Loogle!
Result
Found 112 definitions whose name contains "of_isOpen".
- Dense.inter_of_isOpen_left π Mathlib.Topology.Basic
{X : Type u} {s t : Set X} [TopologicalSpace X] (hs : Dense s) (ht : Dense t) (hso : IsOpen s) : Dense (s β© t) - Dense.inter_of_isOpen_right π Mathlib.Topology.Basic
{X : Type u} {s t : Set X} [TopologicalSpace X] (hs : Dense s) (ht : Dense t) (hto : IsOpen t) : Dense (s β© t) - DenseRange.subset_closure_image_preimage_of_isOpen π Mathlib.Topology.Basic
{X : Type u_1} [TopologicalSpace X] {Ξ± : Type u_4} {f : Ξ± β X} {s : Set X} (hf : DenseRange f) (hs : IsOpen s) : s β closure (f '' (f β»ΒΉ' s)) - TopologicalSpace.generateFrom_setOf_isOpen π Mathlib.Topology.Order
{Ξ± : Type u} (t : TopologicalSpace Ξ±) : TopologicalSpace.generateFrom {s | IsOpen s} = t - TopologicalSpace.setOf_isOpen_injective π Mathlib.Topology.Order
{Ξ± : Type u} : Function.Injective fun t => {s | IsOpen s} - setOf_isOpen_iSup π Mathlib.Topology.Order
{Ξ± : Type u} {ΞΉ : Sort v} {t : ΞΉ β TopologicalSpace Ξ±} : {s | IsOpen s} = β i, {s | IsOpen s} - setOf_isOpen_sup π Mathlib.Topology.Order
{Ξ± : Type u} (tβ tβ : TopologicalSpace Ξ±) : {s | IsOpen s} = {s | IsOpen s} β© {s | IsOpen s} - setOf_isOpen_sSup π Mathlib.Topology.Order
{Ξ± : Type u} {T : Set (TopologicalSpace Ξ±)} : {s | IsOpen s} = β t β T, {s | IsOpen s} - Topology.IsInducing.setOf_isOpen π Mathlib.Topology.Maps.Basic
{X : Type u_1} {Y : Type u_2} {f : X β Y} [TopologicalSpace Y] [TopologicalSpace X] (hf : Topology.IsInducing f) : {s | IsOpen s} = Set.preimage f '' {t | IsOpen t} - Pairwise.countable_of_isOpen_disjoint π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] [TopologicalSpace.SeparableSpace Ξ±] {ΞΉ : Type u_2} {s : ΞΉ β Set Ξ±} (hd : Pairwise (Disjoint on s)) (ho : β (i : ΞΉ), IsOpen (s i)) (hne : β (i : ΞΉ), (s i).Nonempty) : Countable ΞΉ - TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] {s : Set (Set Ξ±)} (h_open : β u β s, IsOpen u) (h_nhds : β (a : Ξ±) (u : Set Ξ±), a β u β IsOpen u β β v β s, a β v β§ v β u) : TopologicalSpace.IsTopologicalBasis s - Set.PairwiseDisjoint.countable_of_isOpen π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] [TopologicalSpace.SeparableSpace Ξ±] {ΞΉ : Type u_2} {s : ΞΉ β Set Ξ±} {a : Set ΞΉ} (h : a.PairwiseDisjoint s) (ho : β i β a, IsOpen (s i)) (hne : β i β a, (s i).Nonempty) : a.Countable - subset_closure_inter_of_isPreirreducible_of_isOpen π Mathlib.Topology.Irreducible
{X : Type u_1} [TopologicalSpace X] {S U : Set X} (hS : IsPreirreducible S) (hU : IsOpen U) (h : (S β© U).Nonempty) : S β closure (S β© U) - IsConnected.preimage_of_isOpenMap π Mathlib.Topology.Connected.Basic
{Ξ± : Type u} {Ξ² : Type v} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {s : Set Ξ²} (hs : IsConnected s) {f : Ξ± β Ξ²} (hinj : Function.Injective f) (hf : IsOpenMap f) (hsf : s β Set.range f) : IsConnected (f β»ΒΉ' s) - IsPreconnected.preimage_of_isOpenMap π Mathlib.Topology.Connected.Basic
{Ξ± : Type u} {Ξ² : Type v} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} {s : Set Ξ²} (hs : IsPreconnected s) (hinj : Function.Injective f) (hf : IsOpenMap f) (hsf : s β Set.range f) : IsPreconnected (f β»ΒΉ' s) - IsOpenQuotientMap.of_isOpenMap_isQuotientMap π Mathlib.Topology.Maps.OpenQuotient
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} (ho : IsOpenMap f) (hq : Topology.IsQuotientMap f) : IsOpenQuotientMap f - IsOpenQuotientMap.of_isOpenMap_quotientMap π Mathlib.Topology.Maps.OpenQuotient
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} (ho : IsOpenMap f) (hq : Topology.IsQuotientMap f) : IsOpenQuotientMap f - IsCompact.closure_subset_of_isOpen π Mathlib.Topology.Separation.Basic
