Loogle!
Result
Found 2988 declarations whose name contains "basis". Of these, 91 have a name containing "exists" and "basis".
- Filter.HasBasis.exists_iff π Mathlib.Order.Filter.Bases.Basic
{Ξ± : Type u_1} {ΞΉ : Sort u_4} {l : Filter Ξ±} {p : ΞΉ β Prop} {s : ΞΉ β Set Ξ±} (hl : l.HasBasis p s) {P : Set Ξ± β Prop} (mono : β β¦s t : Set Ξ±β¦, s β t β P t β P s) : (β s β l, P s) β β i, p i β§ P (s i) - Disjoint.exists_mem_filter_basis π Mathlib.Order.Filter.Bases.Basic
{Ξ± : Type u_1} {ΞΉ : Sort u_4} {ΞΉ' : Sort u_5} {l l' : Filter Ξ±} {p : ΞΉ β Prop} {s : ΞΉ β Set Ξ±} {p' : ΞΉ' β Prop} {s' : ΞΉ' β Set Ξ±} (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : β i, p i β§ β i', p' i' β§ Disjoint (s i) (s' i') - Module.Free.exists_basis π Mathlib.LinearAlgebra.FreeModule.Basic
(R : Type u) (M : Type v) {instβ : Semiring R} {instβΒΉ : AddCommMonoid M} {instβΒ² : Module R M} [self : Module.Free R M] : Nonempty ((I : Type v) Γ Module.Basis I R M) - finrank_eq_zero_of_not_exists_basis π Mathlib.LinearAlgebra.Dimension.Finite
{R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] [Module.Free R M] (h : Β¬β s, Nonempty (Module.Basis (ββs) R M)) : Module.finrank R M = 0 - finrank_eq_zero_of_not_exists_basis_finite π Mathlib.LinearAlgebra.Dimension.Finite
{R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] [Module.Free R M] (h : Β¬β s x, s.Finite) : Module.finrank R M = 0 - finrank_eq_zero_of_not_exists_basis_finset π Mathlib.LinearAlgebra.Dimension.Finite
{R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] [Module.Free R M] (h : Β¬β s, Nonempty (Module.Basis (β₯s) R M)) : Module.finrank R M = 0 - Module.Basis.exists_basis π Mathlib.LinearAlgebra.Basis.VectorSpace
(K : Type u_3) (V : Type u_4) [DivisionRing K] [AddCommGroup V] [Module K V] : β s, Nonempty (Module.Basis (βs) K V) - Set.PairwiseDisjoint.exists_mem_filter_basis π Mathlib.Order.Filter.Bases.Finite
{Ξ± : Type u_1} {I : Type u_6} {l : I β Filter Ξ±} {ΞΉ : I β Sort u_7} {p : (i : I) β ΞΉ i β Prop} {s : (i : I) β ΞΉ i β Set Ξ±} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : β (i : I), (l i).HasBasis (p i) (s i)) : β ind, (β (i : I), p i (ind i)) β§ S.PairwiseDisjoint fun i => s i (ind i) - Pairwise.exists_mem_filter_basis_of_disjoint π Mathlib.Order.Filter.Bases.Finite
{Ξ± : Type u_1} {I : Type u_7} [Finite I] {l : I β Filter Ξ±} {ΞΉ : I β Sort u_6} {p : (i : I) β ΞΉ i β Prop} {s : (i : I) β ΞΉ i β Set Ξ±} (hd : Pairwise (Function.onFun Disjoint l)) (h : β (i : I), (l i).HasBasis (p i) (s i)) : β ind, (β (i : I), p i (ind i)) β§ Pairwise (Function.onFun Disjoint fun i => s i (ind i)) - Filter.exists_antitone_basis π Mathlib.Order.Filter.CountablyGenerated
{Ξ± : Type u_1} (f : Filter Ξ±) [f.IsCountablyGenerated] : β x, f.HasAntitoneBasis x - Filter.isCountablyGenerated_iff_exists_antitone_basis π Mathlib.Order.Filter.CountablyGenerated
{Ξ± : Type u_1} {f : Filter Ξ±} : f.IsCountablyGenerated β β x, f.HasAntitoneBasis x - Filter.HasBasis.exists_antitone_subbasis π Mathlib.Order.Filter.CountablyGenerated
{Ξ± : Type u_1} {ΞΉ' : Sort u_5} {f : Filter Ξ±} [h : f.IsCountablyGenerated] {p : ΞΉ' β Prop} {s : ΞΉ' β Set Ξ±} (hs : f.HasBasis p s) : β x, (β (i : β), p (x i)) β§ f.HasAntitoneBasis fun i => s (x i) - Filter.Eventually.exists_mem_basis_of_smallSets π Mathlib.Order.Filter.SmallSets
