Loogle!
Result
Found 36 declarations whose name contains "integral_mono".
- MeasureTheory.SimpleFunc.lintegral_mono_fun 📋 Mathlib.MeasureTheory.Function.SimpleFunc
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f g : MeasureTheory.SimpleFunc α ENNReal} (h : f ≤ g) : f.lintegral μ ≤ g.lintegral μ - MeasureTheory.SimpleFunc.lintegral_mono_measure 📋 Mathlib.MeasureTheory.Function.SimpleFunc
{α : Type u_1} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} {f : MeasureTheory.SimpleFunc α ENNReal} (h : μ ≤ ν) : f.lintegral μ ≤ f.lintegral ν - MeasureTheory.SimpleFunc.lintegral_mono 📋 Mathlib.MeasureTheory.Function.SimpleFunc
{α : Type u_1} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} {f g : MeasureTheory.SimpleFunc α ENNReal} (hfg : f ≤ g) (hμν : μ ≤ ν) : f.lintegral μ ≤ g.lintegral ν - MeasureTheory.lintegral_mono_fn 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} ⦃f g : α → ENNReal⦄ (hfg : ∀ (x : α), f x ≤ g x) : ∫⁻ (a : α), f a ∂μ ≤ ∫⁻ (a : α), g a ∂μ - MeasureTheory.lintegral_mono 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} ⦃f g : α → ENNReal⦄ (hfg : f ≤ g) : ∫⁻ (a : α), f a ∂μ ≤ ∫⁻ (a : α), g a ∂μ - MeasureTheory.lintegral_mono_nnreal 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f g : α → NNReal} (h : f ≤ g) : ∫⁻ (a : α), ↑(f a) ∂μ ≤ ∫⁻ (a : α), ↑(g a) ∂μ - MeasureTheory.lintegral_mono_set 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {x✝ : MeasurableSpace α} ⦃μ : MeasureTheory.Measure α⦄ {s t : Set α} {f : α → ENNReal} (hst : s ⊆ t) : ∫⁻ (x : α) in s, f x ∂μ ≤ ∫⁻ (x : α) in t, f x ∂μ - MeasureTheory.lintegral_mono_ae 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f g : α → ENNReal} (h : ∀ᵐ (a : α) ∂μ, f a ≤ g a) : ∫⁻ (a : α), f a ∂μ ≤ ∫⁻ (a : α), g a ∂μ - MeasureTheory.lintegral_mono_set' 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {x✝ : MeasurableSpace α} ⦃μ : MeasureTheory.Measure α⦄ {s t : Set α} {f : α → ENNReal} (hst : s ≤ᵐ[μ] t) : ∫⁻ (x : α) in s, f x ∂μ ≤ ∫⁻ (x : α) in t, f x ∂μ - MeasureTheory.lintegral_mono_fn' 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} ⦃f g : α → ENNReal⦄ (hfg : ∀ (x : α), f x ≤ g x) (h2 : μ ≤ ν) : ∫⁻ (a : α), f a ∂μ ≤ ∫⁻ (a : α), g a ∂ν - MeasureTheory.setLIntegral_mono' 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {f g : α → ENNReal} (hs : MeasurableSet s) (hfg : ∀ x ∈ s, f x ≤ g x) : ∫⁻ (x : α) in s, f x ∂μ ≤ ∫⁻ (x : α) in s, g x ∂μ - MeasureTheory.lintegral_mono' 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {m : MeasurableSpace α} ⦃μ ν : MeasureTheory.Measure α⦄ (hμν : μ ≤ ν) ⦃f g : α → ENNReal⦄ (hfg : f ≤ g) : ∫⁻ (a : α), f a ∂μ ≤ ∫⁻ (a : α), g a ∂ν - MeasureTheory.setLIntegral_mono 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {f g : α → ENNReal} (hg : Measurable g) (hfg : ∀ x ∈ s, f x ≤ g x) : ∫⁻ (x : α) in s, f x ∂μ ≤ ∫⁻ (x : α) in s, g x ∂μ - MeasureTheory.setLIntegral_mono_ae' 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {f g : α → ENNReal} (hs : MeasurableSet s) (hfg : ∀ᵐ (x : α) ∂μ, x ∈ s → f x ≤ g x) : ∫⁻ (x : α) in s, f x ∂μ ≤ ∫⁻ (x : α) in s, g x ∂μ - MeasureTheory.setLIntegral_mono_ae 📋 Mathlib.MeasureTheory.Integral.Lebesgue.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {f g : α → ENNReal} (hg : AEMeasurable g (μ.restrict s)) (hfg : ∀ᵐ (x : α) ∂μ, x ∈ s → f x ≤ g x) : ∫⁻ (x : α) in s, f x ∂μ ≤ ∫⁻ (x : α) in s, g x ∂μ - MeasureTheory.AEEqFun.lintegral_mono 📋 Mathlib.MeasureTheory.Function.AEEqFun
{α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f g : α →ₘ[μ] ENNReal} : f ≤ g → f.lintegral ≤ g.lintegral - MeasureTheory.SimpleFunc.integral_mono_measure 📋 Mathlib.MeasureTheory.Integral.Bochner.L1
{α : Type u_1} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [PartialOrder F] [IsOrderedAddMonoid F] [OrderedSMul ℝ F] {ν : MeasureTheory.Measure α} {f : MeasureTheory.SimpleFunc α F} (hf : 0 ≤ᵐ[ν] ⇑f) (hμν : μ ≤ ν) (hfν : MeasureTheory.Integrable (⇑f) ν) : MeasureTheory.SimpleFunc.integral μ f ≤ MeasureTheory.SimpleFunc.integral ν f - MeasureTheory.SimpleFunc.integral_mono 📋 Mathlib.MeasureTheory.Integral.Bochner.L1
{α : Type u_1} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ℝ F] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [PartialOrder F] [IsOrderedAddMonoid F] [OrderedSMul ℝ F] {f g : MeasureTheory.SimpleFunc α F} (h : ⇑f ≤ᵐ[μ] ⇑g) (hf : MeasureTheory.Integrable (⇑f) μ) (hg : MeasureTheory.Integrable (⇑g) μ) : MeasureTheory.SimpleFunc.integral μ f ≤ MeasureTheory.SimpleFunc.integral μ g - MeasureTheory.integral_monotoneOn_of_integrand_ae 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [hE : CompleteSpace E] [NormedSpace ℝ E] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [PartialOrder E] [IsOrderedAddMonoid E] [OrderedSMul ℝ E] [OrderClosedTopology E] {β : Type u_7} [Preorder β] {f : α → β → E} {s : Set β} (hf_mono : ∀ᵐ (x : α) ∂μ, MonotoneOn (f x) s) (hf_int : ∀ a ∈ s, MeasureTheory.Integrable (fun x => f x a) μ) : MonotoneOn (fun b => ∫ (x : α), f x b ∂μ) s - MeasureTheory.integral_mono 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [hE : CompleteSpace E] [NormedSpace ℝ E] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [PartialOrder E] [IsOrderedAddMonoid E] [OrderedSMul ℝ E] [OrderClosedTopology E] {f g : α → E} (hf : MeasureTheory.Integrable f μ) (hg : MeasureTheory.Integrable g μ) (h : f ≤ g) : ∫ (x : α), f x ∂μ ≤ ∫ (x : α), g x ∂μ - MeasureTheory.integral_mono_ae 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [hE : CompleteSpace