Loogle!
Result
Found 51 definitions whose name contains "of_closed".
- Filter.Frequently.mem_of_closed π Mathlib.Topology.Basic
{X : Type u} {x : X} {s : Set X} [TopologicalSpace X] (h : βαΆ (x : X) in nhds x, x β s) (hs : IsClosed s) : x β s - EMetric.ordConnected_setOf_closedBall_subset π Mathlib.Topology.EMetricSpace.Defs
{Ξ± : Type u} [PseudoEMetricSpace Ξ±] (x : Ξ±) (s : Set Ξ±) : {r | EMetric.closedBall x r β s}.OrdConnected - Metric.mem_of_closed' π Mathlib.Topology.MetricSpace.Pseudo.Defs
{Ξ± : Type u} [PseudoMetricSpace Ξ±] {s : Set Ξ±} (hs : IsClosed s) {a : Ξ±} : a β s β β Ξ΅ > 0, β b β s, dist a b < Ξ΅ - Metric.mem_cocompact_of_closedBall_compl_subset π Mathlib.Topology.MetricSpace.Bounded
{Ξ± : Type u} [PseudoMetricSpace Ξ±] {s : Set Ξ±} [ProperSpace Ξ±] (c : Ξ±) (h : β r, (Metric.closedBall c r)αΆ β s) : s β Filter.cocompact Ξ± - Real.subfield_eq_of_closed π Mathlib.Topology.Instances.Real
{K : Subfield β} (hc : IsClosed βK) : K = β€ - EMetric.mem_iff_infEdist_zero_of_closed π Mathlib.Topology.MetricSpace.HausdorffDistance
{Ξ± : Type u} [PseudoEMetricSpace Ξ±] {x : Ξ±} {s : Set Ξ±} (h : IsClosed s) : x β s β EMetric.infEdist x s = 0 - EMetric.hausdorffEdist_zero_iff_eq_of_closed π Mathlib.Topology.MetricSpace.HausdorffDistance
{Ξ± : Type u} [PseudoEMetricSpace Ξ±] {s t : Set Ξ±} (hs : IsClosed s) (ht : IsClosed t) : EMetric.hausdorffEdist s t = 0 β s = t - IsNowhereDense.subset_of_closed_isNowhereDense π Mathlib.Topology.GDelta.Basic
{X : Type u_5} [TopologicalSpace X] {s : Set X} (hs : IsNowhereDense s) : β t, s β t β§ IsNowhereDense t β§ IsClosed t - isProperMap_of_closedEmbedding π Mathlib.Topology.Maps.Proper.Basic
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} (hf : Topology.IsClosedEmbedding f) : IsProperMap f - isProperMap_subtype_val_of_closed π Mathlib.Topology.Maps.Proper.Basic
{X : Type u_1} [TopologicalSpace X] {C : Set X} (hC : IsClosed C) : IsProperMap Subtype.val - isProperMap_restr_of_proper_of_closed π Mathlib.Topology.Maps.Proper.Basic
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} {C : Set X} (hf : IsProperMap f) (hC : IsClosed C) : IsProperMap fun x => f βx - ContinuousLinearMap.isCompact_image_coe_of_bounded_of_closed_image π Mathlib.Analysis.NormedSpace.OperatorNorm.Completeness
{π : Type u_1} {πβ : Type u_2} {F : Type u_4} [NormedAddCommGroup F] [NontriviallyNormedField π] [NontriviallyNormedField πβ] [NormedSpace πβ F] {Οββ : π β+* πβ} {E' : Type u_6} [SeminormedAddCommGroup E'] [NormedSpace π E'] [RingHomIsometric Οββ] [ProperSpace F] {s : Set (E' βSL[Οββ] F)} (hb : Bornology.IsBounded s) (hc : IsClosed (DFunLike.coe '' s)) : IsCompact (DFunLike.coe '' s) - dense_iUnion_interior_of_closed π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} {ΞΉ : Sort u_3} [TopologicalSpace X] [BaireSpace X] [Countable ΞΉ] {f : ΞΉ β Set X} (hc : β (i : ΞΉ), IsClosed (f i)) (hU : β i, f i = Set.univ) : Dense (β i, interior (f i)) - nonempty_interior_of_iUnion_of_closed