{Ξ± : Type u_1} {ΞΉ : Sort u_3} {l : Filter Ξ±} {p : ΞΉ β Prop} {s : ΞΉ β Set Ξ±} {P : Set Ξ± β Prop} (hβ : βαΆ (t : Set Ξ±) in l.smallSets, P t) (hβ : l.HasBasis p s) : β i, p i β§ P (s i) - TopologicalSpace.exists_countable_basis π Mathlib.Topology.Bases
(Ξ± : Type u) [t : TopologicalSpace Ξ±] [SecondCountableTopology Ξ±] : β b, b.Countable β§ β β b β§ TopologicalSpace.IsTopologicalBasis b - TopologicalSpace.IsTopologicalBasis.exists_countable π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] [SecondCountableTopology Ξ±] {tβ : Set (Set Ξ±)} (ht : TopologicalSpace.IsTopologicalBasis tβ) : β s β tβ, s.Countable β§ TopologicalSpace.IsTopologicalBasis s - TopologicalSpace.IsTopologicalBasis.exists_nonempty_subset π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] {B : Set (Set Ξ±)} (hb : TopologicalSpace.IsTopologicalBasis B) {u : Set Ξ±} (hu : u.Nonempty) (ou : IsOpen u) : β v β B, v.Nonempty β§ v β u - TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] {b : Set (Set Ξ±)} (hb : TopologicalSpace.IsTopologicalBasis b) {a : Ξ±} {u : Set Ξ±} (au : a β u) (ou : IsOpen u) : β v β b, a β v β§ v β u - TopologicalSpace.IsTopologicalBasis.exists_countable_biUnion_of_isOpen π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] [SecondCountableTopology Ξ±] {tβ : Set (Set Ξ±)} (ht : TopologicalSpace.IsTopologicalBasis tβ) {u : Set Ξ±} (hu : IsOpen u) : β s β tβ, s.Countable β§ u = β a β s, a - TopologicalSpace.IsTopologicalBasis.exists_subset_inter π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] {s : Set (Set Ξ±)} (self : TopologicalSpace.IsTopologicalBasis s) (tβ : Set Ξ±) : tβ β s β β tβ β s, β x β tβ β© tβ, β tβ β s, x β tβ β§ tβ β tβ β© tβ - LocallyFinite.exists_mem_basis π Mathlib.Topology.LocallyFinite
{ΞΉ : Type u_1} {X : Type u_4} [TopologicalSpace X] {f : ΞΉ β Set X} {ΞΉ' : Sort u_6} (hf : LocallyFinite f) {p : ΞΉ' β Prop} {s : ΞΉ' β Set X} {x : X} (hb : (nhds x).HasBasis p s) : β i, p i β§ {j | (f j β© s i).Nonempty}.Finite - TopologicalSpace.IsTopologicalBasis.exists_mem_of_ne π Mathlib.Topology.Separation.Basic
{X : Type u_1} [TopologicalSpace X] [T1Space X] {b : Set (Set X)} (hb : TopologicalSpace.IsTopologicalBasis b) {x y : X} (h : x β y) : β a β b, x β a β§ y β a - Filter.HasBasis.exists_inter_eq_singleton_of_mem_discrete π Mathlib.Topology.Separation.Basic
{X : Type u_1} [TopologicalSpace X] {ΞΉ : Type u_3} {p : ΞΉ β Prop} {t : ΞΉ β Set X} {s : Set X} (hs : IsDiscrete s) {x : X} (hb : (nhds x).HasBasis p t) (hx : x β s) : β i, p i β§ t i β© s = {x} - TopologicalSpace.IsTopologicalBasis.exists_closure_subset π Mathlib.Topology.Separation.Regular
{X : Type u_1} [TopologicalSpace X] [RegularSpace X] {B : Set (Set X)} (hB : TopologicalSpace.IsTopologicalBasis B) {x : X} {s : Set X} (h : s β nhds x) : β t β B, x β t β§ closure t β s - IsTopologicalAddGroup.exists_antitone_basis_nhds_zero π Mathlib.Topology.Algebra.Group.Basic
(G : Type w) [TopologicalSpace G] [AddGroup G] [IsTopologicalAddGroup G] [FirstCountableTopology G] : β u, (nhds 0).HasAntitoneBasis u β§ β (n : β), u (n + 1) + u (n + 1) β u n - IsTopologicalGroup.exists_antitone_basis_nhds_one π Mathlib.Topology.Algebra.Group.Basic
(G : Type w) [TopologicalSpace G] [Group G] [IsTopologicalGroup G] [FirstCountableTopology G] : β u, (nhds 1).HasAntitoneBasis u β§ β (n : β), u (n + 1) * u (n + 1) β u n - Filter.exists_forall_mem_of_hasBasis_mem_blimsup' π Mathlib.Order.LiminfLimsup
