R] [MulSemiringAction M R] {S : Type u_12} [Semiring S] [MulSemiringAction N S] (f : R ββ+*[Ο] S) : ββf = βf - DistribMulActionHom.coe_fn_coe π Mathlib.GroupTheory.GroupAction.Hom
{M : Type u_1} [Monoid M] {N : Type u_2} [Monoid N] {Ο : M β* N} {A : Type u_4} [AddMonoid A] [DistribMulAction M A] {B : Type u_5} [AddMonoid B] [DistribMulAction N B] (f : A ββ+[Ο] B) : ββf = βf - MulSemiringActionHom.coe_fn_coe' π Mathlib.GroupTheory.GroupAction.Hom
{M : Type u_1} [Monoid M] {N : Type u_2} [Monoid N] {Ο : M β* N} {R : Type u_10} [Semiring R] [MulSemiringAction M R] {S : Type u_12} [Semiring S] [MulSemiringAction N S] (f : R ββ+*[Ο] S) : ββf = βf - DistribMulActionHom.coe_fn_coe' π Mathlib.GroupTheory.GroupAction.Hom
{M : Type u_1} [Monoid M] {N : Type u_2} [Monoid N] {Ο : M β* N} {A : Type u_4} [AddMonoid A] [DistribMulAction M A] {B : Type u_5} [AddMonoid B] [DistribMulAction N B] (f : A ββ+[Ο] B) : ββf = βf - LinearMap.id_coe π Mathlib.Algebra.Module.LinearMap.Defs
{R : Type u_1} {M : Type u_8} [Semiring R] [AddCommMonoid M] [Module R M] : βLinearMap.id = id - LinearMap.id'_coe π Mathlib.Algebra.Module.LinearMap.Defs
{R : Type u_1} {M : Type u_8} [Semiring R] [AddCommMonoid M] [Module R M] {Ο : R β+* R} [RingHomId Ο] : βLinearMap.id' = id - LinearMap.coe_coe π Mathlib.Algebra.Module.LinearMap.Defs
{R : Type u_1} {S : Type u_5} {M : Type u_8} {Mβ : Type u_11} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module S Mβ] {Ο : R β+* S} {F : Type u_14} [FunLike F M Mβ] [SemilinearMapClass F Ο M Mβ] {f : F} : ββf = βf - LinearMap.toAddMonoidHom_coe π Mathlib.Algebra.Module.LinearMap.Defs
{R : Type u_1} {S : Type u_5} {Mβ : Type u_9} {Mβ : Type u_10} [Semiring R] [Semiring S] [AddCommMonoid Mβ] [AddCommMonoid Mβ] {modMβ : Module R Mβ} {modMβ : Module S Mβ} {Ο : R β+* S} (f : Mβ βββ[Ο] Mβ) : βf.toAddMonoidHom = βf - LinearEquiv.coe_coe π Mathlib.Algebra.Module.Equiv.Defs
{R : Type u_1} {S : Type u_6} {M : Type u_7} {Mβ : Type u_9} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid Mβ] {module_M : Module R M} {module_S_Mβ : Module S Mβ} {Ο : R β+* S} {Ο' : S β+* R} {reβ : RingHomInvPair Ο Ο'} {reβ : RingHomInvPair Ο' Ο} (e : M βββ[Ο] Mβ) : ββe = βe - RingHom.toNatAlgHom_coe π Mathlib.Algebra.Algebra.Hom
{R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] (f : R β+* S) : βf.toNatAlgHom = βf - AlgHom.coe_coe π Mathlib.Algebra.Algebra.Hom
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {F : Type u_1} [FunLike F A B] [AlgHomClass F R A B] (f : F) : ββf = βf - RingHom.toIntAlgHom_coe π Mathlib.Algebra.Algebra.Hom
{R : Type u_1} {S : Type u_2} [Ring R] [Ring S] (f : R β+* S) : βf.toIntAlgHom = βf - AlgEquiv.coe_coe π Mathlib.Algebra.Algebra.Equiv
{R : Type uR} {Aβ : Type uAβ} {Aβ : Type uAβ} [CommSemiring R] [Semiring Aβ] [Semiring Aβ] [Algebra R Aβ] [Algebra R Aβ] {F : Type u_1} [EquivLike F Aβ Aβ] [AlgEquivClass F R Aβ Aβ] (f : F) : ββf = βf - OmegaCompletePartialOrder.Chain.map_coe π Mathlib.Order.OmegaCompletePartialOrder
{Ξ± : Type u_2} {Ξ² : Type u_3} [Preorder Ξ±] [Preorder Ξ²] (c : OmegaCompletePartialOrder.Chain Ξ±) (f : Ξ± βo Ξ²) : β(c.map f) = βf β βc - Algebra.lsmul_coe π Mathlib.Algebra.Algebra.Tower
(R : Type u) {A : Type w} (B : Type uβ) (M : Type vβ) [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] [Module R M] [Module A M] [Module B M] [IsScalarTower R A M] [IsScalarTower R B M] [SMulCommClass A B M] (a : A) : β((Algebra.lsmul R B M) a) = fun x => a β’ x - Finsupp.ofSupportFinite_coe π Mathlib.Data.Finsupp.Defs
{Ξ± : Type u_1} {M : Type u_4} [Zero M] {f : Ξ± β M} {hf : (Function.support f).Finite} : β(Finsupp.ofSupportFinite f hf) = f - OrderRingHom.coe_coe_ringHom π Mathlib.Algebra.Order.Hom.Ring
{Ξ± : Type u_2} {Ξ² : Type u_3} [NonAssocSemiring Ξ±] [Preorder Ξ±] [NonAssocSemiring Ξ²] [Preorder Ξ²] (f : Ξ± β+*o Ξ²) : ββf = βf - OrderRingHom.coe_coe_orderMonoidWithZeroHom π Mathlib.Algebra.Order.Hom.Ring
{Ξ± : Type u_2} {Ξ² : Type u_3} [NonAssocSemiring Ξ±] [Preorder Ξ±] [NonAssocSemiring Ξ²] [Preorder Ξ²] (f : Ξ± β+*o Ξ²) : ββf = βf - OrderRingHom.coe_coe_orderAddMonoidHom π Mathlib.Algebra.Order.Hom.Ring
{Ξ± : Type u_2} {Ξ² : Type u_3} [NonAssocSemiring Ξ±] [Preorder Ξ±] [NonAssocSemiring Ξ²] [Preorder Ξ²] (f : Ξ± β+*o Ξ²) : ββf = βf - Sum.Lex.toLexRelIsoLE_coe π Mathlib.Data.Sum.Order
{Ξ± : Type u_1} {Ξ² : Type u_2} [LE Ξ±] [LE Ξ²] : βSum.Lex.toLexRelIsoLE = βtoLex - Sum.Lex.toLexRelIsoLT_coe π Mathlib.Data.Sum.Order
{Ξ± : Type u_1} {Ξ² : Type u_2} [LT Ξ±] [LT Ξ²] : βSum.Lex.toLexRelIsoLT = βtoLex - Sum.Lex.toLexRelIsoLE_symm_coe π Mathlib.Data.Sum.Order