E] [NormedSpace ℝ E] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [PartialOrder E] [IsOrderedAddMonoid E] [OrderedSMul ℝ E] [OrderClosedTopology E] {f g : α → E} (hf : MeasureTheory.Integrable f μ) (hg : MeasureTheory.Integrable g μ) (h : f ≤ᵐ[μ] g) : ∫ (x : α), f x ∂μ ≤ ∫ (x : α), g x ∂μ - MeasureTheory.integral_mono_measure 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [hE : CompleteSpace E] [NormedSpace ℝ E] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [PartialOrder E] [IsOrderedAddMonoid E] [OrderedSMul ℝ E] [OrderClosedTopology E] {f : α → E} {ν : MeasureTheory.Measure α} (hle : μ ≤ ν) (hf : 0 ≤ᵐ[ν] f) (hfi : MeasureTheory.Integrable f ν) : ∫ (a : α), f a ∂μ ≤ ∫ (a : α), f a ∂ν - MeasureTheory.integral_mono_of_nonneg 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [hE : CompleteSpace E] [NormedSpace ℝ E] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [PartialOrder E] [IsOrderedAddMonoid E] [OrderedSMul ℝ E] [OrderClosedTopology E] {f g : α → E} (hf : 0 ≤ᵐ[μ] f) (hgi : MeasureTheory.Integrable g μ) (h : f ≤ᵐ[μ] g) : ∫ (a : α), f a ∂μ ≤ ∫ (a : α), g a ∂μ - MeasureTheory.setIntegral_mono_set 📋 Mathlib.MeasureTheory.Integral.Bochner.Set
{X : Type u_1} {mX : MeasurableSpace X} {μ : MeasureTheory.Measure X} {f : X → ℝ} {s t : Set X} (hfi : MeasureTheory.IntegrableOn f t μ) (hf : 0 ≤ᵐ[μ.restrict t] f) (hst : s ≤ᵐ[μ] t) : ∫ (x : X) in s, f x ∂μ ≤ ∫ (x : X) in t, f x ∂μ - MeasureTheory.setIntegral_mono 📋 Mathlib.MeasureTheory.Integral.Bochner.Set
{X : Type u_1} {mX : MeasurableSpace X} {μ : MeasureTheory.Measure X} {f g : X → ℝ} {s : Set X} (hf : MeasureTheory.IntegrableOn f s μ) (hg : MeasureTheory.IntegrableOn g s μ) (h : f ≤ g) : ∫ (x : X) in s, f x ∂μ ≤ ∫ (x : X) in s, g x ∂μ - MeasureTheory.setIntegral_mono_ae 📋 Mathlib.MeasureTheory.Integral.Bochner.Set
{X : Type u_1} {mX : MeasurableSpace X} {μ : MeasureTheory.Measure X} {f g : X → ℝ} {s : Set X} (hf : MeasureTheory.IntegrableOn f s μ) (hg : MeasureTheory.IntegrableOn g s μ) (h : f ≤ᵐ[μ] g) : ∫ (x : X) in s, f x ∂μ ≤ ∫ (x : X) in s, g x ∂μ - MeasureTheory.setIntegral_mono_on 📋 Mathlib.MeasureTheory.Integral.Bochner.Set
{X : Type u_1} {mX : MeasurableSpace X} {μ : MeasureTheory.Measure X} {f g : X → ℝ} {s : Set X} (hf : MeasureTheory.IntegrableOn f s μ) (hg : MeasureTheory.IntegrableOn g s μ) (hs : MeasurableSet s) (h : ∀ x ∈ s, f x ≤ g x) : ∫ (x : X) in s, f x ∂μ ≤ ∫ (x : X) in s, g x ∂μ - MeasureTheory.setIntegral_mono_ae_restrict 📋 Mathlib.MeasureTheory.Integral.Bochner.Set
{X : Type u_1} {mX : MeasurableSpace X} {μ : MeasureTheory.Measure X} {f g : X → ℝ} {s : Set X} (hf : MeasureTheory.IntegrableOn f s μ) (hg : MeasureTheory.IntegrableOn g s μ) (h : f ≤ᵐ[μ.restrict s] g) : ∫ (x : X) in s, f x ∂μ ≤ ∫ (x : X) in s, g x ∂μ - MeasureTheory.setIntegral_mono_on_ae 📋 Mathlib.MeasureTheory.Integral.Bochner.Set