{Ξ± : Type u_1} {Ξ² : Type u_2} {ΞΉ : Type u_4} {l : Filter Ξ²} {b : ΞΉ β Set Ξ²} (hl : l.HasBasis (fun x => True) b) {u : Ξ² β Set Ξ±} {p : Ξ² β Prop} {x : Ξ±} (hx : x β Filter.blimsup u l p) : β f, β (i : ΞΉ), x β u (f i) β§ p (f i) β§ f i β b i - Filter.exists_forall_mem_of_hasBasis_mem_blimsup π Mathlib.Order.LiminfLimsup
{Ξ± : Type u_1} {Ξ² : Type u_2} {ΞΉ : Type u_4} {l : Filter Ξ²} {b : ΞΉ β Set Ξ²} {q : ΞΉ β Prop} (hl : l.HasBasis q b) {u : Ξ² β Set Ξ±} {p : Ξ² β Prop} {x : Ξ±} (hx : x β Filter.blimsup u l p) : β f, β (i : β{i | q i}), x β u (f i) β§ p (f i) β§ f i β b βi - PredOrder.hasBasis_nhds_Ioc_of_exists_gt π Mathlib.Topology.Order.Basic
{Ξ± : Type u} [TopologicalSpace Ξ±] [LinearOrder Ξ±] [OrderTopology Ξ±] [PredOrder Ξ±] {a : Ξ±} (ha : β u, a < u) : (nhds a).HasBasis (fun x => a < x) fun x => Set.Ico a x - SuccOrder.hasBasis_nhds_Ioc_of_exists_lt π Mathlib.Topology.Order.Basic
{Ξ± : Type u} [TopologicalSpace Ξ±] [LinearOrder Ξ±] [OrderTopology Ξ±] [SuccOrder Ξ±] {a : Ξ±} (ha : β l, l < a) : (nhds a).HasBasis (fun x => x < a) fun x => Set.Ioc x a - nhdsGE_basis_of_exists_gt π Mathlib.Topology.Order.Basic
{Ξ± : Type u} [TopologicalSpace Ξ±] [LinearOrder Ξ±] [OrderTopology Ξ±] {a : Ξ±} (ha : β u, a < u) : (nhdsWithin a (Set.Ici a)).HasBasis (fun u => a < u) fun u => Set.Ico a u - nhdsLE_basis_of_exists_lt π Mathlib.Topology.Order.Basic
{Ξ± : Type u} [TopologicalSpace Ξ±] [LinearOrder Ξ±] [OrderTopology Ξ±] {a : Ξ±} (ha : β l, l < a) : (nhdsWithin a (Set.Iic a)).HasBasis (fun l => l < a) fun l => Set.Ioc l a - nhdsGT_basis_of_exists_gt π Mathlib.Topology.Order.LeftRightNhds
{Ξ± : Type u_1} [TopologicalSpace Ξ±] [LinearOrder Ξ±] [OrderTopology Ξ±] {a : Ξ±} (h : β b, a < b) : (nhdsWithin a (Set.Ioi a)).HasBasis (fun x => a < x) (Set.Ioo a) - nhdsLT_basis_of_exists_lt π Mathlib.Topology.Order.LeftRightNhds
{Ξ± : Type u_1} [TopologicalSpace Ξ±] [LinearOrder Ξ±] [OrderTopology Ξ±] {a : Ξ±} (h : β b, b < a) : (nhdsWithin a (Set.Iio a)).HasBasis (fun x => x < a) fun x => Set.Ioo x a - Disjoint.exists_uniform_thickening_of_basis π Mathlib.Topology.UniformSpace.Compact
{Ξ± : Type ua} {ΞΉ : Sort u_1} [UniformSpace Ξ±] {p : ΞΉ β Prop} {s : ΞΉ β Set (Ξ± Γ Ξ±)} (hU : (uniformity Ξ±).HasBasis p s) {A B : Set Ξ±} (hA : IsCompact A) (hB : IsClosed B) (h : Disjoint A B) : β i, p i β§ Disjoint (β x β A, UniformSpace.ball x (s i)) (β x β B, UniformSpace.ball x (s i)) - TopologicalSpace.Opens.IsBasis.exists_finite_of_isCompact π Mathlib.Topology.Sets.Opens
{Ξ± : Type u_2} [TopologicalSpace Ξ±] {B : Set (TopologicalSpace.Opens Ξ±)} (hB : TopologicalSpace.Opens.IsBasis B) {U : TopologicalSpace.Opens Ξ±} (hU : IsCompact U.carrier) : β Us β B, Us.Finite β§ U = sSup Us - LinearMap.BilinForm.exists_orthogonal_basis π Mathlib.LinearAlgebra.QuadraticForm.Basic
{V : Type u} {K : Type v} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] [hK : Invertible 2] {B : LinearMap.BilinForm K V} (hBβ : LinearMap.IsSymm B) : β v, LinearMap.IsOrthoα΅’ B βv - PowerBasis.exists_smodEq π Mathlib.RingTheory.PowerBasis
{A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra A B] (pb : PowerBasis A B) (b : B) : β a, b β‘ (algebraMap A B) a [SMOD Ideal.span {pb.gen}] - PowerBasis.exists_gen_dvd_sub π Mathlib.RingTheory.PowerBasis
