Loogle!
Result
Found 51 definitions whose name contains "of_compact".
- CompleteLattice.Iic_coatomic_of_compact_element ๐ Mathlib.Order.CompactlyGenerated.Basic
{ฮฑ : Type u_2} [CompleteLattice ฮฑ] {k : ฮฑ} (h : CompleteLattice.IsCompactElement k) : IsCoatomic โ(Set.Iic k) - finite_of_compact_of_discrete ๐ Mathlib.Topology.Compactness.Compact
{X : Type u} [TopologicalSpace X] [CompactSpace X] [DiscreteTopology X] : Finite X - exists_clusterPt_of_compactSpace ๐ Mathlib.Topology.Compactness.Compact
{X : Type u} [TopologicalSpace X] [CompactSpace X] (f : Filter X) [f.NeBot] : โ x, ClusterPt x f - isClosedMap_fst_of_compactSpace ๐ Mathlib.Topology.Compactness.Compact
{X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] [CompactSpace Y] : IsClosedMap Prod.fst - isClosedMap_snd_of_compactSpace ๐ Mathlib.Topology.Compactness.Compact
{X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] [CompactSpace X] : IsClosedMap Prod.snd - LocallyFinite.finite_nonempty_of_compact ๐ Mathlib.Topology.Compactness.Compact
{X : Type u} {ฮน : Type u_1} [TopologicalSpace X] [CompactSpace X] {f : ฮน โ Set X} (hf : LocallyFinite f) : {i | (f i).Nonempty}.Finite - LocallyFinite.finite_of_compact ๐ Mathlib.Topology.Compactness.Compact
{X : Type u} {ฮน : Type u_1} [TopologicalSpace X] [CompactSpace X] {f : ฮน โ Set X} (hf : LocallyFinite f) (hne : โ (i : ฮน), (f i).Nonempty) : Set.univ.Finite - exists_subset_nhds_of_compactSpace ๐ Mathlib.Topology.Compactness.Compact
{X : Type u} {ฮน : Type u_1} [TopologicalSpace X] [CompactSpace X] [Nonempty ฮน] {V : ฮน โ Set X} (hV : Directed (fun x1 x2 => x1 โ x2) V) (hV_closed : โ (i : ฮน), IsClosed (V i)) {U : Set X} (hU : โ x โ โ i, V i, U โ nhds x) : โ i, V i โ U - NormalSpace.of_compactSpace_r1Space ๐ Mathlib.Topology.Separation.Basic
{X : Type u_1} [TopologicalSpace X] [CompactSpace X] [R1Space X] : NormalSpace X - HasCompactMulSupport.of_compactSpace ๐ Mathlib.Topology.Support
{ฮฑ : Type u_2} {ฮณ : Type u_5} [TopologicalSpace ฮฑ] [One ฮณ] [CompactSpace ฮฑ] (f : ฮฑ โ ฮณ) : HasCompactMulSupport f - HasCompactSupport.of_compactSpace ๐ Mathlib.Topology.Support
{ฮฑ : Type u_2} {ฮณ : Type u_5} [TopologicalSpace ฮฑ] [Zero ฮณ] [CompactSpace ฮฑ] (f : ฮฑ โ ฮณ) : HasCompactSupport f - complete_of_compact ๐ Mathlib.Topology.UniformSpace.Cauchy
{ฮฑ : Type u} [UniformSpace ฮฑ] [CompactSpace ฮฑ] : CompleteSpace ฮฑ - tendstoLocallyUniformly_iff_tendstoUniformly_of_compactSpace ๐ Mathlib.Topology.UniformSpace.UniformConvergence