π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} {ΞΉ : Sort u_3} [TopologicalSpace X] [BaireSpace X] [Nonempty X] [Countable ΞΉ] {f : ΞΉ β Set X} (hc : β (i : ΞΉ), IsClosed (f i)) (hU : β i, f i = Set.univ) : β i, (interior (f i)).Nonempty - IsGΞ΄.dense_iUnion_interior_of_closed π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} {ΞΉ : Sort u_3} [TopologicalSpace X] [BaireSpace X] [Countable ΞΉ] {s : Set X} (hs : IsGΞ΄ s) (hd : Dense s) {f : ΞΉ β Set X} (hc : β (i : ΞΉ), IsClosed (f i)) (hU : s β β i, f i) : Dense (β i, interior (f i)) - dense_sUnion_interior_of_closed π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} [TopologicalSpace X] [BaireSpace X] {S : Set (Set X)} (hc : β s β S, IsClosed s) (hS : S.Countable) (hU : ββ S = Set.univ) : Dense (β s β S, interior s) - IsGΞ΄.dense_sUnion_interior_of_closed π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} [TopologicalSpace X] [BaireSpace X] {T : Set (Set X)} {s : Set X} (hs : IsGΞ΄ s) (hd : Dense s) (hc : T.Countable) (hc' : β t β T, IsClosed t) (hU : s β ββ T) : Dense (β t β T, interior t) - dense_biUnion_interior_of_closed π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} {Ξ± : Type u_2} [TopologicalSpace X] [BaireSpace X] {S : Set Ξ±} {f : Ξ± β Set X} (hc : β s β S, IsClosed (f s)) (hS : S.Countable) (hU : β s β S, f s = Set.univ) : Dense (β s β S, interior (f s)) - IsGΞ΄.dense_biUnion_interior_of_closed π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} {Ξ± : Type u_2} [TopologicalSpace X] [BaireSpace X] {t : Set Ξ±} {s : Set X} (hs : IsGΞ΄ s) (hd : Dense s) (ht : t.Countable) {f : Ξ± β Set X} (hc : β i β t, IsClosed (f i)) (hU : s β β i β t, f i) : Dense (β i β t, interior (f i)) - AlgebraicGeometry.Scheme.preimage_eq_top_of_closedPoint_mem π Mathlib.AlgebraicGeometry.Stalk
{X : AlgebraicGeometry.Scheme} {R : CommRingCat} [IsLocalRing βR] (f : AlgebraicGeometry.Spec R βΆ X) {U : X.Opens} (hU : f.base (IsLocalRing.closedPoint βR) β U) : (TopologicalSpace.Opens.map f.base).obj U = β€ - WeakDual.isCompact_of_bounded_of_closed π Mathlib.Analysis.Normed.Module.WeakDual
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace π E] [ProperSpace π] {s : Set (WeakDual π E)} (hb : Bornology.IsBounded (βNormedSpace.Dual.toWeakDual β»ΒΉ' s)) (hc : IsClosed s) : IsCompact s - WeakDual.isClosed_image_coe_of_bounded_of_closed π Mathlib.Analysis.Normed.Module.WeakDual
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace π E] {s : Set (WeakDual π E)} (hb : Bornology.IsBounded (βNormedSpace.Dual.toWeakDual β»ΒΉ' s)) (hc : IsClosed s) : IsClosed (DFunLike.coe '' s) - exists_bounded_mem_Icc_of_closed_of_le π Mathlib.Topology.UrysohnsBounded
{X : Type u_1} [TopologicalSpace X] [NormalSpace X] {s t : Set X} (hs : IsClosed s) (ht : IsClosed t) (hd : Disjoint s t) {a b : β} (hle : a β€ b) : β f, Set.EqOn (βf) (Function.const X a) s β§ Set.EqOn (βf) (Function.const X b) t β§ β (x : X), f x β Set.Icc a b - exists_bounded_zero_one_of_closed π Mathlib.Topology.UrysohnsBounded