{A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra A B] (pb : PowerBasis A B) (b : B) : β a, pb.gen β£ b - (algebraMap A B) a - PowerBasis.exists_eq_aeval' π Mathlib.RingTheory.PowerBasis
{R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] (pb : PowerBasis R S) (y : S) : β f, y = (Polynomial.aeval pb.gen) f - PowerBasis.exists_eq_aeval π Mathlib.RingTheory.PowerBasis
{R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] [Nontrivial S] (pb : PowerBasis R S) (y : S) : β f, f.natDegree < pb.dim β§ y = (Polynomial.aeval pb.gen) f - Algebra.norm_eq_one_of_not_exists_basis π Mathlib.RingTheory.Norm.Defs
(R : Type u_1) {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] (h : Β¬β s, Nonempty (Module.Basis (β₯s) R S)) (x : S) : (Algebra.norm R) x = 1 - LinearMap.exists_basis_basis_of_span_eq_top_of_mem_algebraMap π Mathlib.LinearAlgebra.PerfectPairing.Restrict
{K : Type u_1} {L : Type u_2} {M : Type u_3} {N : Type u_4} [Field K] [Field L] [Algebra K L] [AddCommGroup M] [AddCommGroup N] [Module L M] [Module L N] [Module K M] [Module K N] [IsScalarTower K L M] (p : M ββ[L] N ββ[L] L) [p.IsPerfPair] (M' : Submodule K M) (N' : Submodule K N) (hM : Submodule.span L βM' = β€) (hN : Submodule.span L βN' = β€) (hp : β x β M', β y β N', (p x) y β (algebraMap K L).range) : β n b b', β (i : Fin n), b i = β(b' i) - MeasureTheory.Measure.FiniteAtFilter.exists_mem_basis π Mathlib.MeasureTheory.Measure.Typeclasses.Finite
{Ξ± : Type u_1} {ΞΉ : Type u_4} {m0 : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} {f : Filter Ξ±} (hΞΌ : ΞΌ.FiniteAtFilter f) {p : ΞΉ β Prop} {s : ΞΉ β Set Ξ±} (hf : f.HasBasis p s) : β i, p i β§ ΞΌ (s i) < β€ - Asymptotics.IsBigO.exists_mem_basis π Mathlib.Analysis.Asymptotics.Defs
{Ξ± : Type u_1} {E : Type u_3} {F' : Type u_7} [Norm E] [SeminormedAddCommGroup F'] {f : Ξ± β E} {g' : Ξ± β F'} {l : Filter Ξ±} {ΞΉ : Sort u_18} {p : ΞΉ β Prop} {s : ΞΉ β Set Ξ±} (h : f =O[l] g') (hb : l.HasBasis p s) : β c > 0, β i, p i β§ β x β s i, βf xβ β€ c * βg' xβ - AffineBasis.exists_affineBasis π Mathlib.LinearAlgebra.AffineSpace.Basis
(k : Type u_5) (V : Type u_6) (P : Type u_7) [AddCommGroup V] [AddTorsor V P] [DivisionRing k] [Module k V] : β s b, βb = Subtype.val - AffineBasis.exists_affine_subbasis π Mathlib.LinearAlgebra.AffineSpace.Basis
{k : Type u_5} {V : Type u_6} {P : Type u_7} [AddCommGroup V] [AddTorsor V P] [DivisionRing k] [Module k V] {t : Set P} (ht : affineSpan k t = β€) : β s β t, β b, βb = Subtype.val - Module.Basis.exists_opNorm_le π Mathlib.Analysis.Normed.Module.FiniteDimension
{π : Type u} [NontriviallyNormedField π] {E : Type v} [NormedAddCommGroup E] [NormedSpace π E] {F : Type w} [NormedAddCommGroup F] [NormedSpace π F] [CompleteSpace π] {ΞΉ : Type u_1} [Finite ΞΉ] (v : Module.Basis ΞΉ π E) : β C > 0, β {u : E βL[π] F} {M : β}, 0 β€ M β (β (i : ΞΉ), βu (v i)β β€ M) β βuβ β€ C * M - Module.Basis.exists_opNNNorm_le π Mathlib.Analysis.Normed.Module.FiniteDimension
{π : Type u} [NontriviallyNormedField π] {E : Type v} [NormedAddCommGroup E] [NormedSpace π E] {F : Type w} [NormedAddCommGroup F] [NormedSpace π F] [CompleteSpace π] {ΞΉ : Type u_1} [Finite ΞΉ] (v : Module.Basis ΞΉ π E) : β C > 0, β {u : E βL[π] F} (M : NNReal), (β (i : ΞΉ), βu (v i)ββ β€ M) β βuββ β€ C * M - Orthonormal.exists_orthonormalBasis_extension_of_card_eq π Mathlib.Analysis.InnerProductSpace.PiL2