{ฮฑ : Type u} {ฮฒ : Type v} {ฮน : Type x} [UniformSpace ฮฒ] {F : ฮน โ ฮฑ โ ฮฒ} {f : ฮฑ โ ฮฒ} {p : Filter ฮน} [TopologicalSpace ฮฑ] [CompactSpace ฮฑ] : TendstoLocallyUniformly F f p โ TendstoUniformly F f p - tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact ๐ Mathlib.Topology.UniformSpace.UniformConvergence
{ฮฑ : Type u} {ฮฒ : Type v} {ฮน : Type x} [UniformSpace ฮฒ] {F : ฮน โ ฮฑ โ ฮฒ} {f : ฮฑ โ ฮฒ} {s : Set ฮฑ} {p : Filter ฮน} [TopologicalSpace ฮฑ] (hs : IsCompact s) : TendstoLocallyUniformlyOn F f p s โ TendstoUniformlyOn F f p s - EMetric.subset_countable_closure_of_compact ๐ Mathlib.Topology.EMetricSpace.Basic
{ฮฑ : Type u} [PseudoEMetricSpace ฮฑ] {s : Set ฮฑ} (hs : IsCompact s) : โ t โ s, t.Countable โง s โ closure t - EMetric.countable_closure_of_compact ๐ Mathlib.Topology.EMetricSpace.Basic
{ฮณ : Type w} [EMetricSpace ฮณ] {s : Set ฮณ} (hs : IsCompact s) : โ t โ s, t.Countable โง s = closure t - unique_uniformity_of_compact ๐ Mathlib.Topology.UniformSpace.Compact
{ฮณ : Type uc} [t : TopologicalSpace ฮณ] [CompactSpace ฮณ] {u u' : UniformSpace ฮณ} (h : UniformSpace.toTopologicalSpace = t) (h' : UniformSpace.toTopologicalSpace = t) : u = u' - lebesgue_number_of_compact_open ๐ Mathlib.Topology.UniformSpace.Compact
{ฮฑ : Type ua} [UniformSpace ฮฑ] {K U : Set ฮฑ} (hK : IsCompact K) (hU : IsOpen U) (hKU : K โ U) : โ V โ uniformity ฮฑ, IsOpen V โง โ x โ K, UniformSpace.ball x V โ U - finite_cover_balls_of_compact ๐ Mathlib.Topology.MetricSpace.Pseudo.Defs
{ฮฑ : Type u} [PseudoMetricSpace ฮฑ] {s : Set ฮฑ} (hs : IsCompact s) {e : โ} (he : 0 < e) : โ t โ s, t.Finite โง s โ โ x โ t, Metric.ball x e - proper_of_compact ๐ Mathlib.Topology.MetricSpace.ProperSpace
{ฮฑ : Type u} [PseudoMetricSpace ฮฑ] [CompactSpace ฮฑ] : ProperSpace ฮฑ - Metric.isBounded_of_compactSpace ๐ Mathlib.Topology.MetricSpace.Bounded
{ฮฑ : Type u} [PseudoMetricSpace ฮฑ] {s : Set ฮฑ} [CompactSpace ฮฑ] : Bornology.IsBounded s - topologicalAddGroup_is_uniform_of_compactSpace ๐ Mathlib.Topology.Algebra.UniformGroup.Basic
(G : Type u_1) [AddGroup G] [TopologicalSpace G] [TopologicalAddGroup G] [CompactSpace G] : UniformAddGroup G - topologicalGroup_is_uniform_of_compactSpace ๐ Mathlib.Topology.Algebra.UniformGroup.Basic
(G : Type u_1) [Group G] [TopologicalSpace G] [TopologicalGroup G] [CompactSpace G] : UniformGroup G - isFiniteMeasure_iff_isFiniteMeasureOnCompacts_of_compactSpace ๐ Mathlib.MeasureTheory.Measure.Typeclasses
{ฮฑ : Type u_1} [TopologicalSpace ฮฑ] [MeasurableSpace ฮฑ] {ฮผ : MeasureTheory.Measure ฮฑ} [CompactSpace ฮฑ] : MeasureTheory.IsFiniteMeasure ฮผ โ MeasureTheory.IsFiniteMeasureOnCompacts ฮผ - MeasureTheory.measure_isOpen_pos_of_smulInvariant_of_compact_ne_zero ๐ Mathlib.MeasureTheory.Group.Action