{Ξ± : Type u_1} {Ξ² : Type u_2} [LE Ξ±] [LE Ξ²] : βSum.Lex.toLexRelIsoLE.symm = βofLex - Sum.Lex.toLexRelIsoLT_symm_coe π Mathlib.Data.Sum.Order
{Ξ± : Type u_1} {Ξ² : Type u_2} [LT Ξ±] [LT Ξ²] : βSum.Lex.toLexRelIsoLT.symm = βofLex - InitialSeg.coe_coe_fn π Mathlib.Order.InitialSeg
{Ξ± : Type u_1} {Ξ² : Type u_2} {r : Ξ± β Ξ± β Prop} {s : Ξ² β Ξ² β Prop} (f : InitialSeg r s) : βf.toRelEmbedding = βf - PrincipalSeg.coe_coe_fn' π Mathlib.Order.InitialSeg
{Ξ± : Type u_1} {Ξ² : Type u_2} {r : Ξ± β Ξ± β Prop} {s : Ξ² β Ξ² β Prop} [IsTrans Ξ² s] (f : PrincipalSeg r s) : β{ toRelEmbedding := f.toRelEmbedding, mem_range_of_rel' := β― } = βf.toRelEmbedding - RingCon.toCon_coe_eq_coe π Mathlib.RingTheory.Congruence.Defs
{R : Type u_1} [Add R] [Mul R] (c : RingCon R) : βc.toCon = βc - Cardinal.ord.orderEmbedding_coe π Mathlib.SetTheory.Ordinal.Basic
: βCardinal.ord.orderEmbedding = Cardinal.ord - Ordinal.liftInitialSeg_coe π Mathlib.SetTheory.Ordinal.Basic
: βOrdinal.liftInitialSeg = Ordinal.lift.{v, u} - Ordinal.liftPrincipalSeg_coe π Mathlib.SetTheory.Ordinal.Basic
: βOrdinal.liftPrincipalSeg.toRelEmbedding = Ordinal.lift.{max (u + 1) v, u} - Finsupp.toDFinsupp_coe π Mathlib.Data.Finsupp.ToDFinsupp
{ΞΉ : Type u_1} {M : Type u_3} [Zero M] (f : ΞΉ ββ M) : βf.toDFinsupp = βf - DFinsupp.toFinsupp_coe π Mathlib.Data.Finsupp.ToDFinsupp
{ΞΉ : Type u_1} {M : Type u_3} [DecidableEq ΞΉ] [Zero M] [(m : M) β Decidable (m β 0)] (f : Ξ β (x : ΞΉ), M) : βf.toFinsupp = βf - Finset.coe_coeAddMonoidHom π Mathlib.Algebra.Group.Pointwise.Finset.Basic
{Ξ± : Type u_2} [DecidableEq Ξ±] [AddZeroClass Ξ±] : βFinset.coeAddMonoidHom = SetLike.coe - Finset.coe_coeMonoidHom π Mathlib.Algebra.Group.Pointwise.Finset.Basic
{Ξ± : Type u_2} [DecidableEq Ξ±] [MulOneClass Ξ±] : βFinset.coeMonoidHom = SetLike.coe - NonUnitalAlgHom.coe_coe π Mathlib.Algebra.Algebra.NonUnitalHom
{R : Type u} {S : Type uβ} [Monoid R] [Monoid S] {Ο : R β* S} {A : Type v} {B : Type w} [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [NonUnitalNonAssocSemiring B] [DistribMulAction S B] {F : Type u_2} [FunLike F A B] [NonUnitalAlgSemiHomClass F Ο A B] (f : F) : ββf = βf - DirectSum.coe_toModule_eq_coe_toAddMonoid π Mathlib.Algebra.DirectSum.Module
(R : Type u) [Semiring R] (ΞΉ : Type v) {M : ΞΉ β Type w} [(i : ΞΉ) β AddCommMonoid (M i)] [(i : ΞΉ) β Module R (M i)] [DecidableEq ΞΉ] (N : Type uβ) [AddCommMonoid N] [Module R N] (Ο : (i : ΞΉ) β M i ββ[R] N) : β(DirectSum.toModule R ΞΉ N Ο) = β(DirectSum.toAddMonoid fun i => (Ο i).toAddMonoidHom) - DirectSum.IsInternal.collectedBasis_coe π Mathlib.Algebra.DirectSum.Module
{R : Type u} [Semiring R] {ΞΉ : Type v} [dec_ΞΉ : DecidableEq ΞΉ] {M : Type u_1} [AddCommMonoid M] [Module R M] {A : ΞΉ β Submodule R M} (h : DirectSum.IsInternal A) {Ξ± : ΞΉ β Type u_2} (v : (i : ΞΉ) β Module.Basis (Ξ± i) R β₯(A i)) : β(h.collectedBasis v) = fun a => β((v a.fst) a.snd) - NonUnitalStarRingHom.coe_coe π Mathlib.Algebra.Star.StarRingHom
{A : Type u_1} {B : Type u_2} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] {F : Type u_5} [FunLike F A B] [NonUnitalRingHomClass F A B] [NonUnitalStarRingHomClass F A B] (f : F) : ββf = βf - StarAlgHom.coe_coe π Mathlib.Algebra.Star.StarAlgHom
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] {F : Type u_7} [FunLike F A B] [AlgHomClass F R A B] [StarHomClass F A B] (f : F) : ββf = βf - NonUnitalStarAlgHom.coe_coe π Mathlib.Algebra.Star.StarAlgHom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulAction R A] [Star A] [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] {F : Type u_6} [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) : ββf = βf - ContinuousMap.coe_coe π Mathlib.Topology.ContinuousMap.Defs
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {F : Type u_3} [FunLike F X Y] [ContinuousMapClass F X Y] (f : F) : ββf = βf - HomeomorphClass.coe_coe π Mathlib.Topology.Homeomorph.Defs
{F : Type u_5} {Ξ± : Type u_6} {Ξ² : Type u_7} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] [EquivLike F Ξ± Ξ²] [h : HomeomorphClass F Ξ± Ξ²] (f : F) : ββf = βf - Homeomorph.homeomorph_mk_coe π Mathlib.Topology.Homeomorph.Defs
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] (a : X β Y) (b : Continuous a.toFun) (c : Continuous a.invFun) : β{ toEquiv := a, continuous_toFun := b, continuous_invFun := c } = βa - Homeomorph.homeomorph_mk_coe_symm π Mathlib.Topology.Homeomorph.Defs
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] (a : X β Y) (b : Continuous a.toFun) (c : Continuous a.invFun) : β{ toEquiv := a, continuous_toFun := b, continuous_invFun := c }.symm = βa.symm - ContinuousAddMonoidHom.coe_coe π Mathlib.Topology.Algebra.ContinuousMonoidHom