{π : Type u_3} [RCLike π] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace π E] [FiniteDimensional π E] {ΞΉ : Type u_7} [Fintype ΞΉ] (card_ΞΉ : Module.finrank π E = Fintype.card ΞΉ) {v : ΞΉ β E} {s : Set ΞΉ} (hv : Orthonormal π (s.restrict v)) : β b, β i β s, b i = v i - exists_orthonormalBasis π Mathlib.Analysis.InnerProductSpace.PiL2
(π : Type u_3) [RCLike π] (E : Type u_4) [NormedAddCommGroup E] [InnerProductSpace π E] [FiniteDimensional π E] : β w b, βb = Subtype.val - Orthonormal.exists_orthonormalBasis_extension π Mathlib.Analysis.InnerProductSpace.PiL2
{π : Type u_3} [RCLike π] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace π E] {v : Set E} [FiniteDimensional π E] (hv : Orthonormal π Subtype.val) : β u b, v β βu β§ βb = Subtype.val - WeierstrassCurve.Affine.CoordinateRing.exists_smul_basis_eq π Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Point
{R : Type r} [CommRing R] {W' : WeierstrassCurve.Affine R} (x : W'.CoordinateRing) : β p q, p β’ 1 + q β’ (WeierstrassCurve.Affine.CoordinateRing.mk W') Polynomial.X = x - Matroid.exists_isBasis' π Mathlib.Combinatorics.Matroid.Basic
{Ξ± : Type u_1} (M : Matroid Ξ±) (X : Set Ξ±) : β I, M.IsBasis' I X - Matroid.exists_isBasis π Mathlib.Combinatorics.Matroid.Basic
{Ξ± : Type u_1} (M : Matroid Ξ±) (X : Set Ξ±) (hX : X β M.E := by aesop_mat) : β I, M.IsBasis I X - Matroid.IsBasis.exists_isBase π Mathlib.Combinatorics.Matroid.Basic
{Ξ± : Type u_1} {M : Matroid Ξ±} {I X : Set Ξ±} (hI : M.IsBasis I X) : β B, M.IsBase B β§ I = B β© X - Matroid.exists_isBasis_subset_isBasis π Mathlib.Combinatorics.Matroid.Basic
{Ξ± : Type u_1} {X Y : Set Ξ±} (M : Matroid Ξ±) (hXY : X β Y) (hY : Y β M.E := by aesop_mat) : β I J, M.IsBasis I X β§ M.IsBasis J Y β§ I β J - Matroid.IsBasis.exists_isBasis_inter_eq_of_superset π Mathlib.Combinatorics.Matroid.Basic
{Ξ± : Type u_1} {M : Matroid Ξ±} {I X Y : Set Ξ±} (hI : M.IsBasis I X) (hXY : X β Y) (hY : Y β M.E := by aesop_mat) : β J, M.IsBasis J Y β§ J β© X = I - Matroid.exists_isBasis_union_inter_isBasis π Mathlib.Combinatorics.Matroid.Basic
{Ξ± : Type u_1} (M : Matroid Ξ±) (X Y : Set Ξ±) (hX : X β M.E := by aesop_mat) (hY : Y β M.E := by aesop_mat) : β I, M.IsBasis I (X βͺ Y) β§ M.IsBasis (I β© Y) Y - Matroid.exists_isBasis_disjoint_isBasis_of_subset π Mathlib.Combinatorics.Matroid.Basic
{Ξ± : Type u_1} (M : Matroid Ξ±) {X Y : Set Ξ±} (hXY : X β Y) (hY : Y β M.E := by aesop_mat) : β I J, M.IsBasis I X β§ M.IsBasis (I βͺ J) Y β§ Disjoint X J - Matroid.Indep.exists_isBasis_subset_union_isBasis π Mathlib.Combinatorics.Matroid.Minor.Restrict
{Ξ± : Type u_1} {M : Matroid Ξ±} {I X J : Set Ξ±} (hI : M.Indep I) (hIX : I β X) (hJ : M.IsBasis J X) : β I', M.IsBasis I' X β§ I β I' β§ I' β I βͺ J - Matroid.Indep.exists_insert_of_not_isBasis π Mathlib.Combinatorics.Matroid.Minor.Restrict
{Ξ± : Type u_1} {M : Matroid Ξ±} {I X J : Set Ξ±} (hI : M.Indep I) (hIX : I β X) (hI' : Β¬M.IsBasis I X) (hJ : M.IsBasis J X) : β e β J \ I, M.Indep (insert e I) - Matroid.exists_isBasis_inter_ground_isBasis_closure π Mathlib.Combinatorics.Matroid.Closure
{Ξ± : Type u_2} (M : Matroid Ξ±) (X : Set Ξ±) : β I, M.IsBasis I (X β© M.E) β§ M.IsBasis I (M.closure X) - Matroid.IsRkFinite.exists_finite_isBasis' π Mathlib.Combinatorics.Matroid.Rank.Finite