{X : Type u_1} {mX : MeasurableSpace X} {μ : MeasureTheory.Measure X} {f g : X → ℝ} {s : Set X} (hf : MeasureTheory.IntegrableOn f s μ) (hg : MeasureTheory.IntegrableOn g s μ) (hs : MeasurableSet s) (h : ∀ᵐ (x : X) ∂μ, x ∈ s → f x ≤ g x) : ∫ (x : X) in s, f x ∂μ ≤ ∫ (x : X) in s, g x ∂μ - intervalIntegral.integral_mono 📋 Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic
{f g : ℝ → ℝ} {a b : ℝ} {μ : MeasureTheory.Measure ℝ} (hab : a ≤ b) (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) (h : f ≤ g) : ∫ (u : ℝ) in a..b, f u ∂μ ≤ ∫ (u : ℝ) in a..b, g u ∂μ - intervalIntegral.integral_mono_ae 📋 Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic
{f g : ℝ → ℝ} {a b : ℝ} {μ : MeasureTheory.Measure ℝ} (hab : a ≤ b) (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) (h : f ≤ᵐ[μ] g) : ∫ (u : ℝ) in a..b, f u ∂μ ≤ ∫ (u : ℝ) in a..b, g u ∂μ - intervalIntegral.integral_mono_on 📋 Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic
{f g : ℝ → ℝ} {a b : ℝ} {μ : MeasureTheory.Measure ℝ} (hab : a ≤ b) (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) (h : ∀ x ∈ Set.Icc a b, f x ≤ g x) : ∫ (u : ℝ) in a..b, f u ∂μ ≤ ∫ (u : ℝ) in a..b, g u ∂μ - intervalIntegral.integral_mono_on_of_le_Ioo 📋 Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic
{f g : ℝ → ℝ} {a b : ℝ} {μ : MeasureTheory.Measure ℝ} (hab : a ≤ b) (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) [MeasureTheory.NoAtoms μ] (h : ∀ x ∈ Set.Ioo a b, f x ≤ g x) : ∫ (u : ℝ) in a..b, f u ∂μ ≤ ∫ (u : ℝ) in a..b, g u ∂μ - intervalIntegral.integral_mono_ae_restrict 📋 Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic
{f g : ℝ → ℝ} {a b : ℝ} {μ : MeasureTheory.Measure ℝ} (hab : a ≤ b) (hf : IntervalIntegrable f μ a b) (hg : IntervalIntegrable g μ a b) (h : f ≤ᵐ[μ.restrict (Set.Icc a b)] g) : ∫ (u : ℝ) in a..b, f u ∂μ ≤ ∫ (u : ℝ) in a..b, g u ∂μ - intervalIntegral.integral_mono_interval 📋 Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic
{f : ℝ → ℝ} {a b : ℝ} {μ : MeasureTheory.Measure ℝ} {c d : ℝ} (hca : c ≤ a) (hab : a ≤ b) (hbd : b ≤ d) (hf : 0 ≤ᵐ[μ.restrict (Set.Ioc c d)] f) (hfi : IntervalIntegrable f μ c d) : ∫ (x : ℝ) in a..b, f x ∂μ ≤ ∫ (x : ℝ) in c..d, f x ∂μ - intervalIntegral.abs_integral_mono_interval 📋 Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic
{f : ℝ → ℝ} {a b : ℝ} {μ : MeasureTheory.Measure ℝ} {c d : ℝ} (h : Set.uIoc a b ⊆ Set.uIoc c d) (hf : 0 ≤ᵐ[μ.restrict (Set.uIoc c d)] f) (hfi : IntervalIntegrable f μ c d) : |∫ (x : ℝ) in a..b, f x ∂μ| ≤ |∫ (x : ℝ) in c..d, f x ∂μ|
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision e0654b0