Loogle!
Result
Found 179 declarations whose name contains "of_isOpen".
- Dense.inter_of_isOpen_left π Mathlib.Topology.Neighborhoods
{X : Type u} [TopologicalSpace X] {s t : Set X} (hs : Dense s) (ht : Dense t) (hso : IsOpen s) : Dense (s β© t) - Dense.inter_of_isOpen_right π Mathlib.Topology.Neighborhoods
{X : Type u} [TopologicalSpace X] {s t : Set X} (hs : Dense s) (ht : Dense t) (hto : IsOpen t) : Dense (s β© t) - DenseRange.subset_closure_image_preimage_of_isOpen π Mathlib.Topology.Continuous
{X : Type u_1} [TopologicalSpace X] {Ξ± : Type u_4} {f : Ξ± β X} {s : Set X} (hf : DenseRange f) (hs : IsOpen s) : s β closure (f '' (f β»ΒΉ' s)) - TopologicalSpace.generateFrom_setOf_isOpen π Mathlib.Topology.Order
{Ξ± : Type u} (t : TopologicalSpace Ξ±) : TopologicalSpace.generateFrom {s | IsOpen s} = t - TopologicalSpace.setOf_isOpen_injective π Mathlib.Topology.Order
{Ξ± : Type u} : Function.Injective fun t => {s | IsOpen s} - setOf_isOpen_iSup π Mathlib.Topology.Order
{Ξ± : Type u} {ΞΉ : Sort v} {t : ΞΉ β TopologicalSpace Ξ±} : {s | IsOpen s} = β i, {s | IsOpen s} - setOf_isOpen_sup π Mathlib.Topology.Order
{Ξ± : Type u} (tβ tβ : TopologicalSpace Ξ±) : {s | IsOpen s} = {s | IsOpen s} β© {s | IsOpen s} - setOf_isOpen_sSup π Mathlib.Topology.Order
{Ξ± : Type u} {T : Set (TopologicalSpace Ξ±)} : {s | IsOpen s} = β t β T, {s | IsOpen s} - Topology.IsInducing.setOf_isOpen π Mathlib.Topology.Maps.Basic
{X : Type u_1} {Y : Type u_2} {f : X β Y} [TopologicalSpace Y] [TopologicalSpace X] (hf : Topology.IsInducing f) : {s | IsOpen s} = Set.preimage f '' {t | IsOpen t} - SeparatedNhds.isOpen_left_of_isOpen_union π Mathlib.Topology.Separation.SeparatedNhds
{X : Type u_1} [TopologicalSpace X] {s t : Set X} (hst : SeparatedNhds s t) (hst' : IsOpen (s βͺ t)) : IsOpen s - SeparatedNhds.isOpen_right_of_isOpen_union π Mathlib.Topology.Separation.SeparatedNhds
{X : Type u_1} [TopologicalSpace X] {s t : Set X} (hst : SeparatedNhds s t) (hst' : IsOpen (s βͺ t)) : IsOpen t - ContinuousOn.iUnion_of_isOpen π Mathlib.Topology.ContinuousOn
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} {ΞΉ : Type u_5} {s : ΞΉ β Set Ξ±} (hf : β (i : ΞΉ), ContinuousOn f (s i)) (hs : β (i : ΞΉ), IsOpen (s i)) : ContinuousOn f (β i, s i) - continuousOn_iUnion_iff_of_isOpen π Mathlib.Topology.ContinuousOn
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} {ΞΉ : Type u_5} {s : ΞΉ β Set Ξ±} (hs : β (i : ΞΉ), IsOpen (s i)) : ContinuousOn f (β i, s i) β β (i : ΞΉ), ContinuousOn f (s i) - continuous_of_continuousOn_iUnion_of_isOpen π Mathlib.Topology.ContinuousOn
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} {ΞΉ : Type u_5} {s : ΞΉ β Set Ξ±} (hf : β (i : ΞΉ), ContinuousOn f (s i)) (hs : β (i : ΞΉ), IsOpen (s i)) (hs' : β i, s i = Set.univ) : Continuous f - ContinuousOn.union_of_isOpen π Mathlib.Topology.ContinuousOn
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {s t : Set Ξ±} {f : Ξ± β Ξ²} (hfs : ContinuousOn f s) (hft : ContinuousOn f t) (hs : IsOpen s) (ht : IsOpen t) : ContinuousOn f (s βͺ t) - continouousOn_union_iff_of_isOpen π Mathlib.Topology.ContinuousOn
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {s t : Set Ξ±} {f : Ξ± β Ξ²} (hs : IsOpen s) (ht : IsOpen t) : ContinuousOn f (s βͺ t) β ContinuousOn f s β§ ContinuousOn f t - TopologicalSpace.IsTopologicalBasis.of_isOpen_of_subset π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] {s s' : Set (Set Ξ±)} (h_open : β u β s', IsOpen u) (hs : TopologicalSpace.IsTopologicalBasis s) (hss' : s β s') : TopologicalSpace.IsTopologicalBasis s' - Pairwise.countable_of_isOpen_disjoint π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] [TopologicalSpace.SeparableSpace Ξ±] {ΞΉ : Type u_2} {s : ΞΉ β Set Ξ±} (hd : Pairwise (Function.onFun Disjoint s)) (ho : β (i : ΞΉ), IsOpen (s i)) (hne : β (i : ΞΉ), (s i).Nonempty) : Countable ΞΉ - TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] {s : Set (Set Ξ±)} (h_open : β u β s, IsOpen u) (h_nhds : β (a : Ξ±) (u : Set Ξ±), a β u β IsOpen u β β v β s, a β v β§ v β u) : TopologicalSpace.IsTopologicalBasis s - TopologicalSpace.IsTopologicalBasis.exists_countable_biUnion_of_isOpen π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] [SecondCountableTopology Ξ±] {tβ : Set (Set Ξ±)} (ht : TopologicalSpace.IsTopologicalBasis tβ) {u : Set Ξ±} (hu : IsOpen u) : β s β tβ, s.Countable β§ u = β a β s, a - Set.PairwiseDisjoint.countable_of_isOpen π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] [TopologicalSpace.SeparableSpace Ξ±] {ΞΉ : Type u_2} {s : ΞΉ β Set Ξ±} {a : Set ΞΉ} (h : a.PairwiseDisjoint s) (ho : β i β a, IsOpen (s i)) (hne : β i β a, (s i).Nonempty) : a.Countable - subset_closure_inter_of_isPreirreducible_of_isOpen π Mathlib.Topology.Irreducible
{X : Type u_1} [TopologicalSpace X] {S U : Set X} (hS : IsPreirreducible S) (hU : IsOpen U) (h : (S β© U).Nonempty) : S β closure (S β© U) - IsOpenQuotientMap.of_isOpenMap_isQuotientMap π Mathlib.Topology.Maps.OpenQuotient
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} (ho : IsOpenMap f) (hq : Topology.IsQuotientMap f) : IsOpenQuotientMap f - isEmbedding_of_isOpenQuotientMap_of_isInducing π Mathlib.Topology.Maps.OpenQuotient
{A : Type u_4} {B : Type u_5} {C : Type u_6} {D : Type u_7} [TopologicalSpace A] [TopologicalSpace B] [TopologicalSpace C] [TopologicalSpace D] (f : A β B) (g : C β D) (p : A β C) (q : B β D) (h : g β p = q β f) (hf : Topology.IsInducing f) (hp : Topology.IsQuotientMap p) (hq : IsOpenQuotientMap q) (hg : Function.Injective g) (H : q β»ΒΉ' (q '' Set.range f) β Set.range f) : Topology.IsEmbedding g - isQuotientMap_of_isOpenQuotientMap_of_isInducing π Mathlib.Topology.Maps.OpenQuotient
{A : Type u_4} {B : Type u_5} {C : Type u_6} {D : Type u_7} [TopologicalSpace A] [TopologicalSpace B] [TopologicalSpace C] [TopologicalSpace D] (f : A β B) (g : C β D) (p : A β C) (q : B β D) (h : g β p = q β f) (hf : Topology.IsInducing f) (hp : Function.Surjective p) (hq : IsOpenQuotientMap q) (hg : Topology.IsEmbedding g) (H : q β»ΒΉ' (q '' Set.range f) β Set.range f) : Topology.IsQuotientMap p - coinduced_eq_induced_of_isOpenQuotientMap_of_isInducing π Mathlib.Topology.Maps.OpenQuotient