{Ξ± : Type u_1} {M : Matroid Ξ±} {X : Set Ξ±} (h : M.IsRkFinite X) : β I, M.IsBasis' I X β§ I.Finite - Matroid.isRkFinite_iff_exists_isBasis' π Mathlib.Combinatorics.Matroid.Rank.Finite
{Ξ± : Type u_1} {M : Matroid Ξ±} {X : Set Ξ±} : M.IsRkFinite X β β I, M.IsBasis' I X β§ I.Finite - Matroid.IsRkFinite.exists_finset_isBasis' π Mathlib.Combinatorics.Matroid.Rank.Finite
{Ξ± : Type u_1} {M : Matroid Ξ±} {X : Set Ξ±} (h : M.IsRkFinite X) : β I, M.IsBasis' (βI) X - exists_isTranscendenceBasis' π Mathlib.RingTheory.AlgebraicIndependent.TranscendenceBasis
(R : Type u_1) (A : Type w) [CommRing R] [CommRing A] [Algebra R A] [FaithfulSMul R A] : β ΞΉ x, IsTranscendenceBasis R x - exists_isTranscendenceBasis π Mathlib.RingTheory.AlgebraicIndependent.TranscendenceBasis
(R : Type u_1) (A : Type w) [CommRing R] [CommRing A] [Algebra R A] [FaithfulSMul R A] : β s, IsTranscendenceBasis R Subtype.val - exists_isTranscendenceBasis_superset π Mathlib.RingTheory.AlgebraicIndependent.TranscendenceBasis
{R : Type u_1} {A : Type w} [CommRing R] [CommRing A] [Algebra R A] {s : Set A} (hs : AlgebraicIndepOn R id s) : β t, s β t β§ IsTranscendenceBasis R Subtype.val - isAlgebraic_iff_exists_isTranscendenceBasis_subset π Mathlib.RingTheory.AlgebraicIndependent.TranscendenceBasis
{R : Type u_1} {A : Type w} [CommRing R] [CommRing A] [Algebra R A] [IsDomain A] [FaithfulSMul R A] {s : Set A} : Algebra.IsAlgebraic (β₯(Algebra.adjoin R s)) A β β t β s, IsTranscendenceBasis R Subtype.val - exists_isTranscendenceBasis_subset π Mathlib.RingTheory.AlgebraicIndependent.TranscendenceBasis
{R : Type u_1} {A : Type w} [CommRing R] [CommRing A] [Algebra R A] [NoZeroDivisors A] [FaithfulSMul R A] (s : Set A) [Algebra.IsAlgebraic (β₯(Algebra.adjoin R s)) A] : β t β s, IsTranscendenceBasis R Subtype.val - exists_isTranscendenceBasis_between π Mathlib.RingTheory.AlgebraicIndependent.TranscendenceBasis
{R : Type u_1} {A : Type w} [CommRing R] [CommRing A] [Algebra R A] [NoZeroDivisors A] (s t : Set A) (hst : s β t) (hs : AlgebraicIndepOn R id s) [ht : Algebra.IsAlgebraic (β₯(Algebra.adjoin R t)) A] : β u, s β u β§ u β t β§ IsTranscendenceBasis R Subtype.val - IntermediateField.FG.exists_finset_maximalFor_isTranscendenceBasis_separableClosure π Mathlib.FieldTheory.SeparableClosure
(F : Type u) (E : Type v) [Field F] [Field E] [Algebra F E] (Hfg : β€.FG) : β s, MaximalFor (fun t => IsTranscendenceBasis F Subtype.val) (fun t => IntermediateField.restrictScalars F (separableClosure (β₯(IntermediateField.adjoin F t)) E)) βs - Algebra.trace_eq_zero_of_not_exists_basis π Mathlib.RingTheory.Trace.Defs
(R : Type u_1) {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (h : Β¬β s, Nonempty (Module.Basis (β₯s) R S)) : Algebra.trace R S = 0 - FiniteDimensional.exists_is_basis_integral π Mathlib.RingTheory.DedekindDomain.IntegralClosure
(A : Type u_1) (K : Type u_2) [CommRing A] [Field K] [Algebra A K] [IsFractionRing A K] (L : Type u_3) [Field L] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [FiniteDimensional K L] [IsDomain A] : β s b, β (x : β₯s), IsIntegral A (b x) - AffineBasis.exists_affineBasis_of_finiteDimensional π Mathlib.LinearAlgebra.AffineSpace.FiniteDimensional