(G : Type u) {ฮฑ : Type w} {m : MeasurableSpace ฮฑ} [Group G] [MulAction G ฮฑ] {ฮผ : MeasureTheory.Measure ฮฑ} [MeasureTheory.SMulInvariantMeasure G ฮฑ ฮผ] [TopologicalSpace ฮฑ] [ContinuousConstSMul G ฮฑ] [MulAction.IsMinimal G ฮฑ] {K U : Set ฮฑ} (hK : IsCompact K) (hฮผK : ฮผ K โ 0) (hU : IsOpen U) (hne : U.Nonempty) : 0 < ฮผ U - MeasureTheory.measure_isOpen_pos_of_vaddInvariant_of_compact_ne_zero ๐ Mathlib.MeasureTheory.Group.Action
(G : Type u) {ฮฑ : Type w} {m : MeasurableSpace ฮฑ} [AddGroup G] [AddAction G ฮฑ] {ฮผ : MeasureTheory.Measure ฮฑ} [MeasureTheory.VAddInvariantMeasure G ฮฑ ฮผ] [TopologicalSpace ฮฑ] [ContinuousConstVAdd G ฮฑ] [AddAction.IsMinimal G ฮฑ] {K U : Set ฮฑ} (hK : IsCompact K) (hฮผK : ฮผ K โ 0) (hU : IsOpen U) (hne : U.Nonempty) : 0 < ฮผ U - FirstCountableTopology.seq_compact_of_compact ๐ Mathlib.Topology.Sequences
{X : Type u_1} [TopologicalSpace X] [FirstCountableTopology X] [CompactSpace X] : SeqCompactSpace X - Continuous.bounded_above_of_compact_support ๐ Mathlib.Analysis.Normed.Group.Bounded
{ฮฑ : Type u_1} {E : Type u_3} [NormedAddGroup E] [TopologicalSpace ฮฑ] {f : ฮฑ โ E} (hf : Continuous f) (h : HasCompactSupport f) : โ C, โ (x : ฮฑ), โf xโ โค C - ContinuousMap.hasBasis_compactConvergenceUniformity_of_compact ๐ Mathlib.Topology.UniformSpace.CompactConvergence
{ฮฑ : Type uโ} {ฮฒ : Type uโ} [TopologicalSpace ฮฑ] [UniformSpace ฮฒ] [CompactSpace ฮฑ] : (uniformity C(ฮฑ, ฮฒ)).HasBasis (fun V => V โ uniformity ฮฒ) fun V => {fg | โ (x : ฮฑ), (fg.1 x, fg.2 x) โ V} - BoundedContinuousFunction.norm_lt_iff_of_compact ๐ Mathlib.Topology.ContinuousMap.Bounded.Basic
{ฮฑ : Type u} {ฮฒ : Type v} [TopologicalSpace ฮฑ] [SeminormedAddCommGroup ฮฒ] [CompactSpace ฮฑ] {f : BoundedContinuousFunction ฮฑ ฮฒ} {M : โ} (M0 : 0 < M) : โfโ < M โ โ (x : ฮฑ), โf xโ < M - BoundedContinuousFunction.dist_lt_iff_of_compact ๐ Mathlib.Topology.ContinuousMap.Bounded.Basic
{ฮฑ : Type u} {ฮฒ : Type v} [TopologicalSpace ฮฑ] [PseudoMetricSpace ฮฒ] {f g : BoundedContinuousFunction ฮฑ ฮฒ} {C : โ} [CompactSpace ฮฑ] (C0 : 0 < C) : dist f g < C โ โ (x : ฮฑ), dist (f x) (g x) < C - ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv ๐ Mathlib.Topology.ContinuousMap.Compact
{ฮฑ : Type u_1} {E : Type u_3} [TopologicalSpace ฮฑ] [CompactSpace ฮฑ] [SeminormedAddCommGroup E] {๐ : Type u_4} [NormedField ๐] [NormedSpace ๐ E] : (ContinuousMap.linearIsometryBoundedOfCompact ฮฑ E ๐).toEquiv = ContinuousMap.equivBoundedOfCompact ฮฑ E - continuousOn_integral_of_compact_support ๐ Mathlib.MeasureTheory.Integral.SetIntegral