{X : Type u_1} [TopologicalSpace X] [R1Space X] {K : Set X} (hK : IsCompact K) {U : Set X} (hU : IsOpen U) (hKU : K β U) : closure K β U - exists_isOpen_singleton_of_isOpen_finite π Mathlib.Topology.Separation.Basic
{X : Type u_1} [TopologicalSpace X] [T0Space X] {s : Set X} (hfin : s.Finite) (hne : s.Nonempty) (ho : IsOpen s) : β x β s, IsOpen {x} - discreteTopology_of_isOpen_singleton_one π Mathlib.Topology.Algebra.Group.Basic
{G : Type w} [TopologicalSpace G] [Group G] [ContinuousMul G] (h : IsOpen {1}) : DiscreteTopology G - discreteTopology_of_isOpen_singleton_zero π Mathlib.Topology.Algebra.Group.Basic
{G : Type w} [TopologicalSpace G] [AddGroup G] [ContinuousAdd G] (h : IsOpen {0}) : DiscreteTopology G - locPathConnected_of_isOpen π Mathlib.Topology.Connected.PathConnected
{X : Type u_1} [TopologicalSpace X] [LocPathConnectedSpace X] {U : Set X} (h : IsOpen U) : LocPathConnectedSpace βU - TopCat.isIso_of_bijective_of_isOpenMap π Mathlib.Topology.Category.TopCat.Basic
{X Y : TopCat} (f : X βΆ Y) (hfbij : Function.Bijective βf) (hfcl : IsOpenMap βf) : CategoryTheory.IsIso f - isGΞ΄_iInter_of_isOpen π Mathlib.Topology.GDelta.Basic
{X : Type u_1} {ΞΉ' : Sort u_4} [TopologicalSpace X] [Countable ΞΉ'] {f : ΞΉ' β Set X} (hf : β (i : ΞΉ'), IsOpen (f i)) : IsGΞ΄ (β i, f i) - IsGΞ΄.iInter_of_isOpen π Mathlib.Topology.GDelta.Basic
{X : Type u_1} {ΞΉ' : Sort u_4} [TopologicalSpace X] [Countable ΞΉ'] {f : ΞΉ' β Set X} (hf : β (i : ΞΉ'), IsOpen (f i)) : IsGΞ΄ (β i, f i) - isGΞ΄_biInter_of_isOpen π Mathlib.Topology.GDelta.Basic
{X : Type u_1} {ΞΉ : Type u_3} [TopologicalSpace X] {I : Set ΞΉ} (hI : I.Countable) {f : ΞΉ β Set X} (hf : β i β I, IsOpen (f i)) : IsGΞ΄ (β i β I, f i) - IsGΞ΄.biInter_of_isOpen π Mathlib.Topology.GDelta.Basic
{X : Type u_1} {ΞΉ : Type u_3} [TopologicalSpace X] {I : Set ΞΉ} (hI : I.Countable) {f : ΞΉ β Set X} (hf : β i β I, IsOpen (f i)) : IsGΞ΄ (β i β I, f i) - measurable_of_isOpen π Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
{Ξ³ : Type u_3} {Ξ΄ : Type u_5} [TopologicalSpace Ξ³] [MeasurableSpace Ξ³] [BorelSpace Ξ³] [MeasurableSpace Ξ΄] {f : Ξ΄ β Ξ³} (hf : β (s : Set Ξ³), IsOpen s β MeasurableSet (f β»ΒΉ' s)) : Measurable f - MeasureTheory.Measure.InnerRegularWRT.measurableSet_of_isOpen π Mathlib.MeasureTheory.Measure.Regular
{Ξ± : Type u_1} [MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±} {p : Set Ξ± β Prop} [TopologicalSpace Ξ±] [ΞΌ.OuterRegular] (H : ΞΌ.InnerRegularWRT p IsOpen) (hd : β β¦s U : Set Ξ±β¦, p s β IsOpen U β p (s \ U)) : ΞΌ.InnerRegularWRT p fun s => MeasurableSet s β§ ΞΌ s β β€ - Convex.strictConvex_of_isOpen π Mathlib.Analysis.Convex.Strict
{π : Type u_1} {E : Type u_3} [OrderedSemiring π] [TopologicalSpace E] [AddCommMonoid E] [Module π E] {s : Set E} (h : IsOpen s) (hs : Convex π s) : StrictConvex π s - QuasiSeparatedSpace.of_isOpenEmbedding π Mathlib.Topology.QuasiSeparated
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} (h : Topology.IsOpenEmbedding f) [QuasiSeparatedSpace Ξ²] : QuasiSeparatedSpace Ξ± - gauge_lt_one_of_mem_of_isOpen π Mathlib.Analysis.Convex.Gauge
{E : Type u_2} [AddCommGroup E] [Module β E] {s : Set E} [TopologicalSpace E] [ContinuousSMul β E] (hsβ : IsOpen s) {x : E} (hx : x β s) : gauge s x < 1 - gauge_lt_one_eq_self_of_isOpen π Mathlib.Analysis.Convex.Gauge
{E : Type u_2} [AddCommGroup E] [Module β E] {s : Set E} [TopologicalSpace E] [ContinuousSMul β E] (hsβ : Convex β s) (hsβ : 0 β s) (hsβ : IsOpen s) : {x | gauge s x < 1} = s - gaugeSeminorm_lt_one_of_isOpen π Mathlib.Analysis.Convex.Gauge