{A : Type u_4} {B : Type u_5} {C : Type u_6} {D : Type u_7} [TopologicalSpace A] [TopologicalSpace B] [TopologicalSpace D] (f : A β B) (g : C β D) (p : A β C) (q : B β D) (h : g β p = q β f) (hf : Topology.IsInducing f) (hp : Function.Surjective p) (hq : IsOpenQuotientMap q) (hg : Function.Injective g) (H : q β»ΒΉ' (q '' Set.range f) β Set.range f) : TopologicalSpace.coinduced p instβ = TopologicalSpace.induced g instβΒΉ - IsCompact.closure_subset_of_isOpen π Mathlib.Topology.Separation.Basic
{X : Type u_1} [TopologicalSpace X] [R1Space X] {K : Set X} (hK : IsCompact K) {U : Set X} (hU : IsOpen U) (hKU : K β U) : closure K β U - eventually_nhdsWithin_eventually_nhds_iff_of_isOpen π Mathlib.Topology.Separation.Basic
{X : Type u_1} [TopologicalSpace X] {s : Set X} {a : X} {p : X β Prop} (hs : IsOpen s) : (βαΆ (y : X) in nhdsWithin a s, βαΆ (x : X) in nhds y, p x) β βαΆ (x : X) in nhdsWithin a s, p x - exists_isOpen_singleton_of_isOpen_finite π Mathlib.Topology.Separation.Basic
{X : Type u_1} [TopologicalSpace X] [T0Space X] {s : Set X} (hfin : s.Finite) (hne : s.Nonempty) (ho : IsOpen s) : β x β s, IsOpen {x} - t2Space_iff_of_isOpenQuotientMap π Mathlib.Topology.Separation.Hausdorff
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Ο : X β Y} (h : IsOpenQuotientMap Ο) : T2Space Y β IsClosed {q | Ο q.1 = Ο q.2} - IsConnected.preimage_of_isOpenMap π Mathlib.Topology.Connected.Basic
{Ξ± : Type u} {Ξ² : Type v} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {s : Set Ξ²} (hs : IsConnected s) {f : Ξ± β Ξ²} (hinj : Function.Injective f) (hf : IsOpenMap f) (hsf : s β Set.range f) : IsConnected (f β»ΒΉ' s) - IsPreconnected.preimage_of_isOpenMap π Mathlib.Topology.Connected.Basic
{Ξ± : Type u} {Ξ² : Type v} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} {s : Set Ξ²} (hs : IsPreconnected s) (hinj : Function.Injective f) (hf : IsOpenMap f) (hsf : s β Set.range f) : IsPreconnected (f β»ΒΉ' s) - discreteTopology_of_isOpen_singleton_one π Mathlib.Topology.Algebra.Group.Basic
{G : Type w} [TopologicalSpace G] [Group G] [ContinuousMul G] (h : IsOpen {1}) : DiscreteTopology G - discreteTopology_of_isOpen_singleton_zero π Mathlib.Topology.Algebra.Group.Basic
{G : Type w} [TopologicalSpace G] [AddGroup G] [ContinuousAdd G] (h : IsOpen {0}) : DiscreteTopology G - TopCat.isIso_of_bijective_of_isOpenMap π Mathlib.Topology.Category.TopCat.Basic
{X Y : TopCat} (f : X βΆ Y) (hfbij : Function.Bijective β(CategoryTheory.ConcreteCategory.hom f)) (hfcl : IsOpenMap β(CategoryTheory.ConcreteCategory.hom f)) : CategoryTheory.IsIso f - CompactlyCoherentSpace.of_isOpen_forall_compactSpace π Mathlib.Topology.Compactness.CompactlyCoherentSpace
{X : Type u} [TopologicalSpace X] (h : β (s : Set X), (β (K : Type u) [inst : TopologicalSpace K] [CompactSpace K] (f : K β X), Continuous f β IsOpen (f β»ΒΉ' s)) β IsOpen s) : CompactlyCoherentSpace X - CompactlyCoherentSpace.of_isOpen π Mathlib.Topology.Compactness.CompactlyCoherentSpace
{X : Type u} [TopologicalSpace X] (h : β (A : Set X), (β (K : Set X), IsCompact K β IsOpen (Subtype.val β»ΒΉ' A)) β IsOpen A) : CompactlyCoherentSpace X - IsDiscrete.image_of_isOpenMap π Mathlib.Topology.DiscreteSubset
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} {s : Set X} (hs : IsDiscrete s) (hf : IsOpenMap f) (hf' : Function.Injective f) : IsDiscrete (f '' s) - IsDiscrete.image_of_isOpenMap_of_isOpen π Mathlib.Topology.DiscreteSubset
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} {s : Set X} (hs : IsDiscrete s) (hf : IsOpenMap f) (hs' : IsOpen s) : IsDiscrete (f '' s) - QuasiSeparatedSpace.of_isOpenEmbedding π Mathlib.Topology.QuasiSeparated
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] [QuasiSeparatedSpace Ξ±] {f : Ξ² β Ξ±} (h : Topology.IsOpenEmbedding f) : QuasiSeparatedSpace Ξ² - IsCompact.inter_of_isOpen π Mathlib.Topology.QuasiSeparated
{Ξ± : Type u_1} [TopologicalSpace Ξ±] [QuasiSeparatedSpace Ξ±] {U V : Set Ξ±} (hUcomp : IsCompact U) (hVcomp : IsCompact V) (hUopen : IsOpen U) (hVopen : IsOpen V) : IsCompact (U β© V) - IsCompact.preimage_of_isOpen π Mathlib.Topology.Spectral.Hom
{Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} {s : Set Ξ²} (hf : IsSpectralMap f) (hβ : IsCompact s) (hβ : IsOpen s) : IsCompact (f β»ΒΉ' s) - IsSpectralMap.isCompact_preimage_of_isOpen π Mathlib.Topology.Spectral.Hom
{Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} (self : IsSpectralMap f) β¦s : Set Ξ²β¦ : IsOpen s β IsCompact s β IsCompact (f β»ΒΉ' s) - PrespectralSpace.of_isOpenCover π Mathlib.Topology.Spectral.Prespectral
{X : Type u_1} [TopologicalSpace X] {ΞΉ : Type u_3} {U : ΞΉ β TopologicalSpace.Opens X} (hU : TopologicalSpace.IsOpenCover U) [β (i : ΞΉ), PrespectralSpace β₯(U i)] : PrespectralSpace X - IsRetrocompact.preimage_of_isOpenEmbedding π Mathlib.Topology.Constructible
{X : Type u_2} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} {s : Set Y} (hf : Topology.IsOpenEmbedding f) (hs : IsRetrocompact s) : IsRetrocompact (f β»ΒΉ' s) - Topology.IsConstructible.preimage_of_isOpenEmbedding π Mathlib.Topology.Constructible
{X : Type u_2} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} {s : Set Y} (hf : Topology.IsOpenEmbedding f) (hs : Topology.IsConstructible s) : Topology.IsConstructible (f β»ΒΉ' s) - Topology.IsLocallyConstructible.preimage_of_isOpenEmbedding π Mathlib.Topology.Constructible
{X : Type u_2} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} {s : Set Y} (hs : Topology.IsLocallyConstructible s) (hf : Topology.IsOpenEmbedding f) : Topology.IsLocallyConstructible (f β»ΒΉ' s) - Topology.IsConstructible.image_of_isOpenEmbedding π Mathlib.Topology.Constructible
{X : Type u_2} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} {s : Set X} (hfopen : Topology.IsOpenEmbedding f) (hfcomp : IsRetrocompact (Set.range f)) (hs : Topology.IsConstructible s) : Topology.IsConstructible (f '' s) - Topology.IsLocallyConstructible.inter_of_isOpen_isCompact π Mathlib.Topology.Constructible
{X : Type u_2} [TopologicalSpace X] {s t : Set X} [PrespectralSpace X] [QuasiSeparatedSpace X] (hs : Topology.IsLocallyConstructible s) (ht : IsOpen t) (ht' : IsCompact t) : Topology.IsConstructible (s β© t) - Topology.IsLocallyConstructible.of_isOpenCover' π Mathlib.Topology.Constructible