{X : Type u_1} [TopologicalSpace X] [NormalSpace X] {s t : Set X} (hs : IsClosed s) (ht : IsClosed t) (hd : Disjoint s t) : β f, Set.EqOn (βf) 0 s β§ Set.EqOn (βf) 1 t β§ β (x : X), f x β Set.Icc 0 1 - ContinuousMap.exists_extension_of_closedEmbedding π Mathlib.Topology.TietzeExtension
{Xβ : Type uβ} [TopologicalSpace Xβ] {X : Type u} [TopologicalSpace X] [NormalSpace X] {e : Xβ β X} {Y : Type v} [TopologicalSpace Y] [TietzeExtension Y] (he : Topology.IsClosedEmbedding e) (f : C(Xβ, Y)) : β g, βg β e = βf - BoundedContinuousFunction.exists_extension_norm_eq_of_closedEmbedding' π Mathlib.Topology.TietzeExtension
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] [NormalSpace Y] (f : BoundedContinuousFunction X β) (e : C(X, Y)) (he : Topology.IsClosedEmbedding βe) : β g, βgβ = βfβ β§ g.compContinuous e = f - BoundedContinuousFunction.exists_extension_norm_eq_of_closedEmbedding π Mathlib.Topology.TietzeExtension
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] [NormalSpace Y] (f : BoundedContinuousFunction X β) {e : X β Y} (he : Topology.IsClosedEmbedding e) : β g, βgβ = βfβ β§ βg β e = βf - BoundedContinuousFunction.exists_extension_forall_mem_of_closedEmbedding π Mathlib.Topology.TietzeExtension
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] [NormalSpace Y] (f : BoundedContinuousFunction X β) {t : Set β} {e : X β Y} [hs : t.OrdConnected] (hf : β (x : X), f x β t) (hne : t.Nonempty) (he : Topology.IsClosedEmbedding e) : β g, (β (y : Y), g y β t) β§ βg β e = βf - BoundedContinuousFunction.exists_extension_forall_mem_Icc_of_closedEmbedding π Mathlib.Topology.TietzeExtension
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] [NormalSpace Y] (f : BoundedContinuousFunction X β) {a b : β} {e : X β Y} (hf : β (x : X), f x β Set.Icc a b) (hle : a β€ b) (he : Topology.IsClosedEmbedding e) : β g, (β (y : Y), g y β Set.Icc a b) β§ βg β e = βf - BoundedContinuousFunction.exists_norm_eq_restrict_eq_of_closed π Mathlib.Topology.TietzeExtension
{Y : Type u_2} [TopologicalSpace Y] [NormalSpace Y] {s : Set Y} (f : BoundedContinuousFunction βs β) (hs : IsClosed s) : β g, βgβ = βfβ β§ g.restrict s = f - BoundedContinuousFunction.exists_extension_forall_exists_le_ge_of_closedEmbedding π Mathlib.Topology.TietzeExtension
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] [NormalSpace Y] [Nonempty X] (f : BoundedContinuousFunction X β) {e : X β Y} (he : Topology.IsClosedEmbedding e) : β g, (β (y : Y), β xβ xβ, g y β Set.Icc (f xβ) (f xβ)) β§ βg β e = βf - BoundedContinuousFunction.exists_forall_mem_restrict_eq_of_closed π Mathlib.Topology.TietzeExtension
{Y : Type u_2} [TopologicalSpace Y] [NormalSpace Y] {s : Set Y} (f : BoundedContinuousFunction βs β) (hs : IsClosed s) {t : Set β} [t.OrdConnected] (hf : β (x : βs), f x β t) (hne : t.Nonempty) : β g, (β (y : Y), g y β t) β§ g.restrict s = f - ContinuousMap.exists_extension_forall_mem_of_closedEmbedding π Mathlib.Topology.TietzeExtension