{π : Type u_1} {E : Type u_2} [AddCommGroup E] [Module β E] {s : Set E} [RCLike π] [Module π E] [IsScalarTower β π E] {hsβ : Balanced π s} {hsβ : Convex β s} {hsβ : Absorbent β s} [TopologicalSpace E] [ContinuousSMul β E] (hs : IsOpen s) {x : E} (hx : x β s) : (gaugeSeminorm hsβ hsβ hsβ) x < 1 - MeasureTheory.Content.outerMeasure_of_isOpen π Mathlib.MeasureTheory.Measure.Content
{G : Type w} [TopologicalSpace G] (ΞΌ : MeasureTheory.Content G) [R1Space G] (U : Set G) (hU : IsOpen U) : ΞΌ.outerMeasure U = ΞΌ.innerContent { carrier := U, is_open' := hU } - dense_iInter_of_isOpen_nat π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} [TopologicalSpace X] [BaireSpace X] {f : β β Set X} (ho : β (n : β), IsOpen (f n)) (hd : β (n : β), Dense (f n)) : Dense (β n, f n) - dense_iInter_of_isOpen π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} {ΞΉ : Sort u_3} [TopologicalSpace X] [BaireSpace X] [Countable ΞΉ] {f : ΞΉ β Set X} (ho : β (i : ΞΉ), IsOpen (f i)) (hd : β (i : ΞΉ), Dense (f i)) : Dense (β s, f s) - dense_sInter_of_isOpen π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} [TopologicalSpace X] [BaireSpace X] {S : Set (Set X)} (ho : β s β S, IsOpen s) (hS : S.Countable) (hd : β s β S, Dense s) : Dense (ββ S) - dense_biInter_of_isOpen π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} {Ξ± : Type u_2} [TopologicalSpace X] [BaireSpace X] {S : Set Ξ±} {f : Ξ± β Set X} (ho : β s β S, IsOpen (f s)) (hS : S.Countable) (hd : β s β S, Dense (f s)) : Dense (β s β S, f s) - TopCat.Presheaf.isSheaf_of_isOpenEmbedding π Mathlib.Topology.Sheaves.SheafCondition.Sites
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : TopCat} {f : X βΆ Y} {F : TopCat.Presheaf C Y} (h : Topology.IsOpenEmbedding βf) (hF : F.IsSheaf) : TopCat.Presheaf.IsSheaf (β―.functor.op.comp F) - TopCat.Presheaf.stalkPushforward.stalkPushforward_iso_of_isOpenEmbedding π Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} {f : X βΆ Y} (hf : Topology.IsInducing βf) (F : TopCat.Presheaf C X) (x : βX) : CategoryTheory.IsIso (TopCat.Presheaf.stalkPushforward C f F x) - AlgebraicGeometry.Scheme.Hom.isAffineOpen_iff_of_isOpenImmersion π Mathlib.AlgebraicGeometry.AffineScheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) [H : AlgebraicGeometry.IsOpenImmersion f] {U : X.Opens} : AlgebraicGeometry.IsAffineOpen (f.opensFunctor.obj U) β AlgebraicGeometry.IsAffineOpen U - AlgebraicGeometry.IsAffineOpen.image_of_isOpenImmersion π Mathlib.AlgebraicGeometry.AffineScheme
{X Y : AlgebraicGeometry.Scheme} {U : X.Opens} (hU : AlgebraicGeometry.IsAffineOpen U) (f : X βΆ Y) [H : AlgebraicGeometry.IsOpenImmersion f] : AlgebraicGeometry.IsAffineOpen ((AlgebraicGeometry.Scheme.Hom.opensFunctor f).obj U) - AlgebraicGeometry.isReduced_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Properties
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [H : AlgebraicGeometry.IsOpenImmersion f] [AlgebraicGeometry.IsReduced Y] : AlgebraicGeometry.IsReduced X - AlgebraicGeometry.isIntegral_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Properties
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [H : AlgebraicGeometry.IsOpenImmersion f] [AlgebraicGeometry.IsIntegral Y] [Nonempty ββX.toPresheafedSpace] : AlgebraicGeometry.IsIntegral X - AlgebraicGeometry.genericPoint_eq_of_isOpenImmersion π Mathlib.AlgebraicGeometry.FunctionField