{X : Type u_2} [TopologicalSpace X] {s : Set X} {ΞΉ : Type u_4} {U : ΞΉ β TopologicalSpace.Opens X} (hU : TopologicalSpace.IsOpenCover U) (H : β (i : ΞΉ), Topology.IsLocallyConstructible (s β© β(U i))) : Topology.IsLocallyConstructible s - QuasiSeparatedSpace.of_isOpenCover π Mathlib.Topology.Constructible
{X : Type u_2} [TopologicalSpace X] {ΞΉ : Type u_4} {U : ΞΉ β TopologicalSpace.Opens X} (hU : TopologicalSpace.IsOpenCover U) (hβ : β (i : ΞΉ), IsRetrocompact β(U i)) (hβ : β (i : ΞΉ), IsQuasiSeparated β(U i)) : QuasiSeparatedSpace X - Topology.isConstructible_preimage_iff_of_isOpenEmbedding π Mathlib.Topology.Constructible
{X : Type u_2} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} {s : Set Y} (hf : Topology.IsOpenEmbedding f) (hfcomp : IsRetrocompact (Set.range f)) (hsf : s β Set.range f) : Topology.IsConstructible (f β»ΒΉ' s) β Topology.IsConstructible s - Topology.IsLocallyConstructible.iff_isConstructible_of_isOpenCover π Mathlib.Topology.Constructible
{X : Type u_2} [TopologicalSpace X] {s : Set X} {ΞΉ : Type u_4} {U : ΞΉ β TopologicalSpace.Opens X} [PrespectralSpace X] [QuasiSeparatedSpace X] (hU : TopologicalSpace.IsOpenCover U) (hU' : β (i : ΞΉ), IsCompact β(U i)) : Topology.IsLocallyConstructible s β β (i : ΞΉ), Topology.IsConstructible (s β© β(U i)) - Topology.IsLocallyConstructible.of_isOpenCover π Mathlib.Topology.Constructible
{X : Type u_2} [TopologicalSpace X] {s : Set X} {ΞΉ : Type u_4} {U : ΞΉ β TopologicalSpace.Opens X} (hU : TopologicalSpace.IsOpenCover U) (H : β (i : ΞΉ), Topology.IsLocallyConstructible (Subtype.val β»ΒΉ' s)) : Topology.IsLocallyConstructible s - Topology.IsLocallyConstructible.iff_of_isOpenCover π Mathlib.Topology.Constructible
{X : Type u_2} [TopologicalSpace X] {s : Set X} {ΞΉ : Type u_4} {U : ΞΉ β TopologicalSpace.Opens X} (hU : TopologicalSpace.IsOpenCover U) : Topology.IsLocallyConstructible s β β (i : ΞΉ), Topology.IsLocallyConstructible (Subtype.val β»ΒΉ' s) - PrimeSpectrum.eq_biUnion_of_isOpen π Mathlib.RingTheory.Spectrum.Prime.Topology
{R : Type u} [CommSemiring R] {s : Set (PrimeSpectrum R)} (hs : IsOpen s) : s = β r, β (_ : β(PrimeSpectrum.basicOpen r) β s), β(PrimeSpectrum.basicOpen r) - IsGΞ΄.iInter_of_isOpen π Mathlib.Topology.GDelta.Basic
{X : Type u_1} {ΞΉ' : Sort u_4} [TopologicalSpace X] [Countable ΞΉ'] {f : ΞΉ' β Set X} (hf : β (i : ΞΉ'), IsOpen (f i)) : IsGΞ΄ (β i, f i) - IsGΞ΄.biInter_of_isOpen π Mathlib.Topology.GDelta.Basic
{X : Type u_1} {ΞΉ : Type u_3} [TopologicalSpace X] {I : Set ΞΉ} (hI : I.Countable) {f : ΞΉ β Set X} (hf : β i β I, IsOpen (f i)) : IsGΞ΄ (β i β I, f i) - measurable_of_isOpen π Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
{Ξ³ : Type u_3} {Ξ΄ : Type u_5} [TopologicalSpace Ξ³] [MeasurableSpace Ξ³] [BorelSpace Ξ³] [MeasurableSpace Ξ΄] {f : Ξ΄ β Ξ³} (hf : β (s : Set Ξ³), IsOpen s β MeasurableSet (f β»ΒΉ' s)) : Measurable f - MeasureTheory.Measure.InnerRegularWRT.measurableSet_of_isOpen π Mathlib.MeasureTheory.Measure.Regular
{Ξ± : Type u_1} [MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±} {p : Set Ξ± β Prop} [TopologicalSpace Ξ±] [ΞΌ.OuterRegular] (H : ΞΌ.InnerRegularWRT p IsOpen) (hd : β β¦s U : Set Ξ±β¦, p s β IsOpen U β p (s \ U)) : ΞΌ.InnerRegularWRT p fun s => MeasurableSet s β§ ΞΌ s β β€ - Convex.strictConvex_of_isOpen π Mathlib.Analysis.Convex.Strict
{π : Type u_1} {E : Type u_3} [Semiring π] [PartialOrder π] [TopologicalSpace E] [AddCommMonoid E] [Module π E] {s : Set E} (h : IsOpen s) (hs : Convex π s) : StrictConvex π s - MeasureTheory.Content.outerMeasure_of_isOpen π Mathlib.MeasureTheory.Measure.Content
{G : Type w} [TopologicalSpace G] (ΞΌ : MeasureTheory.Content G) [R1Space G] (U : Set G) (hU : IsOpen U) : ΞΌ.outerMeasure U = ΞΌ.innerContent { carrier := U, is_open' := hU } - not_isMeagre_of_isOpen π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} [TopologicalSpace X] [BaireSpace X] {s : Set X} (hs : IsOpen s) (hne : s.Nonempty) : Β¬IsMeagre s - dense_iInter_of_isOpen_nat π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} [TopologicalSpace X] [BaireSpace X] {f : β β Set X} (ho : β (n : β), IsOpen (f n)) (hd : β (n : β), Dense (f n)) : Dense (β n, f n) - dense_iInter_of_isOpen π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} {ΞΉ : Sort u_3} [TopologicalSpace X] [BaireSpace X] [Countable ΞΉ] {f : ΞΉ β Set X} (ho : β (i : ΞΉ), IsOpen (f i)) (hd : β (i : ΞΉ), Dense (f i)) : Dense (β s, f s) - dense_sInter_of_isOpen π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} [TopologicalSpace X] [BaireSpace X] {S : Set (Set X)} (ho : β s β S, IsOpen s) (hS : S.Countable) (hd : β s β S, Dense s) : Dense (ββ S) - dense_biInter_of_isOpen π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} {Ξ± : Type u_2} [TopologicalSpace X] [BaireSpace X] {S : Set Ξ±} {f : Ξ± β Set X} (ho : β s β S, IsOpen (f s)) (hS : S.Countable) (hd : β s β S, Dense (f s)) : Dense (β s β S, f s) - TopCat.Presheaf.isSheaf_of_isOpenEmbedding π Mathlib.Topology.Sheaves.SheafCondition.Sites
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : TopCat} {f : X βΆ Y} {F : TopCat.Presheaf C Y} (h : Topology.IsOpenEmbedding β(CategoryTheory.ConcreteCategory.hom f)) (hF : F.IsSheaf) : TopCat.Presheaf.IsSheaf (β―.functor.op.comp F) - AlgebraicGeometry.isIso_of_isOpenImmersion_of_opensRange_eq_top π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] (hf : AlgebraicGeometry.Scheme.Hom.opensRange f = β€) : CategoryTheory.IsIso f - AlgebraicGeometry.IsAffineOpen.image_of_isOpenImmersion π Mathlib.AlgebraicGeometry.AffineScheme
{X Y : AlgebraicGeometry.Scheme} {U : X.Opens} (hU : AlgebraicGeometry.IsAffineOpen U) (f : X βΆ Y) [H : AlgebraicGeometry.IsOpenImmersion f] : AlgebraicGeometry.IsAffineOpen ((AlgebraicGeometry.Scheme.Hom.opensFunctor f).obj U) - AlgebraicGeometry.Scheme.Hom.isAffineOpen_iff_of_isOpenImmersion π Mathlib.AlgebraicGeometry.AffineScheme
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [H : AlgebraicGeometry.IsOpenImmersion f] {U : X.Opens} : AlgebraicGeometry.IsAffineOpen ((AlgebraicGeometry.Scheme.Hom.opensFunctor f).obj U) β AlgebraicGeometry.IsAffineOpen U - AlgebraicGeometry.IsAffineOpen.preimage_of_isOpenImmersion π Mathlib.AlgebraicGeometry.AffineScheme
{X Y : AlgebraicGeometry.Scheme} {U : Y.Opens} (hU : AlgebraicGeometry.IsAffineOpen U) (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] (hU' : U β€ AlgebraicGeometry.Scheme.Hom.opensRange f) : AlgebraicGeometry.IsAffineOpen ((TopologicalSpace.Opens.map f.base).obj U) - AlgebraicGeometry.IsLocalAtSource.of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [AlgebraicGeometry.IsZariskiLocalAtSource P] {X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [P.ContainsIdentities] [AlgebraicGeometry.IsOpenImmersion f] : P f - AlgebraicGeometry.IsZariskiLocalAtSource.of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [AlgebraicGeometry.IsZariskiLocalAtSource P] {X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [P.ContainsIdentities] [AlgebraicGeometry.IsOpenImmersion f] : P f - AlgebraicGeometry.IsDominant.of_comp_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.UnderlyingMap
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Y) (g : Y βΆ Z) [H : AlgebraicGeometry.IsDominant (CategoryTheory.CategoryStruct.comp f g)] [AlgebraicGeometry.IsOpenImmersion g] : AlgebraicGeometry.IsDominant f - AlgebraicGeometry.HasRingHomProperty.of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.RingHomProperties
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {Q : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} [AlgebraicGeometry.HasRingHomProperty P Q] {X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} (hP : RingHom.ContainsIdentities fun {R S} [CommRing R] [CommRing S] => Q) [AlgebraicGeometry.IsOpenImmersion f] : P f - AlgebraicGeometry.HasRingHomProperty.comp_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.RingHomProperties
(P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) {Q : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} [AlgebraicGeometry.HasRingHomProperty P Q] {X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Y) (g : Y βΆ Z) [AlgebraicGeometry.IsOpenImmersion f] (H : P g) : P (CategoryTheory.CategoryStruct.comp f g) - AlgebraicGeometry.Scheme.quasiSeparatedSpace_of_isOpenCover π Mathlib.AlgebraicGeometry.Morphisms.QuasiSeparated
{X : AlgebraicGeometry.Scheme} {I : Type u_1} (U : I β X.Opens) (hU : TopologicalSpace.IsOpenCover U) (hUβ : β (i : I), AlgebraicGeometry.IsAffineOpen (U i)) (hUβ : β (i j : I), IsCompact (β(U i) β© β(U j))) : QuasiSeparatedSpace β₯X - AlgebraicGeometry.isReduced_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Properties
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] [AlgebraicGeometry.IsReduced Y] : AlgebraicGeometry.IsReduced X - AlgebraicGeometry.isIntegral_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Properties
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] [AlgebraicGeometry.IsIntegral Y] [Nonempty β₯X] : AlgebraicGeometry.IsIntegral X - AlgebraicGeometry.Scheme.ker_ideal_of_isPullback_of_isOpenImmersion π Mathlib.AlgebraicGeometry.IdealSheaf.Basic
{X Y U V : AlgebraicGeometry.Scheme} (f : X βΆ Y) (f' : U βΆ V) (iU : U βΆ X) (iV : V βΆ Y) [AlgebraicGeometry.IsOpenImmersion iV] [AlgebraicGeometry.QuasiCompact f] (H : CategoryTheory.IsPullback f' iU iV f) (W : βV.affineOpens) : (AlgebraicGeometry.Scheme.Hom.ker f').ideal W = Ideal.comap (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.appIso iV βW).inv) ((AlgebraicGeometry.Scheme.Hom.ker f).ideal β¨(AlgebraicGeometry.Scheme.Hom.opensFunctor iV).obj βW, β―β©) - JacobsonSpace.of_isOpenEmbedding π Mathlib.Topology.JacobsonSpace
{X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [TopologicalSpace Y] {f : X β Y} [JacobsonSpace Y] (hf : Topology.IsOpenEmbedding f) : JacobsonSpace X - AlgebraicGeometry.locallyOfFiniteType_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.FiniteType
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] : AlgebraicGeometry.LocallyOfFiniteType f - AlgebraicGeometry.stalkMap_injective_of_isOpenMap_of_injective π Mathlib.AlgebraicGeometry.Morphisms.ClosedImmersion
{X Y : AlgebraicGeometry.Scheme} [AlgebraicGeometry.IsAffine Y] {f : X βΆ Y} [CompactSpace β₯X] (hfopen : IsOpenMap β(CategoryTheory.ConcreteCategory.hom f.base)) (hfinjβ : Function.Injective β(CategoryTheory.ConcreteCategory.hom f.base)) (hfinjβ : Function.Injective β(CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.appTop f))) (x : β₯X) : Function.Injective β(CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.stalkMap f x)) - AlgebraicGeometry.locallyOfFinitePresentation_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Morphisms.FinitePresentation
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] : AlgebraicGeometry.LocallyOfFinitePresentation f - AlgebraicGeometry.Scheme.IdealSheafData.ideal_comap_of_isOpenImmersion π Mathlib.AlgebraicGeometry.IdealSheaf.Functorial
{X Y : AlgebraicGeometry.Scheme} (I : Y.IdealSheafData) (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] (U : βX.affineOpens) : (I.comap f).ideal U = Ideal.comap (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.appIso f βU).inv) (I.ideal β¨(AlgebraicGeometry.Scheme.Hom.opensFunctor f).obj βU, β―β©) - AddSubgroup.isClosed_of_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] (U : AddSubgroup G) (h : IsOpen βU) : IsClosed βU - Subgroup.isClosed_of_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (U : Subgroup G) (h : IsOpen βU) : IsClosed βU - AddSubgroup.quotient_finite_of_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] [CompactSpace G] (U : AddSubgroup G) (h : IsOpen βU) : Finite (G β§Έ U) - Subgroup.quotient_finite_of_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] [CompactSpace G] (U : Subgroup G) (h : IsOpen βU) : Finite (G β§Έ U) - AddSubgroup.addSubgroupOf_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [AddGroup G] [TopologicalSpace G] (U K : AddSubgroup G) (h : IsOpen βK) : IsOpen β(K.addSubgroupOf U) - Subgroup.subgroupOf_isOpen π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [Group G] [TopologicalSpace G] (U K : Subgroup G) (h : IsOpen βK) : IsOpen β(K.subgroupOf U) - Ideal.isOpen_of_isOpen_subideal π Mathlib.Topology.Algebra.OpenSubgroup
{R : Type u_1} [CommRing R] [TopologicalSpace R] [IsTopologicalRing R] {U I : Ideal R} (h : U β€ I) (hU : IsOpen βU) : IsOpen βI - AddSubgroup.quotient_finite_of_isOpen' π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [AddGroup G] [TopologicalSpace G] [IsTopologicalAddGroup G] [CompactSpace G] (U : AddSubgroup G) (K : AddSubgroup β₯U) (hUopen : IsOpen βU) (hKopen : IsOpen βK) : Finite (β₯U β§Έ K) - Subgroup.quotient_finite_of_isOpen' π Mathlib.Topology.Algebra.OpenSubgroup
{G : Type u_1} [Group G] [TopologicalSpace G] [IsTopologicalGroup G] [CompactSpace G] (U : Subgroup G) (K : Subgroup β₯U) (hUopen : IsOpen βU) (hKopen : IsOpen βK) : Finite (β₯U β§Έ K) - AlgebraicGeometry.genericPoint_eq_of_isOpenImmersion π Mathlib.AlgebraicGeometry.FunctionField
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] [hX : IrreducibleSpace β₯X] [IrreducibleSpace β₯Y] : (CategoryTheory.ConcreteCategory.hom f.base) (genericPoint β₯X) = genericPoint β₯Y - AlgebraicGeometry.isLocallyNoetherian_of_isOpenImmersion π Mathlib.AlgebraicGeometry.Noetherian
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] [AlgebraicGeometry.IsLocallyNoetherian Y] : AlgebraicGeometry.IsLocallyNoetherian X - AlgebraicGeometry.isGermInjectiveAt_iff_of_isOpenImmersion π Mathlib.AlgebraicGeometry.SpreadingOut
{X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} {x : β₯X} [AlgebraicGeometry.IsOpenImmersion f] : Y.IsGermInjectiveAt ((CategoryTheory.ConcreteCategory.hom f.base) x) β X.IsGermInjectiveAt x - DifferentiableOn.iUnion_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {ΞΉ : Type u_4} {s : ΞΉ β Set E} (hf : β (i : ΞΉ), DifferentiableOn π f (s i)) (hs : β (i : ΞΉ), IsOpen (s i)) : DifferentiableOn π f (β i, s i) - differentiableOn_iUnion_iff_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {ΞΉ : Type u_4} {s : ΞΉ β Set E} (hs : β (i : ΞΉ), IsOpen (s i)) : DifferentiableOn π f (β i, s i) β β (i : ΞΉ), DifferentiableOn π f (s i) - differentiable_of_differentiableOn_iUnion_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {ΞΉ : Type u_4} {s : ΞΉ β Set E} (hf : β (i : ΞΉ), DifferentiableOn π f (s i)) (hs : β (i : ΞΉ), IsOpen (s i)) (hs' : β i, s i = Set.univ) : Differentiable π f - DifferentiableOn.union_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {s t : Set E} (hf : DifferentiableOn π f s) (hf' : DifferentiableOn π f t) (hs : IsOpen s) (ht : IsOpen t) : DifferentiableOn π f (s βͺ t) - differentiableOn_union_iff_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {s t : Set E} (hs : IsOpen s) (ht : IsOpen t) : DifferentiableOn π f (s βͺ t) β DifferentiableOn π f s β§ DifferentiableOn π f t - differentiable_of_differentiableOn_union_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {s t : Set E} (hf : DifferentiableOn π f s) (hf' : DifferentiableOn π f t) (hst : s βͺ t = Set.univ) (hs : IsOpen s) (ht : IsOpen t) : Differentiable π f - fderivWithin_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {x : E} {s : Set E} (hs : IsOpen s) (hx : x β s) : fderivWithin π f s x = fderiv π f x - hasFDerivWithinAt_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {f' : E βL[π] F} {x : E} {s : Set E} (h : IsOpen s) (hx : x β s) : HasFDerivWithinAt f f' s x β HasFDerivAt f f' x - derivWithin_of_isOpen π Mathlib.Analysis.Calculus.Deriv.Basic
{π : Type u} [NontriviallyNormedField π] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {f : π β F} {x : π} {s : Set π} (hs : IsOpen s) (hx : x β s) : derivWithin f s x = deriv f x - iteratedFDerivWithin_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.FTaylorSeries
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s : Set E} {f : E β F} (n : β) (hs : IsOpen s) : Set.EqOn (iteratedFDerivWithin π n f s) (iteratedFDeriv π n f) s - AnalyticOnNhd.deriv_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {f : π β F} {s : Set π} (h : AnalyticOnNhd π f s) (hs : IsOpen s) : AnalyticOnNhd π (deriv f) s - AnalyticOnNhd.iteratedFDeriv_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u} [NormedAddCommGroup E] [NormedSpace π E] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {s : Set E} (h : AnalyticOnNhd π f s) (hs : IsOpen s) (n : β) : AnalyticOnNhd π (iteratedFDeriv π n f) s - AnalyticOnNhd.fderiv_of_isOpen π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u} [NormedAddCommGroup E] [NormedSpace π E] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {s : Set E} (h : AnalyticOnNhd π f s) (hs : IsOpen s) : AnalyticOnNhd π (fderiv π f) s - ContDiffOn.continuousOn_fderiv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Defs
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s : Set E} {f : E β F} {n : WithTop ββ} (h : ContDiffOn π n f s) (hs : IsOpen s) (hn : 1 β€ n) : ContinuousOn (fderiv π f) s - contDiffOn_infty_iff_fderiv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Defs
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s : Set E} {f : E β F} (hs : IsOpen s) : ContDiffOn π (ββ€) f s β DifferentiableOn π f s β§ ContDiffOn π (ββ€) (fderiv π f) s - ContDiffOn.fderiv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Defs
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s : Set E} {f : E β F} {m n : WithTop ββ} (hf : ContDiffOn π n f s) (hs : IsOpen s) (hmn : m + 1 β€ n) : ContDiffOn π m (fderiv π f) s - contDiffOn_succ_iff_fderiv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Defs
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s : Set E} {f : E β F} {n : WithTop ββ} (hs : IsOpen s) : ContDiffOn π (n + 1) f s β DifferentiableOn π f s β§ (n = β€ β AnalyticOn π f s) β§ ContDiffOn π n (fderiv π f) s - iteratedDerivWithin_of_isOpen π Mathlib.Analysis.Calculus.IteratedDeriv.Defs
{π : Type u_1} [NontriviallyNormedField π] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace π F] {n : β} {f : π β F} {s : Set π} (hs : IsOpen s) : Set.EqOn (iteratedDerivWithin n f s) (iteratedDeriv n f) s - iteratedDerivWithin_of_isOpen_eq_iterate π Mathlib.Analysis.Calculus.IteratedDeriv.Defs
{π : Type u_1} [NontriviallyNormedField π] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace π F] {n : β} {f : π β F} {s : Set π} (hs : IsOpen s) : Set.EqOn (iteratedDerivWithin n f s) (deriv^[n] f) s - iteratedDerivWithin_congr_right_of_isOpen π Mathlib.Analysis.Calculus.IteratedDeriv.Defs
{π : Type u_1} [NontriviallyNormedField π] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace π F] (f : π β F) (n : β) {s t : Set π} (hs : IsOpen s) (ht : IsOpen t) : Set.EqOn (iteratedDerivWithin n f s) (iteratedDerivWithin n f t) (s β© t) - cardinal_eq_of_isOpen π Mathlib.Topology.Algebra.Module.Cardinality
{E : Type u_1} (π : Type u_2) [NontriviallyNormedField π] [AddGroup E] [MulActionWithZero π E] [TopologicalSpace E] [ContinuousAdd E] [ContinuousSMul π E] {s : Set E} (hs : IsOpen s) (h's : s.Nonempty) : Cardinal.mk βs = Cardinal.mk E - continuum_le_cardinal_of_isOpen π Mathlib.Topology.Algebra.Module.Cardinality
{E : Type u_1} (π : Type u_2) [NontriviallyNormedField π] [CompleteSpace π] [AddCommGroup E] [Module π E] [Nontrivial E] [TopologicalSpace E] [ContinuousAdd E] [ContinuousSMul π E] {s : Set E} (hs : IsOpen s) (h's : s.Nonempty) : Cardinal.continuum β€ Cardinal.mk βs - ContDiffOn.iUnion_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {n : WithTop ββ} {ΞΉ : Type u_3} {s : ΞΉ β Set E} (hf : β (i : ΞΉ), ContDiffOn π n f (s i)) (hs : β (i : ΞΉ), IsOpen (s i)) : ContDiffOn π n f (β i, s i) - contDiffOn_iUnion_iff_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {n : WithTop ββ} {ΞΉ : Type u_3} {s : ΞΉ β Set E} (hs : β (i : ΞΉ), IsOpen (s i)) : ContDiffOn π n f (β i, s i) β β (i : ΞΉ), ContDiffOn π n f (s i) - contDiff_of_contDiffOn_iUnion_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {n : WithTop ββ} {ΞΉ : Type u_3} {s : ΞΉ β Set E} (hf : β (i : ΞΉ), ContDiffOn π n f (s i)) (hs : β (i : ΞΉ), IsOpen (s i)) (hs' : β i, s i = Set.univ) : ContDiff π n f - ContDiffOn.union_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s t : Set E} {f : E β F} {n : WithTop ββ} (hf : ContDiffOn π n f s) (hf' : ContDiffOn π n f t) (hs : IsOpen s) (ht : IsOpen t) : ContDiffOn π n f (s βͺ t) - contDiffOn_union_iff_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s t : Set E} {f : E β F} {n : WithTop ββ} (hs : IsOpen s) (ht : IsOpen t) : ContDiffOn π n f (s βͺ t) β ContDiffOn π n f s β§ ContDiffOn π n f t - contDiff_of_contDiffOn_union_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {s t : Set E} {f : E β F} {n : WithTop ββ} (hf : ContDiffOn π n f s) (hf' : ContDiffOn π n f t) (hst : s βͺ t = Set.univ) (hs : IsOpen s) (ht : IsOpen t) : ContDiff π n f - ContDiffOn.continuousOn_deriv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {n : WithTop ββ} {fβ : π β F} {sβ : Set π} (h : ContDiffOn π n fβ sβ) (hs : IsOpen sβ) (hn : 1 β€ n) : ContinuousOn (deriv fβ) sβ - ContDiffOn.deriv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {m n : WithTop ββ} {fβ : π β F} {sβ : Set π} (hf : ContDiffOn π n fβ sβ) (hs : IsOpen sβ) (hmn : m + 1 β€ n) : ContDiffOn π m (deriv fβ) sβ - contDiffOn_infty_iff_deriv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {fβ : π β F} {sβ : Set π} (hs : IsOpen sβ) : ContDiffOn π (ββ€) fβ sβ β DifferentiableOn π fβ sβ β§ ContDiffOn π (ββ€) (deriv fβ) sβ - contDiffOn_succ_iff_deriv_of_isOpen π Mathlib.Analysis.Calculus.ContDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {n : WithTop ββ} {fβ : π β F} {sβ : Set π} (hs : IsOpen sβ) : ContDiffOn π (n + 1) fβ sβ β DifferentiableOn π fβ sβ β§ (n = β€ β AnalyticOn π fβ sβ) β§ ContDiffOn π n (deriv fβ) sβ - Set.EqOn.iteratedDeriv_of_isOpen π Mathlib.Analysis.Calculus.IteratedDeriv.Lemmas
{π : Type u_1} [NontriviallyNormedField π] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace π F] {s : Set π} {f g : π β F} (hfg : Set.EqOn f g s) (hs : IsOpen s) (n : β) : Set.EqOn (iteratedDeriv n f) (iteratedDeriv n g) s - gauge_lt_one_of_mem_of_isOpen π Mathlib.Analysis.Convex.Gauge
{E : Type u_2} [AddCommGroup E] [Module β E] {s : Set E} [TopologicalSpace E] [ContinuousSMul β E] (hsβ : IsOpen s) {x : E} (hx : x β s) : gauge s x < 1 - gauge_lt_one_eq_self_of_isOpen π Mathlib.Analysis.Convex.Gauge
{E : Type u_2} [AddCommGroup E] [Module β E] {s : Set E} [TopologicalSpace E] [ContinuousSMul β E] (hsβ : Convex β s) (hsβ : 0 β s) (hsβ : IsOpen s) : {x | gauge s x < 1} = s - gaugeSeminorm_lt_one_of_isOpen π Mathlib.Analysis.Convex.Gauge
{π : Type u_1} {E : Type u_2} [AddCommGroup E] [Module β E] {s : Set E} [RCLike π] [Module π E] [IsScalarTower β π E] {hsβ : Balanced π s} {hsβ : Convex β s} {hsβ : Absorbent β s} [TopologicalSpace E] [ContinuousSMul β E] (hs : IsOpen s) {x : E} (hx : x β s) : (gaugeSeminorm hsβ hsβ hsβ) x < 1 - WeakSpace.isOpen_of_isOpen π Mathlib.Topology.Algebra.Module.WeakDual
{π : Type u_2} {E : Type u_4} [CommSemiring π] [TopologicalSpace π] [ContinuousAdd π] [ContinuousConstSMul π π] [AddCommMonoid E] [Module π E] [TopologicalSpace E] (V : Set E) (hV : IsOpen (β(toWeakSpaceCLM π E) '' V)) : IsOpen V - exists_tsupport_one_of_isOpen_isClosed π Mathlib.Topology.UrysohnsLemma
{X : Type u_1} [TopologicalSpace X] [R1Space X] {s t : Set X} (hs : IsOpen s) (hscp : IsCompact (closure s)) (ht : IsClosed t) (hst : t β s) : β f, tsupport βf β s β§ Set.EqOn (βf) 1 t β§ β (x : X), f x β Set.Icc 0 1 - ContinuousMap.setOfIdeal_ofSet_of_isOpen π Mathlib.Topology.ContinuousMap.Ideals
{X : Type u_1} (π : Type u_2) [RCLike π] [TopologicalSpace X] [CompactSpace X] [T2Space X] {s : Set X} (hs : IsOpen s) : ContinuousMap.setOfIdeal (ContinuousMap.idealOfSet π s) = s - MeasureTheory.Measure.measure_isAddHaarMeasure_eq_smul_of_isOpen π Mathlib.MeasureTheory.Measure.Haar.Unique
{G : Type u_1} [TopologicalSpace G] [AddGroup G] [IsTopologicalAddGroup G] [MeasurableSpace G] [BorelSpace G] [LocallyCompactSpace G] (ΞΌ' ΞΌ : MeasureTheory.Measure G) [ΞΌ.IsAddHaarMeasure] [ΞΌ'.IsAddHaarMeasure] {s : Set G} (hs : IsOpen s) : ΞΌ' s = ΞΌ'.addHaarScalarFactor ΞΌ β’ ΞΌ s - MeasureTheory.Measure.measure_isHaarMeasure_eq_smul_of_isOpen π Mathlib.MeasureTheory.Measure.Haar.Unique
{G : Type u_1} [TopologicalSpace G] [Group G] [IsTopologicalGroup G] [MeasurableSpace G] [BorelSpace G] [LocallyCompactSpace G] (ΞΌ' ΞΌ : MeasureTheory.Measure G) [ΞΌ.IsHaarMeasure] [ΞΌ'.IsHaarMeasure] {s : Set G} (hs : IsOpen s) : ΞΌ' s = ΞΌ'.haarScalarFactor ΞΌ β’ ΞΌ s - lineDerivWithin_of_isOpen π Mathlib.Analysis.Calculus.LineDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace π F] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π E] {f : E β F} {s : Set E} {x v : E} (hs : IsOpen s) (hx : x β s) : lineDerivWithin π f s x v = lineDeriv π f x v - ContMDiffOn.iUnion_of_isOpen π Mathlib.Geometry.Manifold.ContMDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H M] [ChartedSpace H' M'] {f : M β M'} {n : WithTop ββ} {ΞΉ : Type u_11} {s : ΞΉ β Set M} (hf : β (i : ΞΉ), ContMDiffOn I I' n f (s i)) (hs : β (i : ΞΉ), IsOpen (s i)) : ContMDiffOn I I' n f (β i, s i) - contMDiffOn_iUnion_iff_of_isOpen π Mathlib.Geometry.Manifold.ContMDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H M] [ChartedSpace H' M'] {f : M β M'} {n : WithTop ββ} {ΞΉ : Type u_11} {s : ΞΉ β Set M} (hs : β (i : ΞΉ), IsOpen (s i)) : ContMDiffOn I I' n f (β i, s i) β β (i : ΞΉ), ContMDiffOn I I' n f (s i) - contMDiff_of_contMDiffOn_iUnion_of_isOpen π Mathlib.Geometry.Manifold.ContMDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H M] [ChartedSpace H' M'] {f : M β M'} {n : WithTop ββ} {ΞΉ : Type u_11} {s : ΞΉ β Set M} (hf : β (i : ΞΉ), ContMDiffOn I I' n f (s i)) (hs : β (i : ΞΉ), IsOpen (s i)) (hs' : β i, s i = Set.univ) : ContMDiff I I' n f - ContMDiffOn.union_of_isOpen π Mathlib.Geometry.Manifold.ContMDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H M] [ChartedSpace H' M'] {f : M β M'} {n : WithTop ββ} {s t : Set M} (hf : ContMDiffOn I I' n f s) (hf' : ContMDiffOn I I' n f t) (hs : IsOpen s) (ht : IsOpen t) : ContMDiffOn I I' n f (s βͺ t) - contMDiffOn_union_iff_of_isOpen π Mathlib.Geometry.Manifold.ContMDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H M] [ChartedSpace H' M'] {f : M β M'} {n : WithTop ββ} {s t : Set M} (hs : IsOpen s) (ht : IsOpen t) : ContMDiffOn I I' n f (s βͺ t) β ContMDiffOn I I' n f s β§ ContMDiffOn I I' n f t - contMDiff_of_contMDiffOn_union_of_isOpen π Mathlib.Geometry.Manifold.ContMDiff.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H M] [ChartedSpace H' M'] {f : M β M'} {n : WithTop ββ} {s t : Set M} (hf : ContMDiffOn I I' n f s) (hf' : ContMDiffOn I I' n f t) (hst : s βͺ t = Set.univ) (hs : IsOpen s) (ht : IsOpen t) : ContMDiff I I' n f - MDifferentiableOn.iUnion_of_isOpen π Mathlib.Geometry.Manifold.MFDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : M β M'} {ΞΉ : Type u_11} {s : ΞΉ β Set M} (hf : β (i : ΞΉ), MDifferentiableOn I I' f (s i)) (hs : β (i : ΞΉ), IsOpen (s i)) : MDifferentiableOn I I' f (β i, s i) - mdifferentiableOn_iUnion_iff_of_isOpen π Mathlib.Geometry.Manifold.MFDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : M β M'} {ΞΉ : Type u_11} {s : ΞΉ β Set M} (hs : β (i : ΞΉ), IsOpen (s i)) : MDifferentiableOn I I' f (β i, s i) β β (i : ΞΉ), MDifferentiableOn I I' f (s i) - mdifferentiable_of_mdifferentiableOn_iUnion_of_isOpen π Mathlib.Geometry.Manifold.MFDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : M β M'} {ΞΉ : Type u_11} {s : ΞΉ β Set M} (hf : β (i : ΞΉ), MDifferentiableOn I I' f (s i)) (hs : β (i : ΞΉ), IsOpen (s i)) (hs' : β i, s i = Set.univ) : MDifferentiable I I' f - MDifferentiableOn.union_of_isOpen π Mathlib.Geometry.Manifold.MFDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : M β M'} {s t : Set M} (hf : MDifferentiableOn I I' f s) (hf' : MDifferentiableOn I I' f t) (hs : IsOpen s) (ht : IsOpen t) : MDifferentiableOn I I' f (s βͺ t) - mdifferentiableOn_union_iff_of_isOpen π Mathlib.Geometry.Manifold.MFDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : M β M'} {s t : Set M} (hs : IsOpen s) (ht : IsOpen t) : MDifferentiableOn I I' f (s βͺ t) β MDifferentiableOn I I' f s β§ MDifferentiableOn I I' f t - mdifferentiable_of_mdifferentiableOn_union_of_isOpen π Mathlib.Geometry.Manifold.MFDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : M β M'} {s t : Set M} (hf : MDifferentiableOn I I' f s) (hf' : MDifferentiableOn I I' f t) (hst : s βͺ t = Set.univ) (hs : IsOpen s) (ht : IsOpen t) : MDifferentiable I I' f - mfderivWithin_of_isOpen π Mathlib.Geometry.Manifold.MFDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace π E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : M β M'} {x : M} {s : Set M} (hs : IsOpen s) (hx : x β s) : mfderivWithin I I' f s x = mfderiv I I' f x - exists_continuous_sum_one_of_isOpen_isCompact π Mathlib.Topology.PartitionOfUnity
{X : Type v} [TopologicalSpace X] [T2Space X] [LocallyCompactSpace X] {n : β} {t : Set X} {s : Fin n β Set X} (hs : β (i : Fin n), IsOpen (s i)) (htcp : IsCompact t) (hst : t β β i, s i) : β f, (β (i : Fin n), tsupport β(f i) β s i) β§ Set.EqOn (β i, β(f i)) 1 t β§ (β (i : Fin n) (x : X), (f i) x β Set.Icc 0 1) β§ β (i : Fin n), HasCompactSupport β(f i) - VectorField.lieBracketWithin_of_isOpen π Mathlib.Analysis.Calculus.VectorField
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {V W : E β E} {s : Set E} {x : E} (hs : IsOpen s) (hx : x β s) : VectorField.lieBracketWithin π V W s x = VectorField.lieBracket π V W x - CategoryTheory.PreGaloisCategory.exists_set_ker_evaluation_subset_of_isOpen π Mathlib.CategoryTheory.Galois.Topology
{C : Type uβ} [CategoryTheory.Category.{uβ, uβ} C] (F : CategoryTheory.Functor C FintypeCat) [CategoryTheory.GaloisCategory C] [CategoryTheory.PreGaloisCategory.FiberFunctor F] {H : Set (CategoryTheory.Aut F)} (h1 : 1 β H) (h : IsOpen H) : β I x, (β X β I, CategoryTheory.PreGaloisCategory.IsConnected X) β§ β (Ο : CategoryTheory.Aut F), (β (X : βI), Ο.hom.app βX = CategoryTheory.CategoryStruct.id (F.obj βX)) β Ο β H - image_subset_closure_compl_image_compl_of_isOpen π Mathlib.Topology.ExtremallyDisconnected
{A E : Type u} [TopologicalSpace A] [TopologicalSpace E] {Ο : E β A} (Ο_cont : Continuous Ο) (Ο_surj : Function.Surjective Ο) (zorn_subset : β (Eβ : Set E), Eβ β Set.univ β IsClosed Eβ β Ο '' Eβ β Set.univ) {G : Set E} (hG : IsOpen G) : Ο '' G β closure (Ο '' GαΆ)αΆ - compactlyGeneratedSpace_of_isOpen π Mathlib.Topology.Compactness.CompactlyGeneratedSpace