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] [NormalSpace Y] (f : C(X, β)) {t : Set β} {e : X β Y} [hs : t.OrdConnected] (hf : β (x : X), f x β t) (hne : t.Nonempty) (he : Topology.IsClosedEmbedding e) : β g, (β (y : Y), g y β t) β§ βg β e = βf - ContinuousMap.exists_restrict_eq_forall_mem_of_closed π Mathlib.Topology.TietzeExtension
{Y : Type u_2} [TopologicalSpace Y] [NormalSpace Y] {s : Set Y} (f : C(βs, β)) {t : Set β} [t.OrdConnected] (ht : β (x : βs), f x β t) (hne : t.Nonempty) (hs : IsClosed s) : β g, (β (y : Y), g y β t) β§ ContinuousMap.restrict s g = f - MeasureTheory.exists_continuous_eLpNorm_sub_le_of_closed π Mathlib.MeasureTheory.Function.ContinuousMapDense
{Ξ± : Type u_1} [TopologicalSpace Ξ±] [NormalSpace Ξ±] [MeasurableSpace Ξ±] [BorelSpace Ξ±] {E : Type u_2} [NormedAddCommGroup E] {ΞΌ : MeasureTheory.Measure Ξ±} {p : ENNReal} [NormedSpace β E] [ΞΌ.OuterRegular] (hp : p β β€) {s u : Set Ξ±} (s_closed : IsClosed s) (u_open : IsOpen u) (hsu : s β u) (hs : ΞΌ s β β€) (c : E) {Ξ΅ : ENNReal} (hΞ΅ : Ξ΅ β 0) : β f, Continuous f β§ MeasureTheory.eLpNorm (fun x => f x - s.indicator (fun _y => c) x) p ΞΌ β€ Ξ΅ β§ (β (x : Ξ±), βf xβ β€ βcβ) β§ Function.support f β u β§ MeasureTheory.Memβp f p ΞΌ - MeasureTheory.exists_continuous_snorm_sub_le_of_closed π Mathlib.MeasureTheory.Function.ContinuousMapDense
{Ξ± : Type u_1} [TopologicalSpace Ξ±] [NormalSpace Ξ±] [MeasurableSpace Ξ±] [BorelSpace Ξ±] {E : Type u_2} [NormedAddCommGroup E] {ΞΌ : MeasureTheory.Measure Ξ±} {p : ENNReal} [NormedSpace β E] [ΞΌ.OuterRegular] (hp : p β β€) {s u : Set Ξ±} (s_closed : IsClosed s) (u_open : IsOpen u) (hsu : s β u) (hs : ΞΌ s β β€) (c : E) {Ξ΅ : ENNReal} (hΞ΅ : Ξ΅ β 0) : β f, Continuous f β§ MeasureTheory.eLpNorm (fun x => f x - s.indicator (fun _y => c) x) p ΞΌ β€ Ξ΅ β§ (β (x : Ξ±), βf xβ β€ βcβ) β§ Function.support f β u β§ MeasureTheory.Memβp f p ΞΌ - CategoryTheory.Limits.hasColimitsOfShape_of_closedUnderColimits π Mathlib.CategoryTheory.Limits.FullSubcategory
{J : Type w} [CategoryTheory.Category.{w', w} J] {C : Type u} [CategoryTheory.Category.{v, u} C] {P : C β Prop} (h : CategoryTheory.Limits.ClosedUnderColimitsOfShape J P) [CategoryTheory.Limits.HasColimitsOfShape J C] : CategoryTheory.Limits.HasColimitsOfShape J (CategoryTheory.FullSubcategory P) - CategoryTheory.Limits.hasColimitsOfShape_of_closed_under_colimits π Mathlib.CategoryTheory.Limits.FullSubcategory
{J : Type w} [CategoryTheory.Category.{w', w} J] {C : Type u} [CategoryTheory.Category.{v, u} C] {P : C β Prop} (h : CategoryTheory.Limits.ClosedUnderColimitsOfShape J P) [CategoryTheory.Limits.HasColimitsOfShape J C] : CategoryTheory.Limits.HasColimitsOfShape J (CategoryTheory.FullSubcategory P) - CategoryTheory.Limits.hasLimitsOfShape_of_closedUnderLimits π Mathlib.CategoryTheory.Limits.FullSubcategory