{Y : Type u_2} {E : Type u_3} {X : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] [MeasurableSpace Y] [OpensMeasurableSpace Y] {ฮผ : MeasureTheory.Measure Y} [NormedAddCommGroup E] [NormedSpace โ E] {f : X โ Y โ E} {s : Set X} {k : Set Y} [MeasureTheory.IsFiniteMeasureOnCompacts ฮผ] (hk : IsCompact k) (hf : ContinuousOn (Function.uncurry f) (s รหข Set.univ)) (hfs : โ (p : X) (x : Y), p โ s โ x โ k โ f p x = 0) : ContinuousOn (fun x => โซ (y : Y), f x y โฮผ) s - continuousOn_integral_bilinear_of_locally_integrable_of_compact_support ๐ Mathlib.MeasureTheory.Integral.SetIntegral
{Y : Type u_2} {E : Type u_3} {F : Type u_4} {X : Type u_5} {G : Type u_6} {๐ : Type u_7} [TopologicalSpace X] [TopologicalSpace Y] [MeasurableSpace Y] [OpensMeasurableSpace Y] {ฮผ : MeasureTheory.Measure Y} [NontriviallyNormedField ๐] [NormedAddCommGroup E] [NormedSpace โ E] [NormedAddCommGroup F] [NormedSpace ๐ F] [NormedAddCommGroup G] [NormedSpace ๐ G] [NormedSpace ๐ E] (L : F โL[๐] G โL[๐] E) {f : X โ Y โ G} {s : Set X} {k : Set Y} {g : Y โ F} (hk : IsCompact k) (hf : ContinuousOn (Function.uncurry f) (s รหข Set.univ)) (hfs : โ (p : X) (x : Y), p โ s โ x โ k โ f p x = 0) (hg : MeasureTheory.IntegrableOn g k ฮผ) : ContinuousOn (fun x => โซ (y : Y), (L (g y)) (f x y) โฮผ) s - MeasureTheory.isOpenPosMeasure_of_addLeftInvariant_of_compact ๐ Mathlib.MeasureTheory.Group.Measure
{G : Type u_1} [MeasurableSpace G] [TopologicalSpace G] [BorelSpace G] {ฮผ : MeasureTheory.Measure G} [AddGroup G] [TopologicalAddGroup G] [ฮผ.IsAddLeftInvariant] (K : Set G) (hK : IsCompact K) (h : ฮผ K โ 0) : ฮผ.IsOpenPosMeasure - MeasureTheory.isOpenPosMeasure_of_mulLeftInvariant_of_compact ๐ Mathlib.MeasureTheory.Group.Measure
{G : Type u_1} [MeasurableSpace G] [TopologicalSpace G] [BorelSpace G] {ฮผ : MeasureTheory.Measure G} [Group G] [TopologicalGroup G] [ฮผ.IsMulLeftInvariant] (K : Set G) (hK : IsCompact K) (h : ฮผ K โ 0) : ฮผ.IsOpenPosMeasure - ContinuousMap.induction_on_of_compact ๐ Mathlib.Topology.ContinuousMap.StoneWeierstrass
{๐ : Type u_1} [RCLike ๐] {s : Set ๐} [CompactSpace โs] {p : C(โs, ๐) โ Prop} (const : โ (r : ๐), p (ContinuousMap.const (โs) r)) (id : p (ContinuousMap.restrict s (ContinuousMap.id ๐))) (star_id : p (star (ContinuousMap.restrict s (ContinuousMap.id ๐)))) (add : โ (f g : C(โs, ๐)), p f โ p g โ p (f + g)) (mul : โ (f g : C(โs, ๐)), p f โ p g โ p (f * g)) (frequently : โ (f : C(โs, ๐)), (โแถ (g : C(โs, ๐)) in nhds f, p g) โ p f) (f : C(โs, ๐)) : p f - ContinuousMapZero.induction_on_of_compact ๐ Mathlib.Topology.ContinuousMap.StoneWeierstrass