{A : Type u_2} {B : Type u_3} [AddMonoid A] [AddMonoid B] [TopologicalSpace A] [TopologicalSpace B] {F : Type u_7} [FunLike F A B] [AddMonoidHomClass F A B] [ContinuousMapClass F A B] (f : F) : ββf = βf - ContinuousMonoidHom.coe_coe π Mathlib.Topology.Algebra.ContinuousMonoidHom
{A : Type u_2} {B : Type u_3} [Monoid A] [Monoid B] [TopologicalSpace A] [TopologicalSpace B] {F : Type u_7} [FunLike F A B] [MonoidHomClass F A B] [ContinuousMapClass F A B] (f : F) : ββf = βf - Homeomorph.shearAddRight_coe π Mathlib.Topology.Algebra.Group.Basic
(G : Type w) [TopologicalSpace G] [AddGroup G] [IsTopologicalAddGroup G] : β(Homeomorph.shearAddRight G) = fun z => (z.1, z.1 + z.2) - Homeomorph.shearMulRight_coe π Mathlib.Topology.Algebra.Group.Basic
(G : Type w) [TopologicalSpace G] [Group G] [IsTopologicalGroup G] : β(Homeomorph.shearMulRight G) = fun z => (z.1, z.1 * z.2) - Homeomorph.shearAddRight_symm_coe π Mathlib.Topology.Algebra.Group.Basic
(G : Type w) [TopologicalSpace G] [AddGroup G] [IsTopologicalAddGroup G] : β(Homeomorph.shearAddRight G).symm = fun z => (z.1, -z.1 + z.2) - Homeomorph.shearMulRight_symm_coe π Mathlib.Topology.Algebra.Group.Basic
(G : Type w) [TopologicalSpace G] [Group G] [IsTopologicalGroup G] : β(Homeomorph.shearMulRight G).symm = fun z => (z.1, z.1β»ΒΉ * z.2) - ContinuousLinearMap.coe_coe π Mathlib.Topology.Algebra.Module.LinearMap
{Rβ : Type u_1} {Rβ : Type u_2} [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_6} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] (f : Mβ βSL[Οββ] Mβ) : ββf = βf - ContinuousAlgHom.coe_coe π Mathlib.Topology.Algebra.Algebra
{R : Type u_1} [CommSemiring R] {A : Type u_2} [Semiring A] [TopologicalSpace A] {B : Type u_3} [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (f : A βA[R] B) : ββf = βf - algebraMapCLM_coe π Mathlib.Topology.Algebra.Algebra
(R : Type u_1) (A : Type u) [CommSemiring R] [Semiring A] [Algebra R A] [TopologicalSpace R] [TopologicalSpace A] [ContinuousSMul R A] : β(algebraMapCLM R A) = β(algebraMap R A) - NNReal.algebraMap_eq_coe π Mathlib.Data.NNReal.Defs
: β(algebraMap NNReal β) = NNReal.toReal - IsometryClass.coe_coe π Mathlib.Topology.MetricSpace.Isometry
{F : Type u_1} {Ξ± : Type u} {Ξ² : Type v} [PseudoEMetricSpace Ξ±] [PseudoEMetricSpace Ξ²] [EquivLike F Ξ± Ξ²] [IsometryClass F Ξ± Ξ²] (f : F) : ββf = βf - Opposite.equivToOpposite_coe π Mathlib.Data.Opposite
{Ξ± : Sort u} : βOpposite.equivToOpposite = Opposite.op - Opposite.equivToOpposite_symm_coe π Mathlib.Data.Opposite
{Ξ± : Sort u} : βOpposite.equivToOpposite.symm = Opposite.unop - CoalgHom.coe_coe π Mathlib.RingTheory.Coalgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {F : Type u_6} [FunLike F A B] [CoalgHomClass F R A B] (f : F) : ββf = βf - CoalgEquiv.coe_coe π Mathlib.RingTheory.Coalgebra.Equiv
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ββc[R] B) : ββe = βe - BialgHom.coe_coe π Mathlib.RingTheory.Bialgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {F : Type u_6} [FunLike F A B] [BialgHomClass F R A B] (f : F) : ββf = βf - BialgEquiv.coe_coe π Mathlib.RingTheory.Bialgebra.Equiv
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ββc[R] B) : ββe = βe - CoheytingHom.toFun_eq_coe_aux π Mathlib.Order.Heyting.Hom
{Ξ± : Type u_2} {Ξ² : Type u_3} [CoheytingAlgebra Ξ±] [CoheytingAlgebra Ξ²] {f : CoheytingHom Ξ± Ξ²} : βf.toLatticeHom = βf - HeytingHom.toFun_eq_coe_aux π Mathlib.Order.Heyting.Hom
{Ξ± : Type u_2} {Ξ² : Type u_3} [HeytingAlgebra Ξ±] [HeytingAlgebra Ξ²] {f : HeytingHom Ξ± Ξ²} : βf.toLatticeHom = βf - BiheytingHom.toFun_eq_coe_aux π Mathlib.Order.Heyting.Hom
{Ξ± : Type u_2} {Ξ² : Type u_3} [BiheytingAlgebra Ξ±] [BiheytingAlgebra Ξ²] {f : BiheytingHom Ξ± Ξ²} : βf.toLatticeHom = βf - ContinuousLinearEquiv.coe_coe π Mathlib.Topology.Algebra.Module.Equiv
{Rβ : Type u_1} {Rβ : Type u_2} [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_5} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] (e : Mβ βSL[Οββ] Mβ) : ββe = βe - UniformEquiv.uniformEquiv_mk_coe π Mathlib.Topology.UniformSpace.Equiv
{Ξ± : Type u} {Ξ² : Type u_1} [UniformSpace Ξ±] [UniformSpace Ξ²] (a : Ξ± β Ξ²) (b : UniformContinuous a.toFun) (c : UniformContinuous a.invFun) : β{ toEquiv := a, uniformContinuous_toFun := b, uniformContinuous_invFun := c } = βa - UniformEquiv.uniformEquiv_mk_coe_symm π Mathlib.Topology.UniformSpace.Equiv