{J : Type w} [CategoryTheory.Category.{w', w} J] {C : Type u} [CategoryTheory.Category.{v, u} C] {P : C β Prop} (h : CategoryTheory.Limits.ClosedUnderLimitsOfShape J P) [CategoryTheory.Limits.HasLimitsOfShape J C] : CategoryTheory.Limits.HasLimitsOfShape J (CategoryTheory.FullSubcategory P) - CategoryTheory.Limits.hasColimit_of_closedUnderColimits π Mathlib.CategoryTheory.Limits.FullSubcategory
{J : Type w} [CategoryTheory.Category.{w', w} J] {C : Type u} [CategoryTheory.Category.{v, u} C] {P : C β Prop} (h : CategoryTheory.Limits.ClosedUnderColimitsOfShape J P) (F : CategoryTheory.Functor J (CategoryTheory.FullSubcategory P)) [CategoryTheory.Limits.HasColimit (F.comp (CategoryTheory.fullSubcategoryInclusion P))] : CategoryTheory.Limits.HasColimit F - CategoryTheory.Limits.hasColimit_of_closed_under_colimits π Mathlib.CategoryTheory.Limits.FullSubcategory
{J : Type w} [CategoryTheory.Category.{w', w} J] {C : Type u} [CategoryTheory.Category.{v, u} C] {P : C β Prop} (h : CategoryTheory.Limits.ClosedUnderColimitsOfShape J P) (F : CategoryTheory.Functor J (CategoryTheory.FullSubcategory P)) [CategoryTheory.Limits.HasColimit (F.comp (CategoryTheory.fullSubcategoryInclusion P))] : CategoryTheory.Limits.HasColimit F - CategoryTheory.Limits.hasLimit_of_closedUnderLimits π Mathlib.CategoryTheory.Limits.FullSubcategory
{J : Type w} [CategoryTheory.Category.{w', w} J] {C : Type u} [CategoryTheory.Category.{v, u} C] {P : C β Prop} (h : CategoryTheory.Limits.ClosedUnderLimitsOfShape J P) (F : CategoryTheory.Functor J (CategoryTheory.FullSubcategory P)) [CategoryTheory.Limits.HasLimit (F.comp (CategoryTheory.fullSubcategoryInclusion P))] : CategoryTheory.Limits.HasLimit F - CategoryTheory.Limits.hasLimit_of_closed_under_limits π Mathlib.CategoryTheory.Limits.FullSubcategory
{J : Type w} [CategoryTheory.Category.{w', w} J] {C : Type u} [CategoryTheory.Category.{v, u} C] {P : C β Prop} (h : CategoryTheory.Limits.ClosedUnderLimitsOfShape J P) (F : CategoryTheory.Functor J (CategoryTheory.FullSubcategory P)) [CategoryTheory.Limits.HasLimit (F.comp (CategoryTheory.fullSubcategoryInclusion P))] : CategoryTheory.Limits.HasLimit F - CategoryTheory.MorphismProperty.Comma.hasLimitsOfShape_of_closedUnderLimitsOfShape π Mathlib.CategoryTheory.Limits.MorphismProperty
{T : Type u_1} [CategoryTheory.Category.{u_8, u_1} T] (P : CategoryTheory.MorphismProperty T) {A : Type u_2} {B : Type u_3} {J : Type u_4} [CategoryTheory.Category.{u_6, u_2} A] [CategoryTheory.Category.{u_7, u_3} B] [CategoryTheory.Category.{u_5, u_4} J] {L : CategoryTheory.Functor A T} {R : CategoryTheory.Functor B T} [CategoryTheory.Limits.HasLimitsOfShape J (CategoryTheory.Comma L R)] (h : CategoryTheory.Limits.ClosedUnderLimitsOfShape J fun f => P f.hom) : CategoryTheory.Limits.HasLimitsOfShape J (CategoryTheory.MorphismProperty.Comma L R P β€ β€) - CategoryTheory.MorphismProperty.Comma.hasLimit_of_closedUnderLimitsOfShape π Mathlib.CategoryTheory.Limits.MorphismProperty