{X : Type u} [TopologicalSpace X] (h : β (s : Set X), (β (K : Type u) [inst : TopologicalSpace K] [CompactSpace K] [T2Space K] (f : K β X), Continuous f β IsOpen (f β»ΒΉ' s)) β IsOpen s) : CompactlyGeneratedSpace X - compactlyGeneratedSpace_of_isOpen_of_t2 π Mathlib.Topology.Compactness.CompactlyGeneratedSpace
{X : Type u} [TopologicalSpace X] [T2Space X] (h : β (s : Set X), (β (K : Set X), IsCompact K β IsOpen (Subtype.val β»ΒΉ' s)) β IsOpen s) : CompactlyGeneratedSpace X - uCompactlyGeneratedSpace_of_isOpen π Mathlib.Topology.Compactness.CompactlyGeneratedSpace
{X : Type w} [tX : TopologicalSpace X] (h : β (s : Set X), (β (S : CompHaus) (f : C(βS.toTop, X)), IsOpen (βf β»ΒΉ' s)) β IsOpen s) : UCompactlyGeneratedSpace X - eventually_mapsTo_of_isOpen_of_omegaLimit_subset π Mathlib.Dynamics.OmegaLimit
{Ο : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ²] (f : Filter Ο) (Ο : Ο β Ξ± β Ξ²) (s : Set Ξ±) [CompactSpace Ξ²] {v : Set Ξ²} (hvβ : IsOpen v) (hvβ : omegaLimit f Ο s β v) : βαΆ (t : Ο) in f, Set.MapsTo (Ο t) s v - eventually_mapsTo_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset π Mathlib.Dynamics.OmegaLimit
{Ο : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ²] (f : Filter Ο) (Ο : Ο β Ξ± β Ξ²) (s : Set Ξ±) [T2Space Ξ²] {c : Set Ξ²} (hcβ : IsCompact c) (hcβ : βαΆ (t : Ο) in f, Set.MapsTo (Ο t) s c) {n : Set Ξ²} (hnβ : IsOpen n) (hnβ : omegaLimit f Ο s β n) : βαΆ (t : Ο) in f, Set.MapsTo (Ο t) s n - eventually_closure_subset_of_isOpen_of_omegaLimit_subset π Mathlib.Dynamics.OmegaLimit
{Ο : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ²] (f : Filter Ο) (Ο : Ο β Ξ± β Ξ²) (s : Set Ξ±) [CompactSpace Ξ²] {v : Set Ξ²} (hvβ : IsOpen v) (hvβ : omegaLimit f Ο s β v) : β u β f, closure (Set.image2 Ο u s) β v - eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset π Mathlib.Dynamics.OmegaLimit
{Ο : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ²] (f : Filter Ο) (Ο : Ο β Ξ± β Ξ²) (s : Set Ξ±) [T2Space Ξ²] {c : Set Ξ²} (hcβ : IsCompact c) (hcβ : βαΆ (t : Ο) in f, Set.MapsTo (Ο t) s c) {n : Set Ξ²} (hnβ : IsOpen n) (hnβ : omegaLimit f Ο s β n) : β u β f, closure (Set.image2 Ο u s) β n - eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset' π Mathlib.Dynamics.OmegaLimit
{Ο : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [TopologicalSpace Ξ²] (f : Filter Ο) (Ο : Ο β Ξ± β Ξ²) (s : Set Ξ±) {c : Set Ξ²} (hcβ : IsCompact c) (hcβ : β v β f, closure (Set.image2 Ο v s) β c) {n : Set Ξ²} (hnβ : IsOpen n) (hnβ : omegaLimit f Ο s β n) : β u β f, closure (Set.image2 Ο u s) β n - VectorField.mlieBracketWithin_of_isOpen π Mathlib.Geometry.Manifold.VectorField.LieBracket
{π : Type u_1} [NontriviallyNormedField π] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π E] {I : ModelWithCorners π E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W : (x : M) β TangentSpace I x} (hs : IsOpen s) (hx : x β s) : VectorField.mlieBracketWithin I V W s x = VectorField.mlieBracket I V W x - MeasureTheory.ProbabilityMeasure.exists_lt_measure_biUnion_of_isOpen π Mathlib.MeasureTheory.Measure.Portmanteau
{Ξ© : Type u_1} [MeasurableSpace Ξ©] [TopologicalSpace Ξ©] [SecondCountableTopology Ξ©] {S : Set (Set Ξ©)} (Ξ½ : MeasureTheory.ProbabilityMeasure Ξ©) (h : β (u : Set Ξ©), IsOpen u β β x β u, β s β S, s β nhds x β§ s β u) {G : Set Ξ©} (hG : IsOpen G) {r : NNReal} (hr : r < Ξ½ G) : β T, (β t β T, t β S) β§ r < Ξ½ (β t β T, t) β§ β t β T, t β G - MeasureTheory.Measure.subset_compl_support_of_isOpen π Mathlib.MeasureTheory.Measure.Support
{X : Type u_1} [TopologicalSpace X] [MeasurableSpace X] {ΞΌ : MeasureTheory.Measure X} {t : Set X} (ht : IsOpen t) (h : ΞΌ t = 0) : t β ΞΌ.supportαΆ - tendsto_residual_of_isOpenMap π Mathlib.Topology.Baire.BaireMeasurable
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} (hc : Continuous f) (ho : IsOpenMap f) : Filter.Tendsto f (residual Ξ±) (residual Ξ²) - IsMeagre.preimage_of_isOpenMap π Mathlib.Topology.Baire.BaireMeasurable
{Ξ± : Type u_1} {Ξ² : Type u_2} [TopologicalSpace Ξ±] [TopologicalSpace Ξ²] {f : Ξ± β Ξ²} (hc : Continuous f) (ho : IsOpenMap f) {s : Set Ξ²} (h : IsMeagre s) : IsMeagre (f β»ΒΉ' s) - UniformSpace.hausdorff.isOpen_inter_nonempty_of_isOpen π Mathlib.Topology.UniformSpace.Closeds
{Ξ± : Type u_1} [UniformSpace Ξ±] {U : Set Ξ±} (hU : IsOpen U) : IsOpen {s | (s β© U).Nonempty} - TopologicalSpace.Closeds.isOpen_inter_nonempty_of_isOpen π Mathlib.Topology.UniformSpace.Closeds
{Ξ± : Type u_1} [UniformSpace Ξ±] {s : Set Ξ±} (hs : IsOpen s) : IsOpen {t | (βt β© s).Nonempty} - TopologicalSpace.Compacts.isOpen_inter_nonempty_of_isOpen π Mathlib.Topology.UniformSpace.Closeds
{Ξ± : Type u_1} [UniformSpace Ξ±] {s : Set Ξ±} (hs : IsOpen s) : IsOpen {t | (βt β© s).Nonempty} - TopologicalSpace.NonemptyCompacts.isOpen_inter_nonempty_of_isOpen π Mathlib.Topology.UniformSpace.Closeds
{Ξ± : Type u_1} [UniformSpace Ξ±] {s : Set Ξ±} (hs : IsOpen s) : IsOpen {t | (βt β© s).Nonempty} - Topology.IsLower.isLowerSet_of_isOpen π Mathlib.Topology.Order.LowerUpperTopology
{Ξ± : Type u_1} [Preorder Ξ±] [TopologicalSpace Ξ±] [Topology.IsLower Ξ±] {s : Set Ξ±} (h : IsOpen s) : IsLowerSet s - Topology.IsUpper.isUpperSet_of_isOpen π Mathlib.Topology.Order.LowerUpperTopology
{Ξ± : Type u_1} [Preorder Ξ±] [TopologicalSpace Ξ±] [Topology.IsUpper Ξ±] {s : Set Ξ±} (h : IsOpen s) : IsUpperSet s - Topology.IsScottHausdorff.dirSupInaccOn_of_isOpen π Mathlib.Topology.Order.ScottTopology
{Ξ± : Type u_1} {D : Set (Set Ξ±)} [Preorder Ξ±] [TopologicalSpace Ξ±] {s : Set Ξ±} [Topology.IsScottHausdorff Ξ± D] (h : IsOpen s) : DirSupInaccOn D s - Topology.IsScott.isUpperSet_of_isOpen π Mathlib.Topology.Order.ScottTopology
{Ξ± : Type u_1} {D : Set (Set Ξ±)} [Preorder Ξ±] [TopologicalSpace Ξ±] {s : Set Ξ±} [Topology.IsScott Ξ± D] : IsOpen s β IsUpperSet s - IsCompactOpenCovered.of_isOpenMap π Mathlib.Topology.Sets.CompactOpenCovered
{S : Type u_1} {ΞΉ : Type u_2} {X : ΞΉ β Type u_3} {f : (i : ΞΉ) β X i β S} [(i : ΞΉ) β TopologicalSpace (X i)] [TopologicalSpace S] [β (i : ΞΉ), PrespectralSpace (X i)] (hfc : β (i : ΞΉ), Continuous (f i)) (h : β (i : ΞΉ), IsOpenMap (f i)) {U : Set S} (hs : β x β U, β i y, f i y = x) (hU : IsOpen U) (hc : IsCompact U) : IsCompactOpenCovered f U
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision f91c049