{Ξ± : Type u} {Ξ² : Type u_1} [UniformSpace Ξ±] [UniformSpace Ξ²] (a : Ξ± β Ξ²) (b : UniformContinuous a.toFun) (c : UniformContinuous a.invFun) : β{ toEquiv := a, uniformContinuous_toFun := b, uniformContinuous_invFun := c }.symm = βa.symm - Derivation.coeFn_coe π Mathlib.RingTheory.Derivation.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} [CommSemiring R] [CommSemiring A] [AddCommMonoid M] [Algebra R A] [Module A M] [Module R M] (f : Derivation R A M) : ββf = βf - Derivation.mk_coe π Mathlib.RingTheory.Derivation.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} [CommSemiring R] [CommSemiring A] [AddCommMonoid M] [Algebra R A] [Module A M] [Module R M] (f : A ββ[R] M) (hβ : f 1 = 0) (hβ : β (a b : A), f (a * b) = a β’ f b + b β’ f a) : β{ toLinearMap := f, map_one_eq_zero' := hβ, leibniz' := hβ } = βf - Derivation.linearEquiv_coe_comp π Mathlib.RingTheory.Derivation.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} [CommSemiring R] [CommSemiring A] [AddCommMonoid M] [Algebra R A] [Module A M] [Module R M] (D : Derivation R A M) {N : Type u_5} [AddCommMonoid N] [Module A N] [Module R N] [IsScalarTower R A M] [IsScalarTower R A N] (e : M ββ[A] N) : β(e.compDer D) = β(βR βe ββ βD) - CommRingCat.free_map_coe π Mathlib.Algebra.Category.Ring.Adjunctions
{Ξ± Ξ² : Type u} {f : Ξ± β Ξ²} : β(CategoryTheory.ConcreteCategory.hom (CommRingCat.free.map f)) = β(MvPolynomial.rename f) - IsLocalization.mapβ_coe π Mathlib.RingTheory.Localization.Algebra
{R : Type u_5} [CommSemiring R] (M : Submonoid R) {A : Type u_6} [CommSemiring A] [Algebra R A] {B : Type u_7} [CommSemiring B] [Algebra R B] (Rβ : Type u_8) [CommSemiring Rβ] [Algebra R Rβ] [IsLocalization M Rβ] (Aβ : Type u_9) [CommSemiring Aβ] [Algebra R Aβ] [Algebra A Aβ] [IsScalarTower R A Aβ] [IsLocalization (Algebra.algebraMapSubmonoid A M) Aβ] (Bβ : Type u_10) [CommSemiring Bβ] [Algebra R Bβ] [Algebra B Bβ] [IsScalarTower R B Bβ] [IsLocalization (Algebra.algebraMapSubmonoid B M) Bβ] [Algebra Rβ Aβ] [Algebra Rβ Bβ] [IsScalarTower R Rβ Aβ] [IsScalarTower R Rβ Bβ] (f : A ββ[R] B) : β(IsLocalization.mapβ M Rβ Aβ Bβ f) = β(IsLocalization.map Bβ f.toRingHom β―) - LieEquiv.coe_coe π Mathlib.Algebra.Lie.Basic
{R : Type u} {Lβ : Type v} {Lβ : Type w} [CommRing R] [LieRing Lβ] [LieRing Lβ] [LieAlgebra R Lβ] [LieAlgebra R Lβ] (e : Lβ βββ Rβ Lβ) : βe.toLieHom = βe - LieModuleEquiv.coe_coe π Mathlib.Algebra.Lie.Basic
{R : Type u} {L : Type v} {M : Type w} {N : Type wβ} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M βββ R,Lβ N) : βe.toLieModuleHom = βe - TensorProduct.LieModule.coe_liftLie_eq_lift_coe π Mathlib.Algebra.Lie.TensorProduct
(R : Type u) [CommRing R] (L : Type v) (M : Type w) (N : Type wβ) (P : Type wβ) [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] [AddCommGroup P] [Module R P] [LieRingModule L P] [LieModule R L P] (f : M βββ R,Lβ N ββ[R] P) : β((TensorProduct.LieModule.liftLie R L M N P) f) = β((TensorProduct.LieModule.lift R L M N P) βf) - LieDerivation.coeFn_coe π Mathlib.Algebra.Lie.Derivation.Basic
{R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (f : LieDerivation R L M) : ββf = βf - LieDerivation.mk_coe π Mathlib.Algebra.Lie.Derivation.Basic
{R : Type u_1} {L : Type u_2} {M : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (f : L ββ[R] M) (hβ : β (a b : L), f β a, bβ = β a, f bβ - β b, f aβ) : β{ toLinearMap := f, leibniz' := hβ } = βf - LieModule.Weight.coe_coe π Mathlib.Algebra.Lie.Weights.Linear
{R : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [LieRing.IsNilpotent L] [LieModule.LinearWeights R L M] {Ο : LieModule.Weight R L M} : β(LieModule.Weight.toLinear R L M Ο) = βΟ - Homeomorph.toMeasurableEquiv_coe π Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
{Ξ³ : Type u_3} {Ξ³β : Type u_4} [TopologicalSpace Ξ³] [MeasurableSpace Ξ³] [BorelSpace Ξ³] [TopologicalSpace Ξ³β] [MeasurableSpace Ξ³β] [BorelSpace Ξ³β] (h : Ξ³ ββ Ξ³β) : βh.toMeasurableEquiv = βh - Homeomorph.toMeasurableEquiv_symm_coe π Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
{Ξ³ : Type u_3} {Ξ³β : Type u_4} [TopologicalSpace Ξ³] [MeasurableSpace Ξ³] [BorelSpace Ξ³] [TopologicalSpace Ξ³β] [MeasurableSpace Ξ³β] [BorelSpace Ξ³β] (h : Ξ³ ββ Ξ³β) : βh.toMeasurableEquiv.symm = βh.symm - AddGroupNorm.toAddGroupSeminorm_eq_coe π Mathlib.Analysis.Normed.Group.Seminorm
{E : Type u_3} [AddGroup E] {p : AddGroupNorm E} : βp.toAddGroupSeminorm = βp - GroupNorm.toGroupSeminorm_eq_coe π Mathlib.Analysis.Normed.Group.Seminorm
{E : Type u_3} [Group E] {p : GroupNorm E} : βp.toGroupSeminorm = βp - NonarchAddGroupNorm.toNonarchAddGroupSeminorm_eq_coe π Mathlib.Analysis.Normed.Group.Seminorm
{E : Type u_3} [AddGroup E] {p : NonarchAddGroupNorm E} : βp.toNonarchAddGroupSeminorm = βp - NonarchAddGroupSeminorm.toZeroHom_eq_coe π Mathlib.Analysis.Normed.Group.Seminorm