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [H : AlgebraicGeometry.IsOpenImmersion f] [hX : IrreducibleSpace ββX.toPresheafedSpace] [IrreducibleSpace ββY.toPresheafedSpace] : f.base (genericPoint ββX.toPresheafedSpace) = genericPoint ββY.toPresheafedSpace - AlgebraicGeometry.IsLocalAtSource.of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [AlgebraicGeometry.IsLocalAtSource P] {X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [P.ContainsIdentities] [AlgebraicGeometry.IsOpenImmersion f] : P f - AlgebraicGeometry.IsDominant.of_comp_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.UnderlyingMap
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Y) (g : Y βΆ Z) [H : AlgebraicGeometry.IsDominant (CategoryTheory.CategoryStruct.comp f g)] [AlgebraicGeometry.IsOpenImmersion g] : AlgebraicGeometry.IsDominant f - IsCompact.preimage_of_isOpen π Mathlib.Topology.Spectral.Hom
{Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} {s : Set Ξ²} (hf : IsSpectralMap f) (hβ : IsCompact s) (hβ : IsOpen s) : IsCompact (f β»ΒΉ' s) - IsSpectralMap.isCompact_preimage_of_isOpen π Mathlib.Topology.Spectral.Hom
{Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} (self : IsSpectralMap f) β¦s : Set Ξ²β¦ : IsOpen s β IsCompact s β IsCompact (f β»ΒΉ' s) - AlgebraicGeometry.HasRingHomProperty.of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.RingHomProperties
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {Q : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} [AlgebraicGeometry.HasRingHomProperty P Q] {X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} (hP : RingHom.ContainsIdentities fun {R S} [CommRing R] [CommRing S] => Q) [AlgebraicGeometry.IsOpenImmersion f] : P f - AlgebraicGeometry.HasRingHomProperty.comp_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.RingHomProperties
(P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) {Q : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} [AlgebraicGeometry.HasRingHomProperty P Q] {X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Y) (g : Y βΆ Z) [AlgebraicGeometry.IsOpenImmersion f] (H : P g) : P (CategoryTheory.CategoryStruct.comp f g) - AlgebraicGeometry.locallyOfFiniteType_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.FiniteType
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] : AlgebraicGeometry.LocallyOfFiniteType f - AlgebraicGeometry.stalkMap_injective_of_isOpenMap_of_injective π Mathlib.AlgebraicGeometry.Morphisms.ClosedImmersion
{X Y : AlgebraicGeometry.Scheme} [AlgebraicGeometry.IsAffine Y] {f : X βΆ Y} [CompactSpace ββX.toPresheafedSpace] (hfopen : IsOpenMap βf.base) (hfinjβ : Function.Injective βf.base) (hfinjβ : Function.Injective β(AlgebraicGeometry.Scheme.Hom.app f β€)) (x : ββX.toPresheafedSpace) : Function.Injective β(AlgebraicGeometry.Scheme.Hom.stalkMap f x) - AlgebraicGeometry.locallyOfFinitePresentation_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] : AlgebraicGeometry.LocallyOfFinitePresentation f - AlgebraicGeometry.isLocallyNoetherian_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Noetherian
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] [AlgebraicGeometry.IsLocallyNoetherian Y] : AlgebraicGeometry.IsLocallyNoetherian X - JacobsonSpace.of_isOpenEmbedding π Mathlib.Topology.JacobsonSpace
{X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} [JacobsonSpace Y] (hf : Topology.IsOpenEmbedding f) : JacobsonSpace X - AlgebraicGeometry.isGermInjectiveAt_iff_of_isOpenImmersion π Mathlib.AlgebraicGeometry.SpreadingOut
{X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} {x : ββX.toPresheafedSpace} [AlgebraicGeometry.IsOpenImmersion f] : Y.IsGermInjectiveAt (f.base x) β X.IsGermInjectiveAt x - fderivWithin_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {x : E} {s : Set E} (hs : IsOpen s) (hx : x β s) : fderivWithin π f s x = fderiv π f x - hasFDerivWithinAt_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {f' : E βL[π] F} {x : E} {s : Set E} (h : IsOpen s) (hx : x β s) : HasFDerivWithinAt f f' s x β HasFDerivAt f f' x - derivWithin_of_isOpen π Mathlib.Analysis.Calculus.Deriv.Basic
{π : Type u} [NontriviallyNormedField π] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {f : π β F} {x : π} {s : Set π} (hs : IsOpen s) (hx : x β s) : derivWithin f s x = deriv f x - iteratedFDerivWithin_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.FTaylorSeries
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s : Set E} {f : E β F} (n : β) (hs : IsOpen s) : Set.EqOn (iteratedFDerivWithin π n f s) (iteratedFDeriv π n f) s - ContDiffOn.continuousOn_fderiv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Defs
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s : Set E} {f : E β F} {n : ββ} (h : ContDiffOn π n f s) (hs : IsOpen s) (hn : 1 β€ n) : ContinuousOn (fun x => fderiv π f x) s - contDiffOn_top_iff_fderiv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Defs
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s : Set E} {f : E β F} (hs : IsOpen s) : ContDiffOn π β€ f s β DifferentiableOn π f s β§ ContDiffOn π β€ (fun y => fderiv π f y) s - ContDiffOn.fderiv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Defs
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s : Set E} {f : E β F} {m n : ββ} (hf : ContDiffOn π n f s) (hs : IsOpen s) (hmn : m + 1 β€ n) : ContDiffOn π m (fun y => fderiv π f y) s - contDiffOn_succ_iff_fderiv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Defs
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s : Set E} {f : E β F} {n : β} (hs : IsOpen s) : ContDiffOn π (βn + 1) f s β DifferentiableOn π f s β§ ContDiffOn π (βn) (fun y => fderiv π f y) s - AnalyticOnNhd.deriv_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {f : π β F} {s : Set π} (h : AnalyticOnNhd π f s) (hs : IsOpen s) : AnalyticOnNhd π (deriv f) s - AnalyticOnNhd.iteratedFDeriv_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u} [NormedAddCommGroup E] [NormedSpace π E] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {s : Set E} (h : AnalyticOnNhd π f s) (hs : IsOpen s) (n : β) : AnalyticOnNhd π (iteratedFDeriv π n f) s - AnalyticOnNhd.fderiv_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u} [NormedAddCommGroup E] [NormedSpace π E] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {s : Set E} (h : AnalyticOnNhd π f s) (hs : IsOpen s) : AnalyticOnNhd π (fderiv π f) s - ContDiffOn.continuousOn_deriv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {n : ββ} {fβ : π β F} {sβ : Set π} (h : ContDiffOn π n fβ sβ) (hs : IsOpen sβ) (hn : 1 β€ n) : ContinuousOn (deriv fβ) sβ - contDiffOn_top_iff_deriv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {fβ : π β F} {sβ : Set π} (hs : IsOpen sβ) : ContDiffOn π β€ fβ sβ β DifferentiableOn π fβ sβ β§ ContDiffOn π β€ (deriv fβ) sβ - ContDiffOn.deriv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {m n : ββ} {fβ : π β F} {sβ : Set π} (hf : ContDiffOn π n fβ sβ) (hs : IsOpen sβ) (hmn : m + 1 β€ n) : ContDiffOn π m (deriv fβ) sβ - contDiffOn_succ_iff_deriv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {fβ : π β F} {sβ : Set π} {n : β} (hs : IsOpen sβ) : ContDiffOn π (βn + 1) fβ sβ β DifferentiableOn π fβ sβ β§ ContDiffOn π (βn) (deriv fβ) sβ - Set.EqOn.iteratedDeriv_of_isOpen π Mathlib.Analysis.Calculus.IteratedDeriv.Lemmas
{π : Type u_1} [NontriviallyNormedField π] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace π F] {s : Set π} {f g : π β F} (hfg : Set.EqOn f g s) (hs : IsOpen s) (n : β) : Set.EqOn (iteratedDeriv n f) (iteratedDeriv n g) s - WeakSpace.isOpen_of_isOpen π Mathlib.Topology.Algebra.Module.WeakDual
{π : Type u_2} {E : Type u_4} [CommSemiring π] [TopologicalSpace π] [ContinuousAdd π] [ContinuousConstSMul π π] [AddCommMonoid E] [Module π E] [TopologicalSpace E] (V : Set E) (hV : IsOpen (β(toWeakSpaceCLM π E) '' V)) : IsOpen V - exists_tsupport_one_of_isOpen_isClosed π Mathlib.Topology.UrysohnsLemma
{X : Type u_1} [TopologicalSpace X] [T2Space X] {s t : Set X} (hs : IsOpen s) (hscp : IsCompact (closure s)) (ht : IsClosed t) (hst : t β s) : β f, tsupport βf β s β§ Set.EqOn (βf) 1 t β§ β (x : X), f x β Set.Icc 0 1 - ContinuousMap.setOfIdeal_ofSet_of_isOpen π Mathlib.Topology.ContinuousMap.Ideals
{X : Type u_1} (π : Type u_2) [RCLike π] [TopologicalSpace X] [CompactSpace X] [T2Space X] {s : Set X} (hs : IsOpen s) : ContinuousMap.setOfIdeal (ContinuousMap.idealOfSet π s) = s - MeasureTheory.Measure.addHaarScalarFactor_pos_of_isOpenPosMeasure π Mathlib.MeasureTheory.Measure.Haar.Unique
{G : Type u_1} [TopologicalSpace G] [AddGroup G] [TopologicalAddGroup G] [MeasurableSpace G] [BorelSpace G] (ΞΌ' ΞΌ : MeasureTheory.Measure G) [ΞΌ.IsAddHaarMeasure] [ΞΌ'.IsAddHaarMeasure] : 0 < ΞΌ'.addHaarScalarFactor ΞΌ - MeasureTheory.Measure.haarScalarFactor_pos_of_isOpenPosMeasure π Mathlib.MeasureTheory.Measure.Haar.Unique
{G : Type u_1} [TopologicalSpace G] [Group G] [TopologicalGroup G] [MeasurableSpace G] [BorelSpace G] (ΞΌ' ΞΌ : MeasureTheory.Measure G) [ΞΌ.IsHaarMeasure] [ΞΌ'.IsHaarMeasure] : 0 < ΞΌ'.haarScalarFactor ΞΌ - MeasureTheory.Measure.measure_isAddHaarMeasure_eq_smul_of_isOpen π Mathlib.MeasureTheory.Measure.Haar.Unique
{G : Type u_1} [TopologicalSpace G] [AddGroup G] [TopologicalAddGroup G] [MeasurableSpace G] [BorelSpace G] [LocallyCompactSpace G] (ΞΌ' ΞΌ : MeasureTheory.Measure G) [ΞΌ.IsAddHaarMeasure] [ΞΌ'.IsAddHaarMeasure] {s : Set G} (hs : IsOpen s) : ΞΌ' s = ΞΌ'.addHaarScalarFactor ΞΌ β’ ΞΌ s - MeasureTheory.Measure.measure_isHaarMeasure_eq_smul_of_isOpen π Mathlib.MeasureTheory.Measure.Haar.Unique
{G : Type u_1} [TopologicalSpace G] [Group G] [TopologicalGroup G] [MeasurableSpace G] [BorelSpace G] [LocallyCompactSpace G] (ΞΌ' ΞΌ : MeasureTheory.Measure G) [ΞΌ.IsHaarMeasure] [ΞΌ'.IsHaarMeasure] {s : Set G} (hs : IsOpen s) : ΞΌ' s = ΞΌ'.haarScalarFactor ΞΌ β’ ΞΌ s - lineDerivWithin_of_isOpen π Mathlib.Analysis.Calculus.LineDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace π F] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π E] {f : E β F} {s : Set E} {x v : E} (hs : IsOpen s) (hx : x β s) : lineDerivWithin π f s x v = lineDeriv π f x v - mfderivWithin_of_isOpen π Mathlib.Geometry.Manifold.MFDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : M β M'} {x : M} {s : Set M} (hs : IsOpen s) (hx : x β s) : mfderivWithin I I' f s x = mfderiv I I' f x - exists_continuous_sum_one_of_isOpen_isCompact π Mathlib.Topology.PartitionOfUnity
{X : Type v} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] {n : β} {t : Set X} {s : Fin n β Set X} (hs : β (i : Fin n), IsOpen (s i)) (htcp : IsCompact t) (hst : t β β i, s i) : β f, (β (i : Fin n), tsupport β(f i) β s i) β§ Set.EqOn (β i : Fin n, β(f i)) 1 t β§ (β (i : Fin n) (x : X), (f i) x β Set.Icc 0 1) β§ β (i : Fin n), HasCompactSupport β(f i) - VectorField.lieBracketWithin_of_isOpen π Mathlib.Analysis.Calculus.VectorField
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {V W : E β E} {s : Set E} {x : E} (hs : IsOpen s) (hx : x β s) : VectorField.lieBracketWithin π V W s x = VectorField.lieBracket π V W x - cardinal_eq_of_isOpen π Mathlib.Topology.Algebra.Module.Cardinality
{E : Type u_1} (π : Type u_2) [NontriviallyNormedField π] [AddCommGroup E] [Module π E] [TopologicalSpace E] [ContinuousAdd E] [ContinuousSMul π E] {s : Set E} (hs : IsOpen s) (h's : s.Nonempty) : Cardinal.mk βs = Cardinal.mk E - continuum_le_cardinal_of_isOpen π Mathlib.Topology.Algebra.Module.Cardinality
{E : Type u_1} (π : Type u_2) [NontriviallyNormedField π] [CompleteSpace π] [AddCommGroup E] [Module π E] [Nontrivial E] [TopologicalSpace E] [ContinuousAdd E] [ContinuousSMul π E] {s : Set E} (hs : IsOpen s) (h's : s.Nonempty) : Cardinal.continuum β€ Cardinal.mk βs - AddSubgroup.isClosed_of_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] (U : AddSubgroup G) (h : IsOpen βU) : IsClosed βU - Subgroup.isClosed_of_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (U : Subgroup G) (h : IsOpen βU) : IsClosed βU - AddSubgroup.quotient_finite_of_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] [CompactSpace G] (U : AddSubgroup G) (h : IsOpen βU) : Finite (G β§Έ U) - Subgroup.quotient_finite_of_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] [CompactSpace G] (U : Subgroup G) (h : IsOpen βU) : Finite (G β§Έ U) - AddSubgroup.addSubgroupOf_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [AddGroup G] [TopologicalSpace G] (U K : AddSubgroup G) (h : IsOpen βK) : IsOpen β(K.addSubgroupOf U) - Subgroup.subgroupOf_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [Group G] [TopologicalSpace G] (U K : Subgroup G) (h : IsOpen βK) : IsOpen β(K.subgroupOf U) - Ideal.isOpen_of_isOpen_subideal π Mathlib.Topology.Algebra.OpenSubgroup
{R : Type u_1} [CommRing R] [TopologicalSpace R] [TopologicalRing R] {U I : Ideal R} (h : U β€ I) (hU : IsOpen βU) : IsOpen βI - AddSubgroup.quotient_finite_of_isOpen' π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [AddGroup G] [TopologicalSpace G] [TopologicalAddGroup G] [CompactSpace G] (U : AddSubgroup G) (K : AddSubgroup β₯U) (hUopen : IsOpen βU) (hKopen : IsOpen βK) : Finite (β₯U β§Έ K) - Subgroup.quotient_finite_of_isOpen' π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [Group G] [TopologicalSpace G] [TopologicalGroup G] [CompactSpace G] (U : Subgroup G) (K : Subgroup β₯U) (hUopen : IsOpen βU) (hKopen : IsOpen βK) : Finite (β₯U β§Έ K) - CategoryTheory.PreGaloisCategory.exists_set_ker_evaluation_subset_of_isOpen π Mathlib.CategoryTheory.Galois.Topology
{C : Type uβ} [CategoryTheory.Category.{uβ, uβ} C] (F : CategoryTheory.Functor C FintypeCat) [CategoryTheory.GaloisCategory C] [CategoryTheory.PreGaloisCategory.FiberFunctor F] {H : Set (CategoryTheory.Aut F)} (h1 : 1 β H) (h : IsOpen H) : β I x, (β X β I, CategoryTheory.PreGaloisCategory.IsConnected X) β§ β (Ο : CategoryTheory.Aut F), (β (X : βI), Ο.hom.app βX = CategoryTheory.CategoryStruct.id (F.obj βX)) β Ο β H - image_subset_closure_compl_image_compl_of_isOpen π Mathlib.Topology.ExtremallyDisconnected
{A E : Type u} [TopologicalSpace A] [TopologicalSpace E] {Ο : E β A} (Ο_cont : Continuous Ο) (Ο_surj : Function.Surjective Ο) (zorn_subset : β (Eβ : Set E), Eβ β Set.univ β IsClosed Eβ β Ο '' Eβ β Set.univ) {G : Set E} (hG : IsOpen G) : Ο '' G β closure (Ο '' GαΆ)αΆ - compactlyGeneratedSpace_of_isOpen π Mathlib.Topology.Compactness.CompactlyGeneratedSpace
{X : Type u} [TopologicalSpace X] (h : β (s : Set X), (β (K : Type u) [inst : TopologicalSpace K] [inst_1 : CompactSpace K] [inst_2 : T2Space K] (f : K β X), Continuous f β IsOpen (f β»ΒΉ' s)) β IsOpen s) : CompactlyGeneratedSpace X - compactlyGeneratedSpace_of_isOpen_of_t2 π Mathlib.Topology.Compactness.CompactlyGeneratedSpace
{X : Type u} [TopologicalSpace X] [T2Space X] (h : β (s : Set X), (β (K : Set X), IsCompact K β IsOpen (Subtype.val β»ΒΉ' s)) β IsOpen s) : CompactlyGeneratedSpace X - uCompactlyGeneratedSpace_of_isOpen π Mathlib.Topology.Compactness.CompactlyGeneratedSpace
{X : Type w} [tX : TopologicalSpace X] (h : β (s : Set X), (β (S : CompHaus) (f : C(βS.toTop, X)), IsOpen (βf β»ΒΉ' s)) β IsOpen s) : UCompactlyGeneratedSpace X - eventually_mapsTo_of_isOpen_of_omegaLimit_subset π Mathlib.Dynamics.OmegaLimit
{Ο : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ²] (f : Filter Ο) (Ο : Ο β Ξ± β Ξ²) (s : Set Ξ±) [CompactSpace Ξ²] {v : Set Ξ²} (hvβ : IsOpen v) (hvβ : omegaLimit f Ο s β v) : βαΆ (t : Ο) in f, Set.MapsTo (Ο t) s v - eventually_mapsTo_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset π Mathlib.Dynamics.OmegaLimit
{Ο : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ²] (f : Filter Ο) (Ο : Ο β Ξ± β Ξ²) (s : Set Ξ±) [T2Space Ξ²] {c : Set Ξ²} (hcβ : IsCompact c) (hcβ : βαΆ (t : Ο) in f, Set.MapsTo (Ο t) s c) {n : Set Ξ²} (hnβ : IsOpen n) (hnβ : omegaLimit f Ο s β n) : βαΆ (t : Ο) in f, Set.MapsTo (Ο t) s n - eventually_closure_subset_of_isOpen_of_omegaLimit_subset π Mathlib.Dynamics.OmegaLimit
{Ο : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ²] (f : Filter Ο) (Ο : Ο β Ξ± β Ξ²) (s : Set Ξ±) [CompactSpace Ξ²] {v : Set Ξ²} (hvβ : IsOpen v) (hvβ : omegaLimit f Ο s β v) : β u β f, closure (Set.image2 Ο u s) β v - eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset π Mathlib.Dynamics.OmegaLimit
{Ο : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ²] (f : Filter Ο) (Ο : Ο β Ξ± β Ξ²) (s : Set Ξ±) [T2Space Ξ²] {c : Set Ξ²} (hcβ : IsCompact c) (hcβ : βαΆ (t : Ο) in f, Set.MapsTo (Ο t) s c) {n : Set Ξ²} (hnβ : IsOpen n) (hnβ : omegaLimit f Ο s β n) : β u β f, closure (Set.image2 Ο u s) β n - eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset' π Mathlib.Dynamics.OmegaLimit
{Ο : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ²] (f : Filter Ο) (Ο : Ο β Ξ± β Ξ²) (s : Set Ξ±) {c : Set Ξ²} (hcβ : IsCompact c) (hcβ : β v β f, closure (Set.image2 Ο v s) β c) {n : Set Ξ²} (hnβ : IsOpen n) (hnβ : omegaLimit f Ο s β n) : β u β f, closure (Set.image2 Ο u s) β n - tendsto_residual_of_isOpenMap π Mathlib.Topology.Baire.BaireMeasurable
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} (hc : Continuous f) (ho : IsOpenMap f) : Filter.Tendsto f (residual Ξ±) (residual Ξ²) - IsMeagre.preimage_of_isOpenMap π Mathlib.Topology.Baire.BaireMeasurable
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} (hc : Continuous f) (ho : IsOpenMap f) {s : Set Ξ²} (h : IsMeagre s) : IsMeagre (f β»ΒΉ' s) - Topology.IsLower.isLowerSet_of_isOpen π Mathlib.Topology.Order.LowerUpperTopology
{Ξ± : Type u_1} [Preorder Ξ±] [TopologicalSpace Ξ±] [Topology.IsLower Ξ±] {s : Set Ξ±} (h : IsOpen s) : IsLowerSet s - Topology.IsUpper.isUpperSet_of_isOpen π Mathlib.Topology.Order.LowerUpperTopology
{Ξ± : Type u_1} [Preorder Ξ±] [TopologicalSpace Ξ±] [Topology.IsUpper Ξ±] {s : Set Ξ±} (h : IsOpen s) : IsUpperSet s - Topology.IsScottHausdorff.dirSupInaccOn_of_isOpen π Mathlib.Topology.Order.ScottTopology
{Ξ± : Type u_1} {D : Set (Set Ξ±)} [Preorder Ξ±] [TopologicalSpace Ξ±] {s : Set Ξ±} [Topology.IsScottHausdorff Ξ± D] (h : IsOpen s) : DirSupInaccOn D s - Topology.IsScott.isUpperSet_of_isOpen π Mathlib.Topology.Order.ScottTopology
{Ξ± : Type u_1} {D : Set (Set Ξ±)} [Preorder Ξ±] [TopologicalSpace Ξ±] {s : Set Ξ±} [Topology.IsScott Ξ± D] : IsOpen s β IsUpperSet s
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
woould find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 4e1aab0
serving mathlib revision b513113