Loogle!
Result
Found 20 declarations whose name contains "neumann".
- VonNeumannAlgebra π Mathlib.Analysis.VonNeumannAlgebra.Basic
(H : Type u) [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] : Type u - VonNeumannAlgebra.commutant π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] (S : VonNeumannAlgebra H) : VonNeumannAlgebra H - VonNeumannAlgebra.commutant_commutant π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] (S : VonNeumannAlgebra H) : S.commutant.commutant = S - VonNeumannAlgebra.instSetLike π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] : SetLike (VonNeumannAlgebra H) (H βL[β] H) - VonNeumannAlgebra.instStarMemClass π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] : StarMemClass (VonNeumannAlgebra H) (H βL[β] H) - VonNeumannAlgebra.instSubringClass π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] : SubringClass (VonNeumannAlgebra H) (H βL[β] H) - VonNeumannAlgebra.commutant.eq_1 π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] (S : VonNeumannAlgebra H) : S.commutant = { toStarSubalgebra := StarSubalgebra.centralizer β βS, centralizer_centralizer' := β― } - VonNeumannAlgebra.coe_commutant π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] (S : VonNeumannAlgebra H) : βS.commutant = (βS).centralizer - VonNeumannAlgebra.ext π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] {S T : VonNeumannAlgebra H} (h : β (x : H βL[β] H), x β S β x β T) : S = T - VonNeumannAlgebra.ext_iff π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] {S T : VonNeumannAlgebra H} : S = T β β (x : H βL[β] H), x β S β x β T - VonNeumannAlgebra.toStarSubalgebra π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] (self : VonNeumannAlgebra H) : StarSubalgebra β (H βL[β] H) - VonNeumannAlgebra.centralizer_centralizer π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] (S : VonNeumannAlgebra H) : (βS).centralizer.centralizer = βS - VonNeumannAlgebra.coe_toStarSubalgebra π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] (S : VonNeumannAlgebra H) : βS.toStarSubalgebra = βS - VonNeumannAlgebra.mem_commutant_iff π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] {S : VonNeumannAlgebra H} {z : H βL[β] H} : z β S.commutant β β g β S, g * z = z * g - VonNeumannAlgebra.mem_carrier π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] {S : VonNeumannAlgebra H} {x : H βL[β] H} : x β S.toStarSubalgebra β x β βS - VonNeumannAlgebra.centralizer_centralizer' π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] (self : VonNeumannAlgebra H) : self.carrier.centralizer.centralizer = self.carrier - VonNeumannAlgebra.mk π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] (toStarSubalgebra : StarSubalgebra β (H βL[β] H)) (centralizer_centralizer' : toStarSubalgebra.carrier.centralizer.centralizer = toStarSubalgebra.carrier) : VonNeumannAlgebra H - VonNeumannAlgebra.coe_mk π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] (S : StarSubalgebra β (H βL[β] H)) (h : S.carrier.centralizer.centralizer = S.carrier) : β{ toStarSubalgebra := S, centralizer_centralizer' := h } = βS - VonNeumannAlgebra.mk.injEq π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] (toStarSubalgebra : StarSubalgebra β (H βL[β] H)) (centralizer_centralizer' : toStarSubalgebra.carrier.centralizer.centralizer = toStarSubalgebra.carrier) (toStarSubalgebraβ : StarSubalgebra β (H βL[β] H)) (centralizer_centralizer'β : toStarSubalgebraβ.carrier.centralizer.centralizer = toStarSubalgebraβ.carrier) : ({ toStarSubalgebra := toStarSubalgebra, centralizer_centralizer' := centralizer_centralizer' } = { toStarSubalgebra := toStarSubalgebraβ, centralizer_centralizer' := centralizer_centralizer'β }) = (toStarSubalgebra = toStarSubalgebraβ) - VonNeumannAlgebra.mk.sizeOf_spec π Mathlib.Analysis.VonNeumannAlgebra.Basic
{H : Type u} [NormedAddCommGroup H] [InnerProductSpace β H] [CompleteSpace H] [SizeOf H] (toStarSubalgebra : StarSubalgebra β (H βL[β] H)) (centralizer_centralizer' : toStarSubalgebra.carrier.centralizer.centralizer = toStarSubalgebra.carrier) : sizeOf { toStarSubalgebra := toStarSubalgebra, centralizer_centralizer' := centralizer_centralizer' } = 1 + sizeOf toStarSubalgebra + sizeOf centralizer_centralizer'
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision f167e8d