{T : Type u_1} [CategoryTheory.Category.{u_8, u_1} T] (P : CategoryTheory.MorphismProperty T) {A : Type u_2} {B : Type u_3} {J : Type u_4} [CategoryTheory.Category.{u_6, u_2} A] [CategoryTheory.Category.{u_7, u_3} B] [CategoryTheory.Category.{u_5, u_4} J] {L : CategoryTheory.Functor A T} {R : CategoryTheory.Functor B T} (D : CategoryTheory.Functor J (CategoryTheory.MorphismProperty.Comma L R P β€ β€)) (h : CategoryTheory.Limits.ClosedUnderLimitsOfShape J fun f => P f.hom) [CategoryTheory.Limits.HasLimit (D.comp (CategoryTheory.MorphismProperty.Comma.forget L R P β€ β€))] : CategoryTheory.Limits.HasLimit D - CategoryTheory.le_topology_of_closedSieves_isSheaf π Mathlib.CategoryTheory.Sites.Closed
{C : Type u} [CategoryTheory.Category.{v, u} C] {Jβ Jβ : CategoryTheory.GrothendieckTopology C} (h : CategoryTheory.Presieve.IsSheaf Jβ (CategoryTheory.Functor.closedSieves Jβ)) : Jβ β€ Jβ - Complex.subfield_eq_of_closed π Mathlib.Topology.Instances.Complex
{K : Subfield β} (hc : IsClosed βK) : K = Complex.ofRealHom.fieldRange β¨ K = β€ - ArzelaAscoli.compactSpace_of_closedEmbedding π Mathlib.Topology.UniformSpace.Ascoli
{ΞΉ : Type u_1} {X : Type u_2} {Ξ± : Type u_3} [TopologicalSpace X] [UniformSpace Ξ±] {F : ΞΉ β X β Ξ±} [TopologicalSpace ΞΉ] {π : Set (Set X)} (π_compact : β K β π, IsCompact K) (F_clemb : Topology.IsClosedEmbedding (β(UniformOnFun.ofFun π) β F)) (F_eqcont : β K β π, EquicontinuousOn F K) (F_pointwiseCompact : β K β π, β x β K, β Q, IsCompact Q β§ β (i : ΞΉ), F i x β Q) : CompactSpace ΞΉ - ArzelaAscoli.compactSpace_of_closed_inducing' π Mathlib.Topology.UniformSpace.Ascoli
{ΞΉ : Type u_1} {X : Type u_2} {Ξ± : Type u_3} [TopologicalSpace X] [UniformSpace Ξ±] {F : ΞΉ β X β Ξ±} [TopologicalSpace ΞΉ] {π : Set (Set X)} (π_compact : β K β π, IsCompact K) (F_ind : Topology.IsInducing (β(UniformOnFun.ofFun π) β F)) (F_cl : IsClosed (Set.range (β(UniformOnFun.ofFun π) β F))) (F_eqcont : β K β π, EquicontinuousOn F K) (F_pointwiseCompact : β K β π, β x β K, β Q, IsCompact Q β§ β (i : ΞΉ), F i x β Q) : CompactSpace ΞΉ - ArzelaAscoli.isCompact_closure_of_closedEmbedding π Mathlib.Topology.UniformSpace.Ascoli
{ΞΉ : Type u_1} {X : Type u_2} {Ξ± : Type u_3} [TopologicalSpace X] [UniformSpace Ξ±] {F : ΞΉ β X β Ξ±} [TopologicalSpace ΞΉ] [T2Space Ξ±] {π : Set (Set X)} (π_compact : β K β π, IsCompact K) (F_clemb : Topology.IsClosedEmbedding (β(UniformOnFun.ofFun π) β F)) {s : Set ΞΉ} (s_eqcont : β K β π, EquicontinuousOn (F β Subtype.val) K) (s_pointwiseCompact : β K β π, β x β K, β Q, IsCompact Q β§ β i β s, F i x β Q) : IsCompact (closure s) - properSMul_of_closedEmbedding π Mathlib.Topology.Algebra.ProperAction.Basic
{G : Type u_1} {X : Type u_2} [Group G] [MulAction G X] [TopologicalSpace G] [TopologicalSpace X] {H : Type u_3} [Group H] [MulAction H X] [TopologicalSpace H] [ProperSMul G X] (f : H β* G) (f_clemb : Topology.IsClosedEmbedding βf) (f_compat : β (h : H) (x : X), f h β’ x = h β’ x) : ProperSMul H X
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
woould find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 4e1aab0
serving mathlib revision b513113