{E : Type u_3} [AddGroup E] {p : NonarchAddGroupSeminorm E} : βp.toZeroHom = βp - LinearIsometryEquiv.coe_coe'' π Mathlib.Analysis.Normed.Operator.LinearIsometry
{R : Type u_1} {Rβ : Type u_2} {E : Type u_5} {Eβ : Type u_6} [Semiring R] [Semiring Rβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eβ] [Module R E] [Module Rβ Eβ] (e : E βββα΅’[Οββ] Eβ) : ββe.toContinuousLinearEquiv = βe - LinearIsometryEquiv.coe_coe π Mathlib.Analysis.Normed.Operator.LinearIsometry
{R : Type u_1} {Rβ : Type u_2} {E : Type u_5} {Eβ : Type u_6} [Semiring R] [Semiring Rβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eβ] [Module R E] [Module Rβ Eβ] (e : E βββα΅’[Οββ] Eβ) : βe.toContinuousLinearEquiv = βe - RCLike.ofRealAm_coe π Mathlib.Analysis.RCLike.Basic
{K : Type u_1} [RCLike K] : βRCLike.ofRealAm = RCLike.ofReal - RCLike.conjAe_coe π Mathlib.Analysis.RCLike.Basic
{K : Type u_1} [RCLike K] : βRCLike.conjAe = β(starRingEnd K) - RCLike.imLm_coe π Mathlib.Analysis.RCLike.Basic
{K : Type u_1} [RCLike K] : βRCLike.imLm = βRCLike.im - RCLike.reLm_coe π Mathlib.Analysis.RCLike.Basic
{K : Type u_1} [RCLike K] : βRCLike.reLm = βRCLike.re - Complex.ofRealAm_coe π Mathlib.LinearAlgebra.Complex.Module
: βComplex.ofRealAm = Complex.ofReal - Complex.imLm_coe π Mathlib.LinearAlgebra.Complex.Module
: βComplex.imLm = Complex.im - Complex.reLm_coe π Mathlib.LinearAlgebra.Complex.Module
: βComplex.reLm = Complex.re - Complex.conjAe_coe π Mathlib.LinearAlgebra.Complex.Module
: βComplex.conjAe = β(starRingEnd β) - Path.cast_coe π Mathlib.Topology.Path
{X : Type u_1} [TopologicalSpace X] {x y : X} (Ξ³ : Path x y) {x' y' : X} (hx : x' = x) (hy : y' = y) : β(Ξ³.cast hx hy) = βΞ³ - Path.map_coe π Mathlib.Topology.Path
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x y : X} (Ξ³ : Path x y) {f : X β Y} (h : Continuous f) : β(Ξ³.map h) = f β βΞ³ - Path.pi_coe π Mathlib.Topology.Path
{ΞΉ : Type u_3} {Ο : ΞΉ β Type u_4} [(i : ΞΉ) β TopologicalSpace (Ο i)] {as bs : (i : ΞΉ) β Ο i} (Ξ³ : (i : ΞΉ) β Path (as i) (bs i)) : β(Path.pi Ξ³) = fun t i => (Ξ³ i) t - Path.prod_coe π Mathlib.Topology.Path
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {aβ aβ : X} {bβ bβ : Y} (Ξ³β : Path aβ aβ) (Ξ³β : Path bβ bβ) : β(Ξ³β.prod Ξ³β) = fun t => (Ξ³β t, Ξ³β t) - Real.Angle.coe_coeHom π Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
: βReal.Angle.coeHom = Real.Angle.coe - AffineEquiv.coe_coe π Mathlib.LinearAlgebra.AffineSpace.AffineEquiv
{k : Type u_1} {Pβ : Type u_2} {Pβ : Type u_3} {Vβ : Type u_6} {Vβ : Type u_7} [Ring k] [AddCommGroup Vβ] [AddCommGroup Vβ] [Module k Vβ] [Module k Vβ] [AddTorsor Vβ Pβ] [AddTorsor Vβ Pβ] (e : Pβ βα΅[k] Pβ) : ββe = βe - stdSimplex.vertex_coe π Mathlib.Analysis.Convex.StdSimplex
{S : Type u_1} [Semiring S] [PartialOrder S] {X : Type u_2} [Fintype X] [IsOrderedRing S] [DecidableEq X] (x : X) : β(stdSimplex.vertex x) = Pi.single x 1 - stdSimplex.map_coe π Mathlib.Analysis.Convex.StdSimplex
{S : Type u_1} [Semiring S] [PartialOrder S] {X : Type u_2} {Y : Type u_3} [Fintype X] [Fintype Y] [IsOrderedRing S] (f : X β Y) (s : β(stdSimplex S X)) : β(stdSimplex.map f s) = (FunOnFinite.linearMap S S f) βs - ContinuousAlgEquiv.coe_coe π Mathlib.Topology.Algebra.Algebra.Equiv
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [TopologicalSpace A] [Semiring B] [TopologicalSpace B] [Algebra R A] [Algebra R B] (e : A βA[R] B) : ββe = βe - Filter.Germ.coe_coeRingHom π Mathlib.Order.Filter.Germ.Basic
{Ξ± : Type u_1} {l : Filter Ξ±} {R : Type u_5} [Semiring R] : β(Filter.Germ.coeRingHom l) = Filter.Germ.ofFun - Filter.Germ.coe_coeAddHom π Mathlib.Order.Filter.Germ.Basic
{Ξ± : Type u_1} {l : Filter Ξ±} {M : Type u_5} [AddMonoid M] : β(Filter.Germ.coeAddHom l) = Filter.Germ.ofFun - Filter.Germ.coe_coeMulHom π Mathlib.Order.Filter.Germ.Basic
{Ξ± : Type u_1} {l : Filter Ξ±} {M : Type u_5} [Monoid M] : β(Filter.Germ.coeMulHom l) = Filter.Germ.ofFun - ContinuousMultilinearMap.coe_coe π Mathlib.Topology.Algebra.Module.Multilinear.Basic
{R : Type u} {ΞΉ : Type v} {Mβ : ΞΉ β Type wβ} {Mβ : Type wβ} [Semiring R] [(i : ΞΉ) β AddCommMonoid (Mβ i)] [AddCommMonoid Mβ] [(i : ΞΉ) β Module R (Mβ i)] [Module R Mβ] [(i : ΞΉ) β TopologicalSpace (Mβ i)] [TopologicalSpace Mβ] (f : ContinuousMultilinearMap R Mβ Mβ) : βf.toMultilinearMap = βf - ContinuousLinearMap.compContinuousMultilinearMap_coe π Mathlib.Topology.Algebra.Module.Multilinear.Basic
{R : Type u} {ΞΉ : Type v} {Mβ : ΞΉ β Type wβ} {Mβ : Type wβ} {Mβ : Type wβ} [Semiring R] [(i : ΞΉ) β AddCommMonoid (Mβ i)] [AddCommMonoid Mβ] [AddCommMonoid Mβ] [(i : ΞΉ) β Module R (Mβ i)] [Module R Mβ] [Module R Mβ] [(i : ΞΉ) β TopologicalSpace (Mβ i)] [TopologicalSpace Mβ] [TopologicalSpace Mβ] (g : Mβ βL[R] Mβ) (f : ContinuousMultilinearMap R Mβ Mβ) : β(g.compContinuousMultilinearMap f) = βg β βf - BoundedContinuousFunction.mkOfBound_coe π Mathlib.Topology.ContinuousMap.Bounded.Basic
{Ξ± : Type u} {Ξ² : Type v} [TopologicalSpace Ξ±] [PseudoMetricSpace Ξ²] {f : C(Ξ±, Ξ²)} {C : β} {h : β (x y : Ξ±), dist (f x) (f y) β€ C} : β(BoundedContinuousFunction.mkOfBound f C h) = βf - BoundedContinuousFunction.nnrealPart_coeFn_eq π Mathlib.Topology.ContinuousMap.Bounded.Normed
{Ξ± : Type u} [TopologicalSpace Ξ±] (f : BoundedContinuousFunction Ξ± β) : βf.nnrealPart = Real.toNNReal β βf - BoundedContinuousFunction.nnnorm_coeFn_eq π Mathlib.Topology.ContinuousMap.Bounded.Normed
{Ξ± : Type u} [TopologicalSpace Ξ±] (f : BoundedContinuousFunction Ξ± β) : βf.nnnorm = nnnorm β βf - innerββ_apply_coe π Mathlib.Analysis.InnerProductSpace.LinearMap
(π : Type u_1) {E : Type u_2} [RCLike π] [SeminormedAddCommGroup E] [InnerProductSpace π E] (v : E) : β((innerββ π) v) = fun w => inner π v w - innerSL_apply_coe π Mathlib.Analysis.InnerProductSpace.LinearMap
(π : Type u_1) {E : Type u_2} [RCLike π] [SeminormedAddCommGroup E] [InnerProductSpace π E] (v : E) : β((innerSL π) v) = fun w => inner π v w - ContinuousAffineMap.coe_linear_eq_coe_contLinear π Mathlib.Topology.Algebra.ContinuousAffineMap
{R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace V] [IsTopologicalAddTorsor P] [TopologicalSpace W] [IsTopologicalAddTorsor Q] (f : P βᴬ[R] Q) : β(βf).linear = βf.contLinear - ContinuousAffineEquiv.coe_coe π Mathlib.Topology.Algebra.ContinuousAffineEquiv
{k : Type u_1} {Pβ : Type u_2} {Pβ : Type u_3} {Vβ : Type u_6} {Vβ : Type u_7} [Ring k] [AddCommGroup Vβ] [Module k Vβ] [AddTorsor Vβ Pβ] [TopologicalSpace Pβ] [AddCommGroup Vβ] [Module k Vβ] [AddTorsor Vβ Pβ] [TopologicalSpace Pβ] (e : Pβ βᴬ[k] Pβ) : ββe = βe - MvPolynomial.comapEquiv_coe π Mathlib.Algebra.MvPolynomial.Comap
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_4} [CommSemiring R] (f : MvPolynomial Ο R ββ[R] MvPolynomial Ο R) : β(MvPolynomial.comapEquiv f) = MvPolynomial.comap βf - MvPolynomial.comapEquiv_symm_coe π Mathlib.Algebra.MvPolynomial.Comap
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_4} [CommSemiring R] (f : MvPolynomial Ο R ββ[R] MvPolynomial Ο R) : β(MvPolynomial.comapEquiv f).symm = MvPolynomial.comap βf.symm - NonemptyInterval.coe_coeHom π Mathlib.Order.Interval.Basic
{Ξ± : Type u_1} [PartialOrder Ξ±] : βNonemptyInterval.coeHom = SetLike.coe - Valuation.toMonoidWithZeroHom_coe_eq_coe π Mathlib.RingTheory.Valuation.Basic
{R : Type u_3} {Ξβ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Ξβ] (v : Valuation R Ξβ) : βv.toMonoidWithZeroHom = βv - Valuation.coe_coe π Mathlib.RingTheory.Valuation.Basic
{R : Type u_3} {Ξβ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Ξβ] (v : Valuation R Ξβ) : ββv = βv - Polynomial.aeval_coe_eq_smeval π Mathlib.Algebra.Polynomial.Smeval
{R : Type u_1} [CommSemiring R] {S : Type u_2} [Semiring S] [Algebra R S] (x : S) : β(Polynomial.aeval x) = fun p => p.smeval x - Polynomial.leval_coe_eq_smeval π Mathlib.Algebra.Polynomial.Smeval
{R : Type u_3} [Semiring R] (r : R) : β(Polynomial.leval r) = fun p => p.smeval r - Tropical.tropEquiv_coe_fn π Mathlib.Algebra.Tropical.Basic
{R : Type u} : βTropical.tropEquiv = Tropical.trop - Tropical.tropEquiv_symm_coe_fn π Mathlib.Algebra.Tropical.Basic
{R : Type u} : βTropical.tropEquiv.symm = Tropical.untrop - Tropical.tropOrderIso_coe_fn π Mathlib.Algebra.Tropical.Basic
{R : Type u} [Preorder R] : βTropical.tropOrderIso = Tropical.trop - Tropical.tropOrderIso_symm_coe_fn π Mathlib.Algebra.Tropical.Basic
{R : Type u} [Preorder R] : βTropical.tropOrderIso.symm = Tropical.untrop - ContinuousLinearMap.compContinuousAlternatingMap_coe π Mathlib.Topology.Algebra.Module.Alternating.Basic
{R : Type u_1} {M : Type u_2} {N : Type u_4} {N' : Type u_5} {ΞΉ : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [TopologicalSpace M] [AddCommMonoid N] [Module R N] [TopologicalSpace N] [AddCommMonoid N'] [Module R N'] [TopologicalSpace N'] (g : N βL[R] N') (f : M [β^ΞΉ]βL[R] N) : β(g.compContinuousAlternatingMap f) = βg β βf - ContinuousLinearEquiv.compContinuousAlternatingMap_coe π Mathlib.Topology.Algebra.Module.Alternating.Basic
{R : Type u_1} {M : Type u_2} {N : Type u_4} {N' : Type u_5} {ΞΉ : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [TopologicalSpace M] [AddCommMonoid N] [Module R N] [TopologicalSpace N] [AddCommMonoid N'] [Module R N'] [TopologicalSpace N'] (e : N βL[R] N') (f : M [β^ΞΉ]βL[R] N) : β(e.continuousAlternatingMapCongrRightEquiv f) = βe β βf - WeakDual.CharacterSpace.coe_coe π Mathlib.Topology.Algebra.Module.CharacterSpace
{π : Type u_1} {A : Type u_2} [CommSemiring π] [TopologicalSpace π] [ContinuousAdd π] [ContinuousConstSMul π π] [NonUnitalNonAssocSemiring A] [TopologicalSpace A] [Module π A] (Ο : β(WeakDual.characterSpace π A)) : ββΟ = βΟ - WeakDual.CharacterSpace.equivAlgHom_symm_coe π Mathlib.Analysis.Normed.Algebra.Spectrum
{π : Type u_1} {A : Type u_2} [NontriviallyNormedField π] [NormedRing A] [CompleteSpace A] [NormedAlgebra π A] (f : A ββ[π] π) : β(WeakDual.CharacterSpace.equivAlgHom.symm f) = βf - WeakDual.CharacterSpace.equivAlgHom_coe π Mathlib.Analysis.Normed.Algebra.Spectrum
{π : Type u_1} {A : Type u_2} [NontriviallyNormedField π] [NormedRing A] [CompleteSpace A] [NormedAlgebra π A] (f : β(WeakDual.characterSpace π A)) : β(WeakDual.CharacterSpace.equivAlgHom f) = βf - Trivialization.coordChangeHomeomorph_coe π Mathlib.Topology.FiberBundle.Trivialization
{B : Type u_1} {F : Type u_2} {Z : Type u_4} [TopologicalSpace B] [TopologicalSpace F] {proj : Z β B} [TopologicalSpace Z] (eβ eβ : Trivialization F proj) {b : B} (hβ : b β eβ.baseSet) (hβ : b β eβ.baseSet) : β(eβ.coordChangeHomeomorph eβ hβ hβ) = eβ.coordChange eβ b - ContDiffMapSupportedIn.coe_coeHom π Mathlib.Analysis.Distribution.ContDiffMapSupportedIn
{E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] (n : ββ) (K : TopologicalSpace.Compacts E) : β(ContDiffMapSupportedIn.coeHom E F n K) = DFunLike.coe - SchwartzMap.coe_coeHom π Mathlib.Analysis.Distribution.SchwartzSpace
{E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] : β(SchwartzMap.coeHom E F) = DFunLike.coe - SchwartzMap.fourierInv_coe π Mathlib.Analysis.Distribution.FourierSchwartz
{E : Type u_3} [NormedAddCommGroup E] [NormedSpace β E] {V : Type u_5} [NormedAddCommGroup V] [InnerProductSpace β V] [FiniteDimensional β V] [MeasurableSpace V] [BorelSpace V] (f : SchwartzMap V E) : β(FourierTransformInv.fourierInv f) = FourierTransformInv.fourierInv βf - SchwartzMap.fourier_coe π Mathlib.Analysis.Distribution.FourierSchwartz
{E : Type u_3} [NormedAddCommGroup E] [NormedSpace β E] {V : Type u_5} [NormedAddCommGroup V] [InnerProductSpace β V] [FiniteDimensional β V] [MeasurableSpace V] [BorelSpace V] (f : SchwartzMap V E) : β(FourierTransform.fourier f) = FourierTransform.fourier βf - RatFunc.coe_mapRingHom_eq_coe_map π Mathlib.FieldTheory.RatFunc.Basic
{R : Type u_3} {S : Type u_4} {F : Type u_5} [CommRing R] [CommRing S] [FunLike F (Polynomial R) (Polynomial S)] [RingHomClass F (Polynomial R) (Polynomial S)] (Ο : F) (hΟ : nonZeroDivisors (Polynomial R) β€ Submonoid.comap Ο (nonZeroDivisors (Polynomial S))) : β(RatFunc.mapRingHom Ο hΟ) = β(RatFunc.map Ο hΟ) - RatFunc.coe_mapAlgHom_eq_coe_map π Mathlib.FieldTheory.RatFunc.Basic
{K : Type u} [CommRing K] [IsDomain K] {R : Type u_2} {S : Type u_3} [CommRing R] [IsDomain R] [CommSemiring S] [Algebra S (Polynomial K)] [Algebra S (Polynomial R)] (Ο : Polynomial K ββ[S] Polynomial R) (hΟ : nonZeroDivisors (Polynomial K) β€ Submonoid.comap Ο (nonZeroDivisors (Polynomial R))) : β(RatFunc.mapAlgHom Ο hΟ) = β(RatFunc.map Ο hΟ) - NormedAddGroupHom.extension_coe_to_fun π Mathlib.Analysis.Normed.Group.HomCompletion
{G : Type u_1} [SeminormedAddCommGroup G] {H : Type u_2} [SeminormedAddCommGroup H] [T0Space H] [CompleteSpace H] (f : NormedAddGroupHom G H) : βf.extension = UniformSpace.Completion.extension βf - NormedAddGroupHom.completion_coe_to_fun π Mathlib.Analysis.Normed.Group.HomCompletion
{G : Type u_1} [SeminormedAddCommGroup G] {H : Type u_2} [SeminormedAddCommGroup H] (f : NormedAddGroupHom G H) : βf.completion = UniformSpace.Completion.map βf - MulRingSeminorm.toFun_eq_coe π Mathlib.Analysis.Normed.Unbundled.RingSeminorm
{R : Type u_1} [NonAssocRing R] (p : MulRingSeminorm R) : βp.toAddGroupSeminorm = βp - RingSeminorm.toFun_eq_coe π Mathlib.Analysis.Normed.Unbundled.RingSeminorm
{R : Type u_1} [NonUnitalRing R] (p : RingSeminorm R) : βp.toAddGroupSeminorm = βp - PrimeMultiset.coe_coeNatMonoidHom π Mathlib.Data.PNat.Factors
: βPrimeMultiset.coeNatMonoidHom = PrimeMultiset.toNatMultiset - PrimeMultiset.coe_coePNatMonoidHom π Mathlib.Data.PNat.Factors
: βPrimeMultiset.coePNatMonoidHom = PrimeMultiset.toPNatMultiset - LeftInvariantDerivation.commutator_coe_derivation π Mathlib.Geometry.Manifold.Algebra.LeftInvariantDerivation
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {G : Type u_4} [TopologicalSpace G] [ChartedSpace H G] [Monoid G] [ContMDiffMul I (ββ€) G] (X Y : LeftInvariantDerivation I G) : ββ X, Yβ = ββ βX, βYβ - tangentBundleModelSpaceHomeomorph_coe π Mathlib.Geometry.Manifold.VectorBundle.Tangent
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners π E H} : β(tangentBundleModelSpaceHomeomorph I) = β(Bundle.TotalSpace.toProd H E) - tangentBundleModelSpaceHomeomorph_coe_symm π Mathlib.Geometry.Manifold.VectorBundle.Tangent
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners π E H} : β(tangentBundleModelSpaceHomeomorph I).symm = β(Bundle.TotalSpace.toProd H E).symm - Diffeomorph.toEquiv_coe_symm π Mathlib.Geometry.Manifold.Diffeomorph
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π F] {H : Type u_5} [TopologicalSpace H] {G : Type u_7} [TopologicalSpace G] {I : ModelWithCorners π E H} {J : ModelWithCorners π F G} {M : Type u_9} [TopologicalSpace M] [ChartedSpace H M] {N : Type u_11} [TopologicalSpace N] [ChartedSpace G N] {n : WithTop ββ} (h : Diffeomorph I J M N n) : βh.symm = βh.symm - Diffeomorph.coe_coe π Mathlib.Geometry.Manifold.Diffeomorph
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace π E'] {H : Type u_5} [TopologicalSpace H] {H' : Type u_6} [TopologicalSpace H'] {I : ModelWithCorners π E H} {I' : ModelWithCorners π E' H'} {M : Type u_9} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_10} [TopologicalSpace M'] [ChartedSpace H' M'] {n : WithTop ββ} (h : Diffeomorph I I' M M' n) : ββh = βh - Diffeomorph.sumComm_coe π Mathlib.Geometry.Manifold.Diffeomorph
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_5} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_9} [TopologicalSpace M] [ChartedSpace H M] {n : WithTop ββ} {M' : Type u_13} [TopologicalSpace M'] [ChartedSpace H M'] : β(Diffeomorph.sumComm I M n M') = Sum.swap - Diffeomorph.sumAssoc_coe π Mathlib.Geometry.Manifold.Diffeomorph
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_5} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_9} [TopologicalSpace M] [ChartedSpace H M] {n : WithTop ββ} {M' : Type u_13} [TopologicalSpace M'] [ChartedSpace H M'] {M'' : Type u_14} [TopologicalSpace M''] [ChartedSpace H M''] : β(Diffeomorph.sumAssoc I M n M' M'') = β(Equiv.sumAssoc M M' M'') - Diffeomorph.sumCongr_coe π Mathlib.Geometry.Manifold.Diffeomorph
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace π E'] {H : Type u_5} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_9} [TopologicalSpace M] [ChartedSpace H M] {n : WithTop ββ} {M' : Type u_13} [TopologicalSpace M'] [ChartedSpace H M'] {N : Type u_15} [TopologicalSpace N] [ChartedSpace H N] {J : ModelWithCorners π E' H} {N' : Type u_17} [TopologicalSpace N'] [ChartedSpace H N'] (Ο : Diffeomorph I J M N n) (Ο : Diffeomorph I J M' N' n) : β(Ο.sumCongr Ο) = Sum.map βΟ βΟ - SmoothBumpCovering.embeddingPiTangent_coe π Mathlib.Geometry.Manifold.WhitneyEmbedding
{ΞΉ : Type uΞΉ} {E : Type uE} [NormedAddCommGroup E] [NormedSpace β E] [FiniteDimensional β E] {H : Type uH} [TopologicalSpace H] {I : ModelWithCorners β E H} {M : Type uM} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (ββ€) M] [T2Space M] [Fintype ΞΉ] {s : Set M} (f : SmoothBumpCovering ΞΉ I M s) : βf.embeddingPiTangent = fun x i => (β(f.toFun i) x β’ β(extChartAt I (f.c i)) x, β(f.toFun i) x) - MeasureTheory.ProbabilityMeasure.coeFn_comp_toFiniteMeasure_eq_coeFn π Mathlib.MeasureTheory.Measure.ProbabilityMeasure
{Ξ© : Type u_1} [MeasurableSpace Ξ©] (Ξ½ : MeasureTheory.ProbabilityMeasure Ξ©) : βΞ½.toFiniteMeasure = βΞ½ - SlashInvariantForm.one_coe_eq_one π Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{Ξ : Subgroup (GL (Fin 2) β)} [Ξ.HasDetPlusMinusOne] : β1 = 1 - CuspForm.toSlashInvariantForm_coe π Mathlib.NumberTheory.ModularForms.Basic
{Ξ : Subgroup (GL (Fin 2) β)} {k : β€} (f : CuspForm Ξ k) : βf.toSlashInvariantForm = βf - ModularForm.toSlashInvariantForm_coe π Mathlib.NumberTheory.ModularForms.Basic
{Ξ : Subgroup (GL (Fin 2) β)} {k : β€} (f : ModularForm Ξ k) : βf.toSlashInvariantForm = βf - ModularForm.one_coe_eq_one π Mathlib.NumberTheory.ModularForms.Basic
{Ξ : Subgroup (GL (Fin 2) β)} [Ξ.HasDetPlusMinusOne] : β1 = 1 - ModularForm.mul_coe π Mathlib.NumberTheory.ModularForms.Basic
{Ξ : Subgroup (GL (Fin 2) β)} {k_1 k_2 : β€} [Ξ.HasDetPlusMinusOne] (f : ModularForm Ξ k_1) (g : ModularForm Ξ k_2) : β(f.mul g) = βf * βg - Topology.IsGeneratedBy.homeomorph_coe π Mathlib.Topology.Convenient.GeneratedBy
{ΞΉ : Type t} {X : ΞΉ β Type u} [(i : ΞΉ) β TopologicalSpace (X i)] {Y : Type v} [tY : TopologicalSpace Y] [Topology.IsGeneratedBy X Y] : βTopology.IsGeneratedBy.homeomorph = βTopology.WithGeneratedByTopology.equiv
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454