Loogle!
Result
Found 347 declarations whose name contains "onFun". Of these, only the first 200 are shown.
- Lean.ProjectionFunctionInfo π Lean.ProjFns
: Type - Lean.instInhabitedProjectionFunctionInfo.default π Lean.ProjFns
: Lean.ProjectionFunctionInfo - Lean.instInhabitedProjectionFunctionInfo π Lean.ProjFns
: Inhabited Lean.ProjectionFunctionInfo - Lean.instReprProjectionFunctionInfo π Lean.ProjFns
: Repr Lean.ProjectionFunctionInfo - Lean.ProjectionFunctionInfo.ctorName π Lean.ProjFns
(self : Lean.ProjectionFunctionInfo) : Lean.Name - Lean.ProjectionFunctionInfo.fromClass π Lean.ProjFns
(self : Lean.ProjectionFunctionInfo) : Bool - Lean.ProjectionFunctionInfo.fromClassEx π Lean.ProjFns
(info : Lean.ProjectionFunctionInfo) : Bool - Lean.ProjectionFunctionInfo.i π Lean.ProjFns
(self : Lean.ProjectionFunctionInfo) : β - Lean.ProjectionFunctionInfo.numParams π Lean.ProjFns
(self : Lean.ProjectionFunctionInfo) : β - Lean.instReprProjectionFunctionInfo.repr π Lean.ProjFns
: Lean.ProjectionFunctionInfo β β β Std.Format - Lean.ProjectionFunctionInfo.mk π Lean.ProjFns
(ctorName : Lean.Name) (numParams i : β) (fromClass : Bool) : Lean.ProjectionFunctionInfo - Lean.ProjectionFunctionInfo.mk.injEq π Lean.ProjFns
(ctorName : Lean.Name) (numParams i : β) (fromClass : Bool) (ctorNameβ : Lean.Name) (numParamsβ iβ : β) (fromClassβ : Bool) : ({ ctorName := ctorName, numParams := numParams, i := i, fromClass := fromClass } = { ctorName := ctorNameβ, numParams := numParamsβ, i := iβ, fromClass := fromClassβ }) = (ctorName = ctorNameβ β§ numParams = numParamsβ β§ i = iβ β§ fromClass = fromClassβ) - Lean.ProjectionFunctionInfo.mk.sizeOf_spec π Lean.ProjFns
(ctorName : Lean.Name) (numParams i : β) (fromClass : Bool) : sizeOf { ctorName := ctorName, numParams := numParams, i := i, fromClass := fromClass } = 1 + sizeOf ctorName + sizeOf numParams + sