Loogle!
Result
Found 346 declarations whose name contains "baseChange". Of these, only the first 200 are shown.
- Submodule.baseChange π Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule A (TensorProduct R A M) - Submodule.baseChange_bot π Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] : Submodule.baseChange A β₯ = β₯ - Submodule.baseChange_top π Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] : Submodule.baseChange A β€ = β€ - Submodule.tmul_mem_baseChange_of_mem π Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] {p : Submodule R M} (a : A) {m : M} (hm : m β p) : a ββ[R] m β Submodule.baseChange A p - TensorProduct.AlgebraTensorModule.cancelBaseChange π Mathlib.LinearAlgebra.TensorProduct.Tower
(R : Type uR) (A : Type uA) (B : Type uB) (M : Type uM) (N : Type uN) [CommSemiring R] [CommSemiring A] [Semiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] [Module R M] [Module A M] [Module B M] [IsScalarTower R A M] [IsScalarTower R B M] [SMulCommClass A B M] [AddCommMonoid N] [Module R N] [Algebra A B] [IsScalarTower A B M] : TensorProduct A M (TensorProduct R A N) ββ[B] TensorProduct R M N - TensorProduct.AlgebraTensorModule.distribBaseChange π Mathlib.LinearAlgebra.TensorProduct.Tower
(R : Type uR) (A : Type uA) (M : Type uM) (N : Type uN) [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] : TensorProduct R A (TensorProduct R M N) ββ[A] TensorProduct A (TensorProduct R A M) (TensorProduct R A N) - Submodule.baseChange.eq_1 π Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule.baseChange A p = Submodule.span A β(Submodule.map ((TensorProduct.mk R A M) 1) p) - Submodule.baseChange_span π Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] (s : Set M) : Submodule.baseChange A (Submodule.span R s) = Submodule.span A (β((TensorProduct.mk R A M) 1) '' s) - TensorProduct.AlgebraTensorModule.cancelBaseChange_tmul π Mathlib.LinearAlgebra.TensorProduct.Tower
(R : Type uR) (A : Type uA) (B : Type uB) {M : Type uM} {N : Type uN} [CommSemiring R] [CommSemiring A] [Semiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] [Module R M] [Module A M] [Module B M] [IsScalarTower R A M] [IsScalarTower R B M] [SMulCommClass A B M] [AddCommMonoid N] [Module R N] [Algebra A B] [IsScalarTower A B M] (m : M) (n : N) (a : A) : (TensorProduct.AlgebraTensorModule.cancelBaseChange R A B M N) (m ββ[A] a ββ[R] n) = (a β’ m) ββ[R] n - TensorProduct.AlgebraTensorModule.cancelBaseChange_symm_tmul π Mathlib.LinearAlgebra.TensorProduct.Tower
(R : Type uR) (A : Type uA) (B : Type uB) {M : Type uM} {N : Type uN} [CommSemiring R] [CommSemiring A] [Semiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] [Module R M] [Module A M] [Module B M] [IsScalarTower R A M] [IsScalarTower R B M] [SMulCommClass A B M] [AddCommMonoid N] [Module R N] [Algebra A B] [IsScalarTower A B M] (m : M) (n : N) : (TensorProduct.AlgebraTensorModule.cancelBaseChange R A B M N).symm (m ββ[R] n) = m ββ[A] 1 ββ[R] n - TensorProduct.AlgebraTensorModule.lTensor_comp_cancelBaseChange π Mathlib.LinearAlgebra.TensorProduct.Tower
(R : Type uR) (A : Type uA) (B : Type uB) {M : Type uM} {N : Type uN} {Q : Type uQ} [CommSemiring R] [CommSemiring A] [Semiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] [Module R M] [Module A M] [Module B M] [IsScalarTower R A M] [IsScalarTower R B M] [SMulCommClass A B M] [AddCommMonoid N] [Module R N] [AddCommMonoid Q] [Module R Q] [Algebra A B] [IsScalarTower A B M] (f : N ββ[R] Q) : (TensorProduct.AlgebraTensorModule.lTensor B M) f ββ β(TensorProduct.AlgebraTensorModule.cancelBaseChange R A B M N) = β(TensorProduct.AlgebraTensorModule.cancelBaseChange R A B M Q) ββ (TensorProduct.AlgebraTensorModule.lTensor B M) ((TensorProduct.AlgebraTensorModule.lTensor A A) f) - Basis.baseChange π Mathlib.LinearAlgebra.TensorProduct.Basis
{R : Type u_1} {M : Type u_3} {ΞΉ : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] (S : Type u_7) [Semiring S] [Algebra R S] (b : Basis ΞΉ R M) : Basis ΞΉ S (TensorProduct R S M) - Basis.baseChange.eq_1 π Mathlib.LinearAlgebra.TensorProduct.Basis
{R : Type u_1} {M : Type u_3} {ΞΉ : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] (S : Type u_7) [Semiring S] [Algebra R S] (b : Basis ΞΉ R M) : Basis.baseChange S b = ((Basis.singleton Unit S).tensorProduct b).reindex (Equiv.punitProd ΞΉ) - Basis.baseChange_apply π Mathlib.LinearAlgebra.TensorProduct.Basis
{R : Type u_1} {M : Type u_3} {ΞΉ : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] (S : Type u_7) [Semiring S] [Algebra R S] (b : Basis ΞΉ R M) (i : ΞΉ) : (Basis.baseChange S b) i = 1 ββ[R] b i - Basis.baseChange_repr_tmul π Mathlib.LinearAlgebra.TensorProduct.Basis
{R : Type u_1} {M : Type u_3} {ΞΉ : Type u_5} [CommSemiring R] [AddCommMonoid M] [Module R M] (S : Type u_7) [Semiring S] [Algebra R S] (b : Basis ΞΉ R M) (x : S) (y : M) (i : ΞΉ) : ((Basis.baseChange S b).repr (x ββ[R] y)) i = (b.repr y) i β’ x - LinearMap.baseChange π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} (A : Type u_2) {M : Type u_4} {N : Type u_5} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : M ββ[R] N) : TensorProduct R A M ββ[A] TensorProduct R A N - LinearEquiv.baseChange π Mathlib.RingTheory.TensorProduct.Basic
(R : Type u_1) (A : Type u_2) (M : Type u_4) (N : Type u_5) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (e : M ββ[R] N) : TensorProduct R A M ββ[A] TensorProduct R A N - LinearMap.baseChange_id π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] : LinearMap.baseChange A LinearMap.id = LinearMap.id - LinearMap.liftBaseChange π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {M : Type u_2} {N : Type u_3} (A : Type u_4) [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Module A N] [IsScalarTower R A N] (l : M ββ[R] N) : TensorProduct R A M ββ[A] N - LinearMap.baseChange_tmul π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} {N : Type u_5} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : M ββ[R] N) (a : A) (x : M) : (LinearMap.baseChange A f) (a ββ[R] x) = a ββ[R] f x - LinearMap.baseChange_comp π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : M ββ[R] N) (g : N ββ[R] P) : LinearMap.baseChange A (g ββ f) = LinearMap.baseChange A g ββ LinearMap.baseChange A f - Module.End.baseChangeHom π Mathlib.RingTheory.TensorProduct.Basic
(R : Type u_1) (A : Type u_2) (M : Type u_4) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] : Module.End R M ββ[R] Module.End A (TensorProduct R A M) - LinearMap.baseChange_one π Mathlib.RingTheory.TensorProduct.Basic
(R : Type u_1) {A : Type u_2} (M : Type u_4) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] : LinearMap.baseChange A 1 = 1 - LinearMap.liftBaseChange_one_tmul π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {M : Type u_2} {N : Type u_3} (A : Type u_4) [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Module A N] [IsScalarTower R A N] (l : M ββ[R] N) (y : M) : (LinearMap.liftBaseChange A l) (1 ββ[R] y) = l y - LinearMap.baseChange_zero π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} {N : Type u_5} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] : LinearMap.baseChange A 0 = 0 - LinearMap.liftBaseChange_tmul π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {M : Type u_2} {N : Type u_3} (A : Type u_4) [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Module A N] [IsScalarTower R A N] (l : M ββ[R] N) (x : A) (y : M) : (LinearMap.liftBaseChange A l) (x ββ[R] y) = x β’ l y - Algebra.TensorProduct.cancelBaseChange π Mathlib.RingTheory.TensorProduct.Basic
(R : Type uR) (S : Type uS) [CommSemiring R] [CommSemiring S] [Algebra R S] (T : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring T] [CommSemiring A] [CommSemiring B] [Algebra R T] [Algebra R A] [Algebra R B] [Algebra T A] [IsScalarTower R T A] [Algebra S A] [IsScalarTower R S A] [Algebra S T] [IsScalarTower S T A] : TensorProduct S A (TensorProduct R S B) ββ[T] TensorProduct R A B - LinearMap.baseChangeHom π Mathlib.RingTheory.TensorProduct.Basic
(R : Type u_1) (A : Type u_2) (M : Type u_4) (N : Type u_5) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] : (M ββ[R] N) ββ[R] TensorProduct R A M ββ[A] TensorProduct R A N - LinearMap.baseChange_eq_ltensor π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} {N : Type u_5} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : M ββ[R] N) : β(LinearMap.baseChange A f) = β(LinearMap.lTensor A f) - LinearMap.liftBaseChangeEquiv π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {M : Type u_2} {N : Type u_3} (A : Type u_4) [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Module A N] [IsScalarTower R A N] : (M ββ[R] N) ββ[A] TensorProduct R A M ββ[A] N - LinearMap.baseChange_neg π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} {N : Type u_5} [CommRing R] [Ring A] [Algebra R A] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M ββ[R] N) : LinearMap.baseChange A (-f) = -LinearMap.baseChange A f - LinearMap.liftBaseChange_comp π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_3} {M : Type u_4} {N : Type u_5} (A : Type u_2) [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Module A N] [IsScalarTower R A N] {P : Type u_1} [AddCommMonoid P] [Module A P] [Module R P] [IsScalarTower R A P] (l : M ββ[R] N) (l' : N ββ[A] P) : l' ββ LinearMap.liftBaseChange A l = LinearMap.liftBaseChange A (βR l' ββ l) - LinearMap.baseChange_pow π Mathlib.RingTheory.TensorProduct.Basic
(R : Type u_1) (A : Type u_2) (M : Type u_4) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] (f : Module.End R M) (n : β) : LinearMap.baseChange A (f ^ n) = LinearMap.baseChange A f ^ n - LinearMap.baseChange_mul π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] (f g : Module.End R M) : LinearMap.baseChange A (f * g) = LinearMap.baseChange A f * LinearMap.baseChange A g - LinearMap.range_liftBaseChange π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {M : Type u_2} {N : Type u_3} (A : Type u_4) [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Module A N] [IsScalarTower R A N] (l : M ββ[R] N) : LinearMap.range (LinearMap.liftBaseChange A l) = Submodule.span A β(LinearMap.range l) - LinearMap.baseChange_smul π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} {N : Type u_5} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (r : R) (f : M ββ[R] N) : LinearMap.baseChange A (r β’ f) = r β’ LinearMap.baseChange A f - LinearMap.baseChange_add π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} {N : Type u_5} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f g : M ββ[R] N) : LinearMap.baseChange A (f + g) = LinearMap.baseChange A f + LinearMap.baseChange A g - LinearMap.baseChange_sub π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {M : Type u_4} {N : Type u_5} [CommRing R] [Ring A] [Algebra R A] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f g : M ββ[R] N) : LinearMap.baseChange A (f - g) = LinearMap.baseChange A f - LinearMap.baseChange A g - LinearMap.baseChangeHom_apply π Mathlib.RingTheory.TensorProduct.Basic
(R : Type u_1) (A : Type u_2) (M : Type u_4) (N : Type u_5) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : M ββ[R] N) : (LinearMap.baseChangeHom R A M N) f = LinearMap.baseChange A f - Algebra.TensorProduct.cancelBaseChange_tmul π Mathlib.RingTheory.TensorProduct.Basic
(R : Type uR) (S : Type uS) [CommSemiring R] [CommSemiring S] [Algebra R S] (T : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring T] [CommSemiring A] [CommSemiring B] [Algebra R T] [Algebra R A] [Algebra R B] [Algebra T A] [IsScalarTower R T A] [Algebra S A] [IsScalarTower R S A] [Algebra S T] [IsScalarTower S T A] (a : A) (s : S) (b : B) : (Algebra.TensorProduct.cancelBaseChange R S T A B) (a ββ[S] s ββ[R] b) = (s β’ a) ββ[R] b - Algebra.TensorProduct.cancelBaseChange_symm_tmul π Mathlib.RingTheory.TensorProduct.Basic
(R : Type uR) (S : Type uS) [CommSemiring R] [CommSemiring S] [Algebra R S] (T : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring T] [CommSemiring A] [CommSemiring B] [Algebra R T] [Algebra R A] [Algebra R B] [Algebra T A] [IsScalarTower R T A] [Algebra S A] [IsScalarTower R S A] [Algebra S T] [IsScalarTower S T A] (a : A) (b : B) : (Algebra.TensorProduct.cancelBaseChange R S T A B).symm (a ββ[R] b) = a ββ[S] 1 ββ[R] b - LinearMap.liftBaseChangeEquiv_symm_apply π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_4} {M : Type u_2} {N : Type u_3} (A : Type u_1) [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Module A N] [IsScalarTower R A N] (l : TensorProduct R A M ββ[A] N) (x : M) : ((LinearMap.liftBaseChangeEquiv A).symm l) x = l (1 ββ[R] x) - Algebra.baseChange_lmul π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {B : Type u_2} [CommSemiring R] [Semiring B] [Algebra R B] {A : Type u_3} [CommSemiring A] [Algebra R A] (f : B) : LinearMap.baseChange A ((Algebra.lmul R B) f) = (Algebra.lmul A (TensorProduct R A B)) (1 ββ[R] f) - Module.End.baseChangeHom_apply_apply π Mathlib.RingTheory.TensorProduct.Basic
(R : Type u_1) (A : Type u_2) (M : Type u_4) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] (a : Module.End R M) (aβ : TensorProduct R A M) : ((Module.End.baseChangeHom R A M) a) aβ = (TensorProduct.liftAux (βR { toFun := fun h => h ββ a, map_add' := β―, map_smul' := β― } ββ βR (TensorProduct.AlgebraTensorModule.mk R A A M))) aβ - Module.finrank_baseChange π Mathlib.LinearAlgebra.Dimension.Constructions
{R : Type u} {S : Type u'} {M' : Type v'} [Semiring R] [CommSemiring S] [AddCommMonoid M'] [StrongRankCondition R] [StrongRankCondition S] [Module S M'] [Module.Free S M'] [Algebra S R] : Module.finrank R (TensorProduct S R M') = Module.finrank S M' - Module.rank_baseChange π Mathlib.LinearAlgebra.Dimension.Constructions
{R : Type u} {S : Type u'} {M' : Type v'} [Semiring R] [CommSemiring S] [AddCommMonoid M'] [StrongRankCondition R] [StrongRankCondition S] [Module S M'] [Module.Free S M'] [Algebra S R] : Module.rank R (TensorProduct S R M') = Cardinal.lift.{u, v'} (Module.rank S M') - IsBaseChange.ofEquiv π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [Module R M] [Module R N] (e : M ββ[R] N) : IsBaseChange R βe - IsBaseChange π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} (S : Type vβ) [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] (f : M ββ[R] N) : Prop - IsBaseChange.inductionOn π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} (h : IsBaseChange S f) (x : N) (motive : N β Prop) (zero : motive 0) (tmul : β (m : M), motive (f m)) (smul : β (s : S) (n : N), motive n β motive (s β’ n)) (add : β (nβ nβ : N), motive nβ β motive nβ β motive (nβ + nβ)) : motive x - IsBaseChange.lift π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} (h : IsBaseChange S f) {Q : Type u_3} [AddCommMonoid Q] [Module S Q] [Module R Q] [IsScalarTower R S Q] (g : M ββ[R] Q) : N ββ[S] Q - IsBaseChange.equiv π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} (h : IsBaseChange S f) : TensorProduct R S M ββ[S] N - IsBaseChange.algHom_ext π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} (h : IsBaseChange S f) {Q : Type u_3} [AddCommMonoid Q] [Module S Q] (gβ gβ : N ββ[S] Q) (e : β (x : M), gβ (f x) = gβ (f x)) : gβ = gβ - IsBaseChange.lift_eq π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} (h : IsBaseChange S f) {Q : Type u_3} [AddCommMonoid Q] [Module S Q] [Module R Q] [IsScalarTower R S Q] (g : M ββ[R] Q) (x : M) : (h.lift g) (f x) = g x - IsBaseChange.lift_comp π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} (h : IsBaseChange S f) {Q : Type u_3} [AddCommMonoid Q] [Module S Q] [Module R Q] [IsScalarTower R S Q] (g : M ββ[R] Q) : βR (h.lift g) ββ f = g - IsBaseChange.of_lift_unique π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] (f : M ββ[R] N) (h : β (Q : Type (max vβ vβ vβ)) [inst : AddCommMonoid Q] [inst_1 : Module R Q] [inst_2 : Module S Q] [inst_3 : IsScalarTower R S Q] (g : M ββ[R] Q), β! g', βR g' ββ f = g) : IsBaseChange S f - IsBaseChange.iff_lift_unique π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} : IsBaseChange S f β β (Q : Type (max vβ vβ vβ)) [inst : AddCommMonoid Q] [inst_1 : Module R Q] [inst_2 : Module S Q] [inst_3 : IsScalarTower R S Q] (g : M ββ[R] Q), β! g', βR g' ββ f = g - IsBaseChange.algHom_ext' π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} (h : IsBaseChange S f) {Q : Type u_3} [AddCommMonoid Q] [Module S Q] [Module R Q] [IsScalarTower R S Q] (gβ gβ : N ββ[S] Q) (e : βR gβ ββ f = βR gβ ββ f) : gβ = gβ - IsBaseChange.comp π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {T : Type u_4} {O : Type u_5} [CommSemiring T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [AddCommMonoid O] [Module R O] [Module S O] [Module T O] [IsScalarTower S T O] [IsScalarTower R S O] [IsScalarTower R T O] {f : M ββ[R] N} (hf : IsBaseChange S f) {g : N ββ[S] O} (hg : IsBaseChange T g) : IsBaseChange T (βR g ββ f) - IsBaseChange.of_comp π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {T : Type u_4} {O : Type u_5} [CommSemiring T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [AddCommMonoid O] [Module R O] [Module S O] [Module T O] [IsScalarTower S T O] [IsScalarTower R S O] [IsScalarTower R T O] {f : M ββ[R] N} (hf : IsBaseChange S f) {h : N ββ[S] O} (hc : IsBaseChange T (βR h ββ f)) : IsBaseChange T h - IsBaseChange.comp_iff π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {T : Type u_4} {O : Type u_5} [CommSemiring T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [AddCommMonoid O] [Module R O] [Module S O] [Module T O] [IsScalarTower S T O] [IsScalarTower R S O] [IsScalarTower R T O] {f : M ββ[R] N} (hf : IsBaseChange S f) {h : N ββ[S] O} : IsBaseChange T (βR h ββ f) β IsBaseChange T h - isBaseChange_tensorProduct_map π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {P : Type u_2} [AddCommMonoid P] [Module R P] (A : Type u_4) [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Module S M] [IsScalarTower R S M] [Module A N] [IsScalarTower S A N] [IsScalarTower R A N] {f : M ββ[S] N} (hf : IsBaseChange A f) : IsBaseChange A (TensorProduct.AlgebraTensorModule.map f LinearMap.id) - IsBaseChange.equiv_tmul π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} (h : IsBaseChange S f) (s : S) (m : M) : h.equiv (s ββ[R] m) = s β’ f m - IsBaseChange.of_equiv π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} (e : TensorProduct R S M ββ[S] N) (he : β (x : M), e (1 ββ[R] x) = f x) : IsBaseChange S f - IsBaseChange.equiv_symm_apply π Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vβ} {N : Type vβ} {S : Type vβ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} (h : IsBaseChange S f) (m : M) : h.equiv.symm (f m) = 1 ββ[R] m - TensorProduct.isBaseChange π Mathlib.RingTheory.IsTensorProduct
(R : Type u_1) (M : Type vβ) (S : Type vβ) [AddCommMonoid M] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] : IsBaseChange S ((TensorProduct.mk R S M) 1) - Algebra.EssFiniteType.baseChange π Mathlib.RingTheory.EssentialFiniteness
(R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [h : Algebra.EssFiniteType R S] : Algebra.EssFiniteType T (TensorProduct R T S) - KaehlerDifferential.mapBaseChange π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] : TensorProduct A B (Ξ©[AβR]) ββ[B] Ξ©[BβR] - KaehlerDifferential.mapBaseChange_surjective π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] (h : Function.Surjective β(algebraMap A B)) : Function.Surjective β(KaehlerDifferential.mapBaseChange R A B) - KaehlerDifferential.exact_mapBaseChange_map π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] : Function.Exact β(KaehlerDifferential.mapBaseChange R A B) β(KaehlerDifferential.map R A B B) - KaehlerDifferential.mapBaseChange_tmul π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] (x : B) (y : Ξ©[AβR]) : (KaehlerDifferential.mapBaseChange R A B) (x ββ[A] y) = x β’ (KaehlerDifferential.map R R A B) y - KaehlerDifferential.range_mapBaseChange π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] : LinearMap.range (KaehlerDifferential.mapBaseChange R A B) = LinearMap.ker (KaehlerDifferential.map R A B B) - KaehlerDifferential.exact_kerCotangentToTensor_mapBaseChange π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] (h : Function.Surjective β(algebraMap A B)) : Function.Exact β(KaehlerDifferential.kerCotangentToTensor R A B) β(KaehlerDifferential.mapBaseChange R A B) - IsLocalizedModule.isBaseChange π Mathlib.RingTheory.Localization.BaseChange
{R : Type u_1} [CommSemiring R] (S : Submonoid R) (A : Type u_2) [CommSemiring A] [Algebra R A] [IsLocalization S A] {M : Type u_3} [AddCommMonoid M] [Module R M] {M' : Type u_4} [AddCommMonoid M'] [Module R M'] [Module A M'] [IsScalarTower R A M'] (f : M ββ[R] M') [IsLocalizedModule S f] : IsBaseChange A f - isLocalizedModule_iff_isBaseChange π Mathlib.RingTheory.Localization.BaseChange
{R : Type u_1} [CommSemiring R] (S : Submonoid R) (A : Type u_2) [CommSemiring A] [Algebra R A] [IsLocalization S A] {M : Type u_3} [AddCommMonoid M] [Module R M] {M' : Type u_4} [AddCommMonoid M'] [Module R M'] [Module A M'] [IsScalarTower R A M'] (f : M ββ[R] M') : IsLocalizedModule S f β IsBaseChange A f - Module.Flat.isBaseChange π Mathlib.RingTheory.Flat.Stability
(R : Type u) (S : Type v) (M : Type w) [CommSemiring R] [CommSemiring S] [Algebra R S] [AddCommMonoid M] [Module R M] [Module.Flat R M] (N : Type t) [AddCommMonoid N] [Module R N] [Module S N] [IsScalarTower R S N] {f : M ββ[R] N} (h : IsBaseChange S f) : Module.Flat S N - Module.Flat.baseChange π Mathlib.RingTheory.Flat.Stability
(R : Type u) (S : Type v) (M : Type w) [CommSemiring R] [CommSemiring S] [Algebra R S] [AddCommMonoid M] [Module R M] [Module.Flat R M] : Module.Flat S (TensorProduct R S M) - RingHom.IsStableUnderBaseChange π Mathlib.RingTheory.RingHomProperties
(P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop) : Prop - RingHom.IsStableUnderBaseChange.and π Mathlib.RingTheory.RingHomProperties
{P Q : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hP : RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] => P) (hQ : RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] => Q) : RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] f => P f β§ Q f - RingHom.IsStableUnderBaseChange.mk π Mathlib.RingTheory.RingHomProperties
{P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hβ : RingHom.RespectsIso P) (hβ : β β¦R S T : Type uβ¦ [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : CommRing T] [inst_3 : Algebra R S] [inst_4 : Algebra R T], P (algebraMap R T) β P Algebra.TensorProduct.includeLeftRingHom) : RingHom.IsStableUnderBaseChange P - RingHom.IsStableUnderBaseChange.pushout_inl π Mathlib.RingTheory.RingHomProperties
{P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hP : RingHom.IsStableUnderBaseChange P) (hP' : RingHom.RespectsIso P) {R S T : CommRingCat} (f : R βΆ S) (g : R βΆ T) (H : P (CommRingCat.Hom.hom g)) : P (CommRingCat.Hom.hom (CategoryTheory.Limits.pushout.inl f g)) - RingHom.IsStableUnderBaseChange.localizationPreserves π Mathlib.RingTheory.LocalProperties.Basic
{P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hP : RingHom.IsStableUnderBaseChange P) : RingHom.LocalizationPreserves fun {R S} [CommRing R] [CommRing S] => P - RingHom.IsStableUnderBaseChange.of_isLocalization π Mathlib.RingTheory.LocalProperties.Basic
{P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hP : RingHom.IsStableUnderBaseChange P) {R S Rα΅£ Sα΅£ : Type u} [CommRing R] [CommRing S] [CommRing Rα΅£] [CommRing Sα΅£] [Algebra R Rα΅£] [Algebra S Sα΅£] [Algebra R S] [Algebra R Sα΅£] [Algebra Rα΅£ Sα΅£] [IsScalarTower R S Sα΅£] [IsScalarTower R Rα΅£ Sα΅£] (M : Submonoid R) [IsLocalization M Rα΅£] [IsLocalization (Algebra.algebraMapSubmonoid S M) Sα΅£] (h : P (algebraMap R S)) : P (algebraMap Rα΅£ Sα΅£) - RingHom.IsStableUnderBaseChange.isLocalization_map π Mathlib.RingTheory.LocalProperties.Basic
{P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hP : RingHom.IsStableUnderBaseChange P) {R S Rα΅£ Sα΅£ : Type u} [CommRing R] [CommRing S] [CommRing Rα΅£] [CommRing Sα΅£] [Algebra R Rα΅£] [Algebra S Sα΅£] (M : Submonoid R) [IsLocalization M Rα΅£] (f : R β+* S) [IsLocalization (Submonoid.map f M) Sα΅£] (hf : P f) : P (IsLocalization.map Sα΅£ f β―) - RingHom.Flat.isStableUnderBaseChange π Mathlib.RingTheory.RingHom.Flat
: RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] => RingHom.Flat - Basis.baseChange_end π Mathlib.RingTheory.TensorProduct.Free
{R : Type u_1} {M : Type uM} {ΞΉ : Type uΞΉ} [CommSemiring R] [AddCommMonoid M] [Module R M] [Fintype ΞΉ] (A : Type u_5) [CommSemiring A] [Algebra R A] [DecidableEq ΞΉ] (b : Basis ΞΉ R M) (ij : ΞΉ Γ ΞΉ) : LinearMap.baseChange A (b.end ij) = (Algebra.TensorProduct.basis A b).end ij - Basis.baseChange_linearMap π Mathlib.RingTheory.TensorProduct.Free
{R : Type u_1} {M : Type uM} {ΞΉ : Type uΞΉ} [CommSemiring R] [AddCommMonoid M] [Module R M] [Fintype ΞΉ] {ΞΉ' : Type u_3} {N : Type u_4} [Fintype ΞΉ'] [DecidableEq ΞΉ'] [AddCommMonoid N] [Module R N] (A : Type u_5) [CommSemiring A] [Algebra R A] (b : Basis ΞΉ R M) (b' : Basis ΞΉ' R N) (ij : ΞΉ Γ ΞΉ') : LinearMap.baseChange A ((b'.linearMap b) ij) = ((Algebra.TensorProduct.basis A b').linearMap (Algebra.TensorProduct.basis A b)) ij - LinearMap.toMatrix_baseChange π Mathlib.RingTheory.TensorProduct.Free
{R : Type u_1} {Mβ : Type u_2} {Mβ : Type u_3} {ΞΉ : Type u_4} {ΞΉβ : Type u_5} (A : Type u_6) [Fintype ΞΉ] [Finite ΞΉβ] [DecidableEq ΞΉ] [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid Mβ] [Module R Mβ] [AddCommMonoid Mβ] [Module R Mβ] (f : Mβ ββ[R] Mβ) (bβ : Basis ΞΉ R Mβ) (bβ : Basis ΞΉβ R Mβ) : (LinearMap.toMatrix (Algebra.TensorProduct.basis A bβ) (Algebra.TensorProduct.basis A bβ)) (LinearMap.baseChange A f) = ((LinearMap.toMatrix bβ bβ) f).map β(algebraMap R A) - LinearMap.trace_baseChange π Mathlib.LinearAlgebra.Trace
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] [Module.Free R M] [Module.Finite R M] (f : M ββ[R] M) (A : Type u_6) [CommRing A] [Algebra R A] : (LinearMap.trace A (TensorProduct R A M)) (LinearMap.baseChange A f) = (algebraMap R A) ((LinearMap.trace R M) f) - CategoryTheory.MorphismProperty.IsStableUnderBaseChange π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] (P : CategoryTheory.MorphismProperty C) : Prop - CategoryTheory.MorphismProperty.IsStableUnderCobaseChange π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] (P : CategoryTheory.MorphismProperty C) : Prop - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.isomorphisms π Mathlib.CategoryTheory.MorphismProperty.Limits
(C : Type u) [CategoryTheory.Category.{v, u} C] : (CategoryTheory.MorphismProperty.isomorphisms C).IsStableUnderBaseChange - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.monomorphisms π Mathlib.CategoryTheory.MorphismProperty.Limits
(C : Type u) [CategoryTheory.Category.{v, u} C] : (CategoryTheory.MorphismProperty.monomorphisms C).IsStableUnderBaseChange - CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.epimorphisms π Mathlib.CategoryTheory.MorphismProperty.Limits
(C : Type u) [CategoryTheory.Category.{v, u} C] : (CategoryTheory.MorphismProperty.epimorphisms C).IsStableUnderCobaseChange - CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.isomorphisms π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] : (CategoryTheory.MorphismProperty.isomorphisms C).IsStableUnderCobaseChange - CategoryTheory.MorphismProperty.instIsStableUnderBaseChangePullbacks π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] (P : CategoryTheory.MorphismProperty C) : P.pullbacks.IsStableUnderBaseChange - CategoryTheory.MorphismProperty.instIsStableUnderCobaseChangePushouts π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] (P : CategoryTheory.MorphismProperty C) : P.pushouts.IsStableUnderCobaseChange - CategoryTheory.MorphismProperty.universally_isStableUnderBaseChange π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] (P : CategoryTheory.MorphismProperty C) : P.universally.IsStableUnderBaseChange - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.respectsIso π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] : P.RespectsIso - CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.respectsIso π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] : P.RespectsIso - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.hasOfPostcompProperty_monomorphisms π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] : P.HasOfPostcompProperty (CategoryTheory.MorphismProperty.monomorphisms C) - CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.hasOfPrecompProperty_epimorphisms π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] : P.HasOfPrecompProperty (CategoryTheory.MorphismProperty.epimorphisms C) - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.universally_eq π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [hP : P.IsStableUnderBaseChange] : P.universally = P - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.op π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] : P.op.IsStableUnderCobaseChange - CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.op π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] : P.op.IsStableUnderBaseChange - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.unop π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty Cα΅α΅} [P.IsStableUnderBaseChange] : P.unop.IsStableUnderCobaseChange - CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.unop π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty Cα΅α΅} [P.IsStableUnderCobaseChange] : P.unop.IsStableUnderBaseChange - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.diagonal π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasPullbacks C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] [P.RespectsIso] : P.diagonal.IsStableUnderBaseChange - CategoryTheory.MorphismProperty.isStableUnderBaseChange_iff_pullbacks_le π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] (P : CategoryTheory.MorphismProperty C) : P.IsStableUnderBaseChange β P.pullbacks β€ P - CategoryTheory.MorphismProperty.isStableUnderCobaseChange_iff_pushouts_le π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} : P.IsStableUnderCobaseChange β P.pushouts β€ P - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P Q : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] [Q.IsStableUnderBaseChange] : (P β Q).IsStableUnderBaseChange - CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.inf π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P Q : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] [Q.IsStableUnderCobaseChange] : (P β Q).IsStableUnderCobaseChange - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.fst π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] {X Y S : C} (f : X βΆ S) (g : Y βΆ S) [CategoryTheory.Limits.HasPullback f g] (H : P g) : P (CategoryTheory.Limits.pullback.fst f g) - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inl π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] {A B A' : C} (f : A βΆ A') (g : A βΆ B) [CategoryTheory.Limits.HasPushout f g] (H : P g) : P (CategoryTheory.Limits.pushout.inl f g) - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inr π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] {A B A' : C} (f : A βΆ A') (g : A βΆ B) [CategoryTheory.Limits.HasPushout f g] (H : P f) : P (CategoryTheory.Limits.pushout.inr f g) - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.snd π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] {X Y S : C} (f : X βΆ S) (g : Y βΆ S) [CategoryTheory.Limits.HasPullback f g] (H : P f) : P (CategoryTheory.Limits.pullback.snd f g) - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.mk' π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.RespectsIso] (hPβ : β (X Y S : C) (f : X βΆ S) (g : Y βΆ S) [inst : CategoryTheory.Limits.HasPullback f g], P g β P (CategoryTheory.Limits.pullback.fst f g)) : P.IsStableUnderBaseChange - CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.mk' π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.RespectsIso] (hPβ : β (A B A' : C) (f : A βΆ A') (g : A βΆ B) [inst : CategoryTheory.Limits.HasPushout f g], P f β P (CategoryTheory.Limits.pushout.inr f g)) : P.IsStableUnderCobaseChange - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.mk π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} (of_isPullback : β {X Y Y' S : C} {f : X βΆ S} {g : Y βΆ S} {f' : Y' βΆ Y} {g' : Y' βΆ X}, CategoryTheory.IsPullback f' g' g f β P g β P g') : P.IsStableUnderBaseChange - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.of_isPullback π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} {instβ : CategoryTheory.Category.{v, u} C} {P : CategoryTheory.MorphismProperty C} [self : P.IsStableUnderBaseChange] {X Y Y' S : C} {f : X βΆ S} {g : Y βΆ S} {f' : Y' βΆ Y} {g' : Y' βΆ X} (sq : CategoryTheory.IsPullback f' g' g f) (hg : P g) : P g' - CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.mk π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} (of_isPushout : β {A A' B B' : C} {f : A βΆ A'} {g : A βΆ B} {f' : B βΆ B'} {g' : A' βΆ B'}, CategoryTheory.IsPushout g f f' g' β P f β P f') : P.IsStableUnderCobaseChange - CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.of_isPushout π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} {instβ : CategoryTheory.Category.{v, u} C} {P : CategoryTheory.MorphismProperty C} [self : P.IsStableUnderCobaseChange] {A A' B B' : C} {f : A βΆ A'} {g : A βΆ B} {f' : B βΆ B'} {g' : A' βΆ B'} (sq : CategoryTheory.IsPushout g f f' g') (hf : P f) : P f' - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.pullback_map π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [CategoryTheory.Limits.HasPullbacks C] [P.IsStableUnderBaseChange] [P.IsStableUnderComposition] {S X X' Y Y' : C} {f : X βΆ S} {g : Y βΆ S} {f' : X' βΆ S} {g' : Y' βΆ S} {iβ : X βΆ X'} {iβ : Y βΆ Y'} (hβ : P iβ) (hβ : P iβ) (eβ : f = CategoryTheory.CategoryStruct.comp iβ f') (eβ : g = CategoryTheory.CategoryStruct.comp iβ g') : P (CategoryTheory.Limits.pullback.map f g f' g' iβ iβ (CategoryTheory.CategoryStruct.id S) β― β―) - CategoryTheory.MorphismProperty.baseChange_obj π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [CategoryTheory.Limits.HasPullbacks C] [P.IsStableUnderBaseChange] {S S' : C} (f : S' βΆ S) (X : CategoryTheory.Over S) (H : P X.hom) : P ((CategoryTheory.Over.pullback f).obj X).hom - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.baseChange_obj π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [CategoryTheory.Limits.HasPullbacks C] [P.IsStableUnderBaseChange] {S S' : C} (f : S' βΆ S) (X : CategoryTheory.Over S) (H : P X.hom) : P ((CategoryTheory.Over.pullback f).obj X).hom - CategoryTheory.MorphismProperty.baseChange_map π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [CategoryTheory.Limits.HasPullbacks C] [P.IsStableUnderBaseChange] {S S' : C} (f : S' βΆ S) {X Y : CategoryTheory.Over S} (g : X βΆ Y) (H : P g.left) : P ((CategoryTheory.Over.pullback f).map g).left - CategoryTheory.MorphismProperty.IsStableUnderBaseChange.baseChange_map π Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [CategoryTheory.Limits.HasPullbacks C] [P.IsStableUnderBaseChange] {S S' : C} (f : S' βΆ S) {X Y : CategoryTheory.Over S} (g : X βΆ Y) (H : P g.left) : P ((CategoryTheory.Over.pullback f).map g).left - LieSubmodule.baseChange π Mathlib.Algebra.Lie.BaseChange
{R : Type u_1} (A : Type u_2) {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] (N : LieSubmodule R L M) : LieSubmodule A (TensorProduct R A L) (TensorProduct R A M) - LieSubmodule.baseChange.eq_1 π Mathlib.Algebra.Lie.BaseChange
{R : Type u_1} (A : Type u_2) {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] (N : LieSubmodule R L M) : LieSubmodule.baseChange A N = { toSubmodule := Submodule.baseChange A βN, lie_mem := β― } - LieSubmodule.coe_baseChange π Mathlib.Algebra.Lie.BaseChange
(R : Type u_1) (A : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] (N : LieSubmodule R L M) : β(LieSubmodule.baseChange A N) = Submodule.baseChange A βN - LieSubmodule.baseChange_bot π Mathlib.Algebra.Lie.BaseChange
(R : Type u_1) (A : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] : LieSubmodule.baseChange A β₯ = β₯ - LieSubmodule.baseChange_top π Mathlib.Algebra.Lie.BaseChange
(R : Type u_1) (A : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] : LieSubmodule.baseChange A β€ = β€ - LieSubmodule.tmul_mem_baseChange_of_mem π Mathlib.Algebra.Lie.BaseChange
{R : Type u_1} {A : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] {N : LieSubmodule R L M} (a : A) {m : M} (hm : m β N) : a ββ[R] m β LieSubmodule.baseChange A N - LieSubmodule.lie_baseChange π Mathlib.Algebra.Lie.BaseChange
(R : Type u_1) (A : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] {I : LieIdeal R L} {N : LieSubmodule R L M} : LieSubmodule.baseChange A β I, Nβ = β LieSubmodule.baseChange A I, LieSubmodule.baseChange A Nβ - LieSubmodule.mem_baseChange_iff π Mathlib.Algebra.Lie.BaseChange
(R : Type u_1) (A : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] {N : LieSubmodule R L M} {m : TensorProduct R A M} : m β LieSubmodule.baseChange A N β m β Submodule.span A β(Submodule.map ((TensorProduct.mk R A M) 1) βN) - LieModule.toEnd_baseChange π Mathlib.Algebra.Lie.BaseChange
(R : Type u_1) (A : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] (x : L) : (LieModule.toEnd A (TensorProduct R A L) (TensorProduct R A M)) (1 ββ[R] x) = LinearMap.baseChange A ((LieModule.toEnd R L M) x) - LieAlgebra.derivedSeries_baseChange π Mathlib.Algebra.Lie.Solvable
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {A : Type u_1} [CommRing A] [Algebra R A] (k : β) : LieAlgebra.derivedSeries A (TensorProduct R A L) k = LieSubmodule.baseChange A (LieAlgebra.derivedSeries R L k) - LieAlgebra.derivedSeriesOfIdeal_baseChange π Mathlib.Algebra.Lie.Solvable
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) {A : Type u_1} [CommRing A] [Algebra R A] (k : β) : LieAlgebra.derivedSeriesOfIdeal A (TensorProduct R A L) k (LieSubmodule.baseChange A I) = LieSubmodule.baseChange A (LieAlgebra.derivedSeriesOfIdeal R L k I) - LieSubmodule.lowerCentralSeries_tensor_eq_baseChange π Mathlib.Algebra.Lie.Nilpotent
(R : Type u_1) (A : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] (k : β) : LieModule.lowerCentralSeries A (TensorProduct R A L) (TensorProduct R A M) k = LieSubmodule.baseChange A (LieModule.lowerCentralSeries R L M k) - LinearMap.toMvPolynomial_baseChange π Mathlib.Algebra.Module.LinearMap.Polynomial
{R : Type u_1} {Mβ : Type u_2} {Mβ : Type u_3} {ΞΉβ : Type u_4} {ΞΉβ : Type u_5} [CommRing R] [AddCommGroup Mβ] [AddCommGroup Mβ] [Module R Mβ] [Module R Mβ] [Fintype ΞΉβ] [Finite ΞΉβ] [DecidableEq ΞΉβ] (bβ : Basis ΞΉβ R Mβ) (bβ : Basis ΞΉβ R Mβ) (f : Mβ ββ[R] Mβ) (i : ΞΉβ) (A : Type u_6) [CommRing A] [Algebra R A] : LinearMap.toMvPolynomial (Algebra.TensorProduct.basis A bβ) (Algebra.TensorProduct.basis A bβ) (LinearMap.baseChange A f) i = (MvPolynomial.map (algebraMap R A)) (LinearMap.toMvPolynomial bβ bβ f i) - LinearMap.polyCharpolyAux_baseChange π Mathlib.Algebra.Module.LinearMap.Polynomial
{R : Type u_1} {L : Type u_2} {M : Type u_3} {ΞΉ : Type u_5} {ΞΉM : Type u_7} [CommRing R] [AddCommGroup L] [Module R L] [AddCommGroup M] [Module R M] (Ο : L ββ[R] Module.End R M) [Fintype ΞΉ] [Fintype ΞΉM] [DecidableEq ΞΉ] [DecidableEq ΞΉM] (b : Basis ΞΉ R L) (bβ : Basis ΞΉM R M) (A : Type u_8) [CommRing A] [Algebra R A] : (LinearMap.tensorProduct R A M M ββ LinearMap.baseChange A Ο).polyCharpolyAux (Algebra.TensorProduct.basis A b) (Algebra.TensorProduct.basis A bβ) = Polynomial.map (MvPolynomial.map (algebraMap R A)) (Ο.polyCharpolyAux b bβ) - LinearMap.polyCharpoly_baseChange π Mathlib.Algebra.Module.LinearMap.Polynomial
{R : Type u_1} {L : Type u_2} {M : Type u_3} {ΞΉ : Type u_5} [CommRing R] [AddCommGroup L] [Module R L] [AddCommGroup M] [Module R M] (Ο : L ββ[R] Module.End R M) [Fintype ΞΉ] [DecidableEq ΞΉ] [Module.Free R M] [Module.Finite R M] (b : Basis ΞΉ R L) (A : Type u_8) [CommRing A] [Algebra R A] : (LinearMap.tensorProduct R A M M ββ LinearMap.baseChange A Ο).polyCharpoly (Algebra.TensorProduct.basis A b) = Polynomial.map (MvPolynomial.map (algebraMap R A)) (Ο.polyCharpoly b) - IsBaseChange.finrank_eq π Mathlib.LinearAlgebra.Dimension.Localization
{R : Type uR} {M : Type uM} [CommRing R] [AddCommGroup M] [Module R M] {T : Type uT} [CommRing T] [NoZeroDivisors T] [Algebra R T] [FaithfulSMul R T] {P : Type uP} [AddCommGroup P] [Module R P] [Module T P] [IsScalarTower R T P] {g : M ββ[R] P} (bc : IsBaseChange T g) : Module.finrank T P = Module.finrank R M - IsBaseChange.rank_eq π Mathlib.LinearAlgebra.Dimension.Localization
{R : Type uR} {M : Type uM} [CommRing R] [AddCommGroup M] [Module R M] {T : Type uT} [CommRing T] [NoZeroDivisors T] [Algebra R T] [FaithfulSMul R T] {P : Type uM} [AddCommGroup P] [Module R P] [Module T P] [IsScalarTower R T P] {g : M ββ[R] P} (bc : IsBaseChange T g) : Module.rank T P = Module.rank R M - IsBaseChange.lift_rank_eq π Mathlib.LinearAlgebra.Dimension.Localization
{R : Type uR} {M : Type uM} [CommRing R] [AddCommGroup M] [Module R M] {T : Type uT} [CommRing T] [NoZeroDivisors T] [Algebra R T] [FaithfulSMul R T] {P : Type uP} [AddCommGroup P] [Module R P] [Module T P] [IsScalarTower R T P] {g : M ββ[R] P} (bc : IsBaseChange T g) : Cardinal.lift.{uM, uP} (Module.rank T P) = Cardinal.lift.{uP, uM} (Module.rank R M) - IsBaseChange.finrank_eq_of_le_nonZeroDivisors π Mathlib.LinearAlgebra.Dimension.Localization
{R : Type uR} (S : Type uS) {M : Type uM} {N : Type uN} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] {p : Submonoid R} [IsLocalization p S] (f : M ββ[R] N) [IsLocalizedModule p f] (hp : p β€ nonZeroDivisors R) [Module.Free S N] [StrongRankCondition S] {T : Type uT} [CommRing T] [Algebra R T] (hpT : Algebra.algebraMapSubmonoid T p β€ nonZeroDivisors T) [StrongRankCondition (TensorProduct R S T)] {P : Type uP} [AddCommGroup P] [Module R P] [Module T P] [IsScalarTower R T P] {g : M ββ[R] P} (bc : IsBaseChange T g) : Module.finrank T P = Module.finrank R M - IsBaseChange.rank_eq_of_le_nonZeroDivisors π Mathlib.LinearAlgebra.Dimension.Localization
{R : Type uR} (S : Type uS) {M : Type uM} {N : Type uN} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] {p : Submonoid R} [IsLocalization p S] (f : M ββ[R] N) [IsLocalizedModule p f] (hp : p β€ nonZeroDivisors R) [Module.Free S N] [StrongRankCondition S] {T : Type uT} [CommRing T] [Algebra R T] (hpT : Algebra.algebraMapSubmonoid T p β€ nonZeroDivisors T) [StrongRankCondition (TensorProduct R S T)] {P : Type uM} [AddCommGroup P] [Module R P] [Module T P] [IsScalarTower R T P] {g : M ββ[R] P} (bc : IsBaseChange T g) : Module.rank T P = Module.rank R M - IsBaseChange.lift_rank_eq_of_le_nonZeroDivisors π Mathlib.LinearAlgebra.Dimension.Localization
{R : Type uR} (S : Type uS) {M : Type uM} {N : Type uN} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] {p : Submonoid R} [IsLocalization p S] (f : M ββ[R] N) [IsLocalizedModule p f] (hp : p β€ nonZeroDivisors R) [Module.Free S N] [StrongRankCondition S] {T : Type uT} [CommRing T] [Algebra R T] (hpT : Algebra.algebraMapSubmonoid T p β€ nonZeroDivisors T) [StrongRankCondition (TensorProduct R S T)] {P : Type uP} [AddCommGroup P] [Module R P] [Module T P] [IsScalarTower R T P] {g : M ββ[R] P} (bc : IsBaseChange T g) : Cardinal.lift.{uM, uP} (Module.rank T P) = Cardinal.lift.{uP, uM} (Module.rank R M) - Subbimodule.baseChange π Mathlib.Algebra.Module.Bimodule
{R : Type u_1} {A : Type u_2} {B : Type u_3} {M : Type u_4} [CommSemiring R] [AddCommMonoid M] [Module R M] [Semiring A] [Semiring B] [Module A M] [Module B M] [Algebra R A] [Algebra R B] [IsScalarTower R A M] [IsScalarTower R B M] [SMulCommClass A B M] (S : Type u_5) [CommSemiring S] [Module S M] [Algebra S A] [Algebra S B] [IsScalarTower S A M] [IsScalarTower S B M] (p : Submodule (TensorProduct R A B) M) : Submodule (TensorProduct S A B) M - Subbimodule.coe_baseChange π Mathlib.Algebra.Module.Bimodule
{R : Type u_1} {A : Type u_2} {B : Type u_3} {M : Type u_4} [CommSemiring R] [AddCommMonoid M] [Module R M] [Semiring A] [Semiring B] [Module A M] [Module B M] [Algebra R A] [Algebra R B] [IsScalarTower R A M] [IsScalarTower R B M] [SMulCommClass A B M] (S : Type u_5) [CommSemiring S] [Module S M] [Algebra S A] [Algebra S B] [IsScalarTower S A M] [IsScalarTower S B M] (p : Submodule (TensorProduct R A B) M) : β(Subbimodule.baseChange S p) = βp - FinitePresentation.of_isBaseChange π Mathlib.Algebra.Module.FinitePresentation
{R : Type u_2} {M : Type u_4} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {A : Type u_1} [CommRing A] [Algebra R A] [Module A N] [IsScalarTower R A N] (f : M ββ[R] N) (h : IsBaseChange A f) [Module.FinitePresentation R M] : Module.FinitePresentation A N - Algebra.Extension.baseChange π Mathlib.RingTheory.Extension
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type u_1} [CommRing T] [Algebra R T] (P : Algebra.Extension R S) : Algebra.Extension T (TensorProduct R T S) - Algebra.Generators.baseChange π Mathlib.RingTheory.Generators
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type u_1} [CommRing T] [Algebra R T] (P : Algebra.Generators R S) : Algebra.Generators T (TensorProduct R T S) - Algebra.Generators.baseChange_vars π Mathlib.RingTheory.Generators
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type u_1} [CommRing T] [Algebra R T] (P : Algebra.Generators R S) : P.baseChange.vars = P.vars - Algebra.Generators.baseChange_val π Mathlib.RingTheory.Generators
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type u_1} [CommRing T] [Algebra R T] (P : Algebra.Generators R S) (x : P.vars) : P.baseChange.val x = 1 ββ[R] P.val x - Algebra.Presentation.baseChange π Mathlib.RingTheory.Presentation
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (T : Type u_1) [CommRing T] [Algebra R T] (P : Algebra.Presentation R S) : Algebra.Presentation T (TensorProduct R T S) - Algebra.Presentation.baseChange_isFinite π Mathlib.RingTheory.Presentation
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] (P : Algebra.Presentation R S) [P.IsFinite] : (Algebra.Presentation.baseChange T P).IsFinite - Algebra.Presentation.baseChange_rels π Mathlib.RingTheory.Presentation
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (T : Type u_1) [CommRing T] [Algebra R T] (P : Algebra.Presentation R S) : (Algebra.Presentation.baseChange T P).rels = P.rels - Algebra.Presentation.baseChange_toGenerators π Mathlib.RingTheory.Presentation
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (T : Type u_1) [CommRing T] [Algebra R T] (P : Algebra.Presentation R S) : (Algebra.Presentation.baseChange T P).toGenerators = P.baseChange - Algebra.Presentation.baseChange_relation π Mathlib.RingTheory.Presentation
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (T : Type u_1) [CommRing T] [Algebra R T] (P : Algebra.Presentation R S) (i : P.rels) : (Algebra.Presentation.baseChange T P).relation i = (MvPolynomial.map (algebraMap R T)) (P.relation i) - AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange π Mathlib.AlgebraicGeometry.OpenImmersion
: AlgebraicGeometry.IsOpenImmersion.IsStableUnderBaseChange - RingHom.surjective_isStableUnderBaseChange π Mathlib.RingTheory.RingHom.Surjective
: RingHom.IsStableUnderBaseChange fun {X Y} [CommRing X] [CommRing Y] f => Function.Surjective βf - AlgebraicGeometry.AffineTargetMorphismProperty.IsStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.Basic
(P : AlgebraicGeometry.AffineTargetMorphismProperty) : Prop - AlgebraicGeometry.instHasOfPostcompPropertySchemeIsOpenImmersionOfIsStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.Basic
(P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) [P.IsStableUnderBaseChange] : P.HasOfPostcompProperty AlgebraicGeometry.IsOpenImmersion - AlgebraicGeometry.HasAffineProperty.isStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {Q : AlgebraicGeometry.AffineTargetMorphismProperty} [AlgebraicGeometry.HasAffineProperty P Q] (hP' : Q.IsStableUnderBaseChange) : P.IsStableUnderBaseChange - AlgebraicGeometry.AffineTargetMorphismProperty.IsStableUnderBaseChange.mk π Mathlib.AlgebraicGeometry.Morphisms.Basic
(P : AlgebraicGeometry.AffineTargetMorphismProperty) [P.toProperty.RespectsIso] (H : β β¦X Y S : AlgebraicGeometry.Schemeβ¦ [inst : AlgebraicGeometry.IsAffine S] [inst_1 : AlgebraicGeometry.IsAffine X] (f : X βΆ S) (g : Y βΆ S), P g β P (CategoryTheory.Limits.pullback.fst f g)) : P.IsStableUnderBaseChange - AlgebraicGeometry.AffineTargetMorphismProperty.isStableUnderBaseChange_of_isStableUnderBaseChangeOnAffine_of_isLocalAtTarget π Mathlib.AlgebraicGeometry.Morphisms.Constructors
(P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) [AlgebraicGeometry.IsLocalAtTarget P] (hPβ : (AlgebraicGeometry.AffineTargetMorphismProperty.of P).IsStableUnderBaseChange) : P.IsStableUnderBaseChange - AlgebraicGeometry.quasiCompact_isStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.QuasiCompact
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.QuasiCompact - AlgebraicGeometry.quasiSeparated_isStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.QuasiSeparated
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.QuasiSeparated - AlgebraicGeometry.isAffineHom_isStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.Affine
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.IsAffineHom - RingHom.locally_isStableUnderBaseChange π Mathlib.RingTheory.RingHom.Locally
{P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hPi : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => P) (hPb : RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] => P) : RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] => RingHom.Locally fun {R S} [CommRing R] [CommRing S] => P - AlgebraicGeometry.HasRingHomProperty.isStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.RingHomProperties
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {Q : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} [AlgebraicGeometry.HasRingHomProperty P Q] (hP : RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] => Q) : P.IsStableUnderBaseChange - RingHom.IsStableUnderBaseChange.pullback_fst_appTop π Mathlib.AlgebraicGeometry.Morphisms.RingHomProperties
(P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop) (hP : RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] => P) (hP' : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => P) {X Y S : AlgebraicGeometry.Scheme} [AlgebraicGeometry.IsAffine X] [AlgebraicGeometry.IsAffine Y] [AlgebraicGeometry.IsAffine S] (f : X βΆ S) (g : Y βΆ S) (H : P (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.appTop g))) : P (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.appTop (CategoryTheory.Limits.pullback.fst f g))) - RingHom.IsStableUnderBaseChange.pullback_fst_app_top π Mathlib.AlgebraicGeometry.Morphisms.RingHomProperties
(P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop) (hP : RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] => P) (hP' : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => P) {X Y S : AlgebraicGeometry.Scheme} [AlgebraicGeometry.IsAffine X] [AlgebraicGeometry.IsAffine Y] [AlgebraicGeometry.IsAffine S] (f : X βΆ S) (g : Y βΆ S) (H : P (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.appTop g))) : P (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.appTop (CategoryTheory.Limits.pullback.fst f g))) - AlgebraicGeometry.affineAnd_isStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.AffineAnd
{Q : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hQi : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => Q) (hQb : RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] => Q) : (AlgebraicGeometry.affineAnd fun {R S} [CommRing R] [CommRing S] => Q).IsStableUnderBaseChange - AlgebraicGeometry.HasAffineProperty.affineAnd_isStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.AffineAnd
{Q : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} {P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} : AlgebraicGeometry.HasAffineProperty P (AlgebraicGeometry.affineAnd fun {R S} [CommRing R] [CommRing S] => Q) β β (hQi : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => Q) (hQb : RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] => Q), P.IsStableUnderBaseChange - RingHom.SurjectiveOnStalks.baseChange π Mathlib.RingTheory.SurjectiveOnStalks
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] {T : Type u_3} [CommRing T] [Algebra R T] [Algebra R S] (hf : (algebraMap R T).SurjectiveOnStalks) : (algebraMap S (TensorProduct R S T)).SurjectiveOnStalks - AlgebraicGeometry.SurjectiveOnStalks.stableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.SurjectiveOnStalks
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.SurjectiveOnStalks - AlgebraicGeometry.IsPreimmersion.instIsStableUnderBaseChangeScheme π Mathlib.AlgebraicGeometry.Morphisms.Preimmersion
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.IsPreimmersion - Algebra.FinitePresentation.baseChange π Mathlib.RingTheory.FiniteStability
{R : Type wβ} [CommRing R] {A : Type wβ} [CommRing A] [Algebra R A] (B : Type wβ) [CommRing B] [Algebra R B] [Algebra.FinitePresentation R A] : Algebra.FinitePresentation B (TensorProduct R B A) - Algebra.FiniteType.baseChange π Mathlib.RingTheory.FiniteStability
{R : Type wβ} [CommRing R] {A : Type wβ} [CommRing A] [Algebra R A] (B : Type wβ) [CommRing B] [Algebra R B] [hfa : Algebra.FiniteType R A] : Algebra.FiniteType B (TensorProduct R B A) - Algebra.FiniteType.baseChangeAux_surj π Mathlib.RingTheory.FiniteStability
{R : Type wβ} [CommRing R] {A : Type wβ} [CommRing A] [Algebra R A] (B : Type wβ) [CommRing B] [Algebra R B] {Ο : Type u_1} {f : MvPolynomial Ο R ββ[R] A} (hf : Function.Surjective βf) : Function.Surjective β(Algebra.TensorProduct.map (AlgHom.id B B) f) - RingHom.finite_isStableUnderBaseChange π Mathlib.RingTheory.RingHom.Finite
: RingHom.IsStableUnderBaseChange @RingHom.Finite - RingHom.finiteType_isStableUnderBaseChange π Mathlib.RingTheory.RingHom.FiniteType
: RingHom.IsStableUnderBaseChange @RingHom.FiniteType - AlgebraicGeometry.locallyOfFiniteType_isStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.FiniteType
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.LocallyOfFiniteType - AlgebraicGeometry.IsClosedImmersion.isStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.ClosedImmersion
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.IsClosedImmersion - AlgebraicGeometry.Surjective.instIsStableUnderBaseChangeScheme π Mathlib.AlgebraicGeometry.PullbackCarrier
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.Surjective - AlgebraicGeometry.universallyClosed_isStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.UniversallyClosed
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.UniversallyClosed - RingHom.isIntegral_isStableUnderBaseChange π Mathlib.RingTheory.RingHom.Integral
: RingHom.IsStableUnderBaseChange fun {R S} [CommRing R] [CommRing S] f => f.IsIntegral - AlgebraicGeometry.IsIntegralHom.instIsStableUnderBaseChangeScheme π Mathlib.AlgebraicGeometry.Morphisms.Integral
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.IsIntegralHom - AlgebraicGeometry.IsFinite.instIsStableUnderBaseChangeScheme π Mathlib.AlgebraicGeometry.Morphisms.Finite
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.IsFinite - RingHom.finitePresentation_isStableUnderBaseChange π Mathlib.RingTheory.RingHom.FinitePresentation
: RingHom.IsStableUnderBaseChange @RingHom.FinitePresentation - LinearMap.charpoly_baseChange π Mathlib.LinearAlgebra.Charpoly.BaseChange
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] [Module.Free R M] [Module.Finite R M] (f : M ββ[R] M) (A : Type u_3) [CommRing A] [Algebra R A] : (LinearMap.baseChange A f).charpoly = Polynomial.map (algebraMap R A) f.charpoly - LinearMap.det_baseChange π Mathlib.LinearAlgebra.Charpoly.BaseChange
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] [Module.Free R M] [Module.Finite R M] {A : Type u_3} [CommRing A] [Algebra R A] (f : M ββ[R] M) : LinearMap.det (LinearMap.baseChange A f) = (algebraMap R A) (LinearMap.det f) - AlgebraicGeometry.locallyOfFinitePresentation_isStableUnderBaseChange π Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation
: CategoryTheory.MorphismProperty.IsStableUnderBaseChange @AlgebraicGeometry.LocallyOfFinitePresentation - WeierstrassCurve.baseChange π Mathlib.AlgebraicGeometry.EllipticCurve.Weierstrass
{R : Type u} [CommRing R] (W : WeierstrassCurve R) (A : Type v) [CommRing A] [Algebra R A] : WeierstrassCurve A - WeierstrassCurve.map_baseChange π Mathlib.AlgebraicGeometry.EllipticCurve.Weierstrass
{R : Type u} [CommRing R] (W : WeierstrassCurve R) {S : Type s} [CommRing S] [Algebra R S] {A : Type v} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type w} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (g : A ββ[S] B) : (W.baseChange A).map βg = W.baseChange B - WeierstrassCurve.VariableChange.baseChange π Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] (A : Type v) [CommRing A] (C : WeierstrassCurve.VariableChange R) [Algebra R A] : WeierstrassCurve.VariableChange A - WeierstrassCurve.VariableChange.map_baseChange π Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] (C : WeierstrassCurve.VariableChange R) {S : Type s} [CommRing S] [Algebra R S] {A : Type v} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type w} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (Ο : A ββ[S] B) : WeierstrassCurve.VariableChange.map (βΟ) (WeierstrassCurve.VariableChange.baseChange A C) = WeierstrassCurve.VariableChange.baseChange B C - WeierstrassCurve.Affine.Equation.baseChange π Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Basic
{R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W : WeierstrassCurve.Affine R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A ββ[S] B) {x y : A} (h : (WeierstrassCurve.baseChange W A).toAffine.Equation x y) : (WeierstrassCurve.baseChange W B).toAffine.Equation (f x) (f y) - WeierstrassCurve.Affine.baseChange_equation π Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Basic
{R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W : WeierstrassCurve.Affine R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] {f : A ββ[S] B} (x y : A) (hf : Function.Injective βf) : (WeierstrassCurve.baseChange W B).toAffine.Equation (f x) (f y) β (WeierstrassCurve.baseChange W A).toAffine.Equation x y
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65