{ΞΉ : Type uβ} {k : Type uβ} {V : Type uβ} {P : Type uβ} [AddCommGroup V] [AddTorsor V P] [DivisionRing k] [Module k V] [Fintype ΞΉ] [FiniteDimensional k V] (h : Fintype.card ΞΉ = Module.finrank k V + 1) : Nonempty (AffineBasis ΞΉ k P) - exists_mem_interior_convexHull_affineBasis π Mathlib.Analysis.Normed.Affine.Convex
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] [FiniteDimensional β E] {s : Set E} {x : E} (hs : s β nhds x) : β b, x β interior ((convexHull β) (Set.range βb)) β§ (convexHull β) (Set.range βb) β s - exists_hilbertBasis π Mathlib.Analysis.InnerProductSpace.l2Space
(π : Type u_2) [RCLike π] (E : Type u_3) [NormedAddCommGroup E] [InnerProductSpace π E] [CompleteSpace E] : β w b, βb = Subtype.val - Orthonormal.exists_hilbertBasis_extension π Mathlib.Analysis.InnerProductSpace.l2Space
{π : Type u_2} [RCLike π] {E : Type u_3} [NormedAddCommGroup E] [InnerProductSpace π E] [CompleteSpace E] {s : Set E} (hs : Orthonormal π Subtype.val) : β w b, s β w β§ βb = Subtype.val - exists_isTranscendenceBasis_and_isSeparable_of_perfectField π Mathlib.FieldTheory.SeparablyGenerated
{k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [PerfectField k] (Hfg : β€.FG) : β s, IsTranscendenceBasis k Subtype.val β§ Algebra.IsSeparable (β₯(IntermediateField.adjoin k βs)) K - exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow π Mathlib.FieldTheory.SeparablyGenerated
{k : Type u_1} {K : Type u_2} {ΞΉ : Type u_3} [Field k] [Field K] [Algebra k K] (p : β) (hp : Nat.Prime p) (H : β (s : Finset K), LinearIndepOn k id βs β LinearIndepOn k (fun x => x ^ p) βs) {a : ΞΉ β K} (n : ΞΉ) [ExpChar k p] (ha' : IsTranscendenceBasis k fun i => a βi) : β i, (IsTranscendenceBasis k fun j => a βj) β§ IsSeparable (β₯(IntermediateField.adjoin k (a '' {i}αΆ))) (a i) - exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_fg π Mathlib.FieldTheory.SeparablyGenerated
{k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (p : β) (hp : Nat.Prime p) (H : β (s : Finset K), LinearIndepOn k id βs β LinearIndepOn k (fun x => x ^ p) βs) [ExpChar k p] (Hfg : β€.FG) : β s, IsTranscendenceBasis k Subtype.val β§ Algebra.IsSeparable (β₯(IntermediateField.adjoin k βs)) K - exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow' π Mathlib.FieldTheory.SeparablyGenerated
{k : Type u_1} {K : Type u_2} {ΞΉ : Type u_3} [Field k] [Field K] [Algebra k K] (p : β) (hp : Nat.Prime p) (H : β (s : Finset K), LinearIndepOn k id βs β LinearIndepOn k (fun x => x ^ p) βs) {a : ΞΉ β K} [ExpChar k p] (s : Set ΞΉ) (n : ΞΉ) (ha : IsTranscendenceBasis k fun i => a βi) (hn : n β s) : β i, (IsTranscendenceBasis k fun j => a βj) β§ IsSeparable (β₯(IntermediateField.adjoin k (a '' (insert n s \ {i})))) (a i) - exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_adjoin_eq_top π Mathlib.FieldTheory.SeparablyGenerated
{k : Type u_1} {K : Type u_2} {ΞΉ : Type u_3} [Field k] [Field K] [Algebra k K] (p : β) (hp : Nat.Prime p) (H : β (s : Finset K), LinearIndepOn k id βs β LinearIndepOn k (fun x => x ^ p) βs) {a : ΞΉ β K} (n : ΞΉ) [ExpChar k p] (ha : IntermediateField.adjoin k (Set.range a) = β€) (ha' : IsTranscendenceBasis k fun i => a βi) : β i, (IsTranscendenceBasis k fun j => a βj) β§ Algebra.IsSeparable (β₯(IntermediateField.adjoin k (a '' {i}αΆ))) K - Equiv.Perm.Basis.mem_fixedPoints_or_exists_zpow_eq π Mathlib.GroupTheory.Perm.Centralizer