{๐ : Type u_1} [RCLike ๐] {s : Set ๐} [Zero โs] (h0 : โ0 = 0) [CompactSpace โs] {p : ContinuousMapZero (โs) ๐ โ Prop} (zero : p 0) (id : p (ContinuousMapZero.id h0)) (star_id : p (star (ContinuousMapZero.id h0))) (add : โ (f g : ContinuousMapZero (โs) ๐), p f โ p g โ p (f + g)) (mul : โ (f g : ContinuousMapZero (โs) ๐), p f โ p g โ p (f * g)) (smul : โ (r : ๐) (f : ContinuousMapZero (โs) ๐), p f โ p (r โข f)) (frequently : โ (f : ContinuousMapZero (โs) ๐), (โแถ (g : ContinuousMapZero (โs) ๐) in nhds f, p g) โ p f) (f : ContinuousMapZero (โs) ๐) : p f - RCLike.uniqueContinuousFunctionalCalculus_of_compactSpace_spectrum ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unique
{๐ : Type u_1} {A : Type u_2} [RCLike ๐] [TopologicalSpace A] [T2Space A] [Ring A] [StarRing A] [Algebra ๐ A] [h : โ (a : A), CompactSpace โ(spectrum ๐ a)] : UniqueContinuousFunctionalCalculus ๐ A - RCLike.uniqueNonUnitalContinuousFunctionalCalculus_of_compactSpace_quasispectrum ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unique
{๐ : Type u_1} {A : Type u_2} [RCLike ๐] [TopologicalSpace A] [T2Space A] [NonUnitalRing A] [StarRing A] [Module ๐ A] [IsScalarTower ๐ A A] [SMulCommClass ๐ A A] [h : โ (a : A), CompactSpace โ(quasispectrum ๐ a)] : UniqueNonUnitalContinuousFunctionalCalculus ๐ A - MeasureTheory.Measure.isAddInvariant_eq_smul_of_compactSpace ๐ Mathlib.MeasureTheory.Measure.Haar.Unique
{G : Type u_1} [TopologicalSpace G] [AddGroup G] [TopologicalAddGroup G] [MeasurableSpace G] [BorelSpace G] [CompactSpace G] (ฮผ' ฮผ : MeasureTheory.Measure G) [ฮผ.IsAddHaarMeasure] [ฮผ'.IsAddLeftInvariant] [MeasureTheory.IsFiniteMeasureOnCompacts ฮผ'] : ฮผ' = ฮผ'.addHaarScalarFactor ฮผ โข ฮผ - MeasureTheory.Measure.isMulInvariant_eq_smul_of_compactSpace ๐ Mathlib.MeasureTheory.Measure.Haar.Unique
{G : Type u_1} [TopologicalSpace G] [Group G] [TopologicalGroup G] [MeasurableSpace G] [BorelSpace G] [CompactSpace G] (ฮผ' ฮผ : MeasureTheory.Measure G) [ฮผ.IsHaarMeasure] [ฮผ'.IsMulLeftInvariant] [MeasureTheory.IsFiniteMeasureOnCompacts ฮผ'] : ฮผ' = ฮผ'.haarScalarFactor ฮผ โข ฮผ - paracompact_of_compact ๐ Mathlib.Topology.Compactness.Paracompact
{X : Type v} [TopologicalSpace X] [CompactSpace X] : ParacompactSpace X - TopCat.nonempty_limitCone_of_compact_t2_cofiltered_system ๐ Mathlib.Topology.Category.TopCat.Limits.Konig
{J : Type u} [CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J TopCat) [CategoryTheory.IsCofilteredOrEmpty J] [โ (j : J), Nonempty โ(F.obj j)] [โ (j : J), CompactSpace โ(F.obj j)] [โ (j : J), T2Space โ(F.obj j)] : Nonempty โ(TopCat.limitCone F).pt - exists_idempotent_of_compact_t2_of_continuous_add_left ๐ Mathlib.Topology.Algebra.Semigroup
{M : Type u_1} [Nonempty M] [AddSemigroup M] [TopologicalSpace M] [CompactSpace M] [T2Space M] (continuous_mul_left : โ (r : M), Continuous fun x => x + r) : โ m, m + m = m - exists_idempotent_of_compact_t2_of_continuous_mul_left ๐ Mathlib.Topology.Algebra.Semigroup
{M : Type u_1} [Nonempty M] [Semigroup M] [TopologicalSpace M] [CompactSpace M] [T2Space M] (continuous_mul_left : โ (r : M), Continuous fun x => x * r) : โ m, m * m = m - MDifferentiable.apply_eq_of_compactSpace ๐ Mathlib.Geometry.Manifold.Complex
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ F] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners โ E H} [I.Boundaryless] {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] [CompactSpace M] [PreconnectedSpace M] {f : M โ F} (hf : MDifferentiable I (modelWithCornersSelf โ F) f) (a b : M) : f a = f b - MDifferentiable.exists_eq_const_of_compactSpace ๐ Mathlib.Geometry.Manifold.Complex
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ F] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners โ E H} [I.Boundaryless] {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] [CompactSpace M] [PreconnectedSpace M] {f : M โ F} (hf : MDifferentiable I (modelWithCornersSelf โ F) f) : โ v, f = Function.const M v - exists_embedding_euclidean_of_compact ๐ Mathlib.Geometry.Manifold.WhitneyEmbedding
{E : Type uE} [NormedAddCommGroup E] [NormedSpace โ E] [FiniteDimensional โ E] {H : Type uH} [TopologicalSpace H] {I : ModelWithCorners โ E H} {M : Type uM} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] [T2Space M] [CompactSpace M] : โ n e, Smooth I (modelWithCornersSelf โ (EuclideanSpace โ (Fin n))) e โง Topology.IsClosedEmbedding e โง โ (x : M), Function.Injective โ(mfderiv I (modelWithCornersSelf โ (EuclideanSpace โ (Fin n))) e x) - norm_lt_iff_of_compactlySupported ๐ Mathlib.Topology.ContinuousMap.BoundedCompactlySupported
{ฮฑ : Type u_1} {ฮณ : Type u_2} [TopologicalSpace ฮฑ] [NonUnitalNormedRing ฮณ] {f : BoundedContinuousFunction ฮฑ ฮณ} (h : f โ compactlySupported ฮฑ ฮณ) {M : โ} (M0 : 0 < M) : โfโ < M โ โ (x : ฮฑ), โf xโ < M - CompactlySupportedContinuousMapClass.of_compactSpace ๐ Mathlib.Topology.ContinuousMap.CompactlySupported
{ฮฑ : Type u_2} {ฮฒ : Type u_3} [TopologicalSpace ฮฑ] [Zero ฮฒ] [TopologicalSpace ฮฒ] (G : Type u_5) [FunLike G ฮฑ ฮฒ] [ContinuousMapClass G ฮฑ ฮฒ] [CompactSpace ฮฑ] : CompactlySupportedContinuousMapClass G ฮฑ ฮฒ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
woould find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 4e1aab0
serving mathlib revision b513113