{Ξ± : Type u_1} [DecidableEq Ξ±] [Fintype Ξ±] {g : Equiv.Perm Ξ±} (a : g.Basis) (x : Ξ±) : x β Function.fixedPoints βg β¨ β c, β (_ : x β (βc).support), β m, (g ^ m) (a c) = x - Module.exists_basis_of_span_of_flat π Mathlib.RingTheory.LocalRing.Module
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] [IsLocalRing R] [Module.FinitePresentation R M] [Module.Flat R M] {ΞΉ : Type u} (v : ΞΉ β M) (hv : Submodule.span R (Set.range v) = β€) : β ΞΊ a b, β (i : ΞΊ), b i = v (a i) - Module.exists_basis_of_span_of_maximalIdeal_rTensor_injective π Mathlib.RingTheory.LocalRing.Module
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] [IsLocalRing R] [Module.FinitePresentation R M] (H : Function.Injective β(LinearMap.rTensor M (Submodule.subtype (IsLocalRing.maximalIdeal R)))) {ΞΉ : Type u} (v : ΞΉ β M) (hv : Submodule.span R (Set.range v) = β€) : β ΞΊ a b, β (i : ΞΊ), b i = v (a i) - Module.exists_basis_of_basis_baseChange π Mathlib.RingTheory.LocalRing.Module
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] [IsLocalRing R] [Module.FinitePresentation R M] {ΞΉ : Type u_5} (v : ΞΉ β M) (hli : LinearIndependent (IsLocalRing.ResidueField R) (β((TensorProduct.mk R (IsLocalRing.ResidueField R) M) 1) β v)) (hsp : Submodule.span (IsLocalRing.ResidueField R) (Set.range (β((TensorProduct.mk R (IsLocalRing.ResidueField R) M) 1) β v)) = β€) (H : Function.Injective β(LinearMap.rTensor M (Submodule.subtype (IsLocalRing.maximalIdeal R)))) : β b, β (i : ΞΉ), b i = v i - Module.FinitePresentation.exists_basis_localizedModule_powers π Mathlib.RingTheory.Localization.Free
{R : Type u_4} {M : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] (S : Submonoid R) {M' : Type u_1} [AddCommGroup M'] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] (Rβ : Type u_3) [CommRing Rβ] [Algebra R Rβ] [Module Rβ M'] [IsScalarTower R Rβ M'] [IsLocalization S Rβ] [Module.FinitePresentation R M] {I : Type u_6} [Finite I] (b : Module.Basis I Rβ M') : β r, β (hr : r β S), β b', β (i : I), (LocalizedModule.lift (Submonoid.powers r) f β―) (b' i) = b i - Algebra.Generators.exists_presentation_of_basis_cotangent π Mathlib.RingTheory.Extension.Cotangent.Basis
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [Algebra.FinitePresentation R S] {Ξ± : Type u_4} (P : Algebra.Generators R S Ξ±) [Finite Ξ±] {Ο : Type u_5} (bβ : Module.Basis Ο S P.toExtension.Cotangent) : β P' b, P'.val β Sum.inr = P.val β§ β (r : Unit β Ο), b r = Algebra.Extension.Cotangent.mk β¨P'.relation r, β―β© - Algebra.IsStandardSmooth.iff_exists_basis_kaehlerDifferential π Mathlib.RingTheory.Smooth.StandardSmoothOfFree
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [Algebra.FinitePresentation R S] : Algebra.IsStandardSmooth R S β Subsingleton (Algebra.H1Cotangent R S) β§ β I b, Set.range βb β Set.range β(KaehlerDifferential.D R S) - IsCompactOpenCovered.exists_mem_of_isBasis π Mathlib.Topology.Sets.CompactOpenCovered
{S : Type u_1} {ΞΉ : Type u_2} {X : ΞΉ β Type u_3} {f : (i : ΞΉ) β X i β S} [(i : ΞΉ) β TopologicalSpace (X i)] {B : (i : ΞΉ) β Set (TopologicalSpace.Opens (X i))} (hB : β (i : ΞΉ), TopologicalSpace.Opens.IsBasis (B i)) (hBc : β (i : ΞΉ), β U β B i, IsCompact U.carrier) {U : Set S} (hU : IsCompactOpenCovered f U) : β n a V, (β (i : Fin n), V i β B (a i)) β§ β i, f (a i) '' β(V i) = U
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 6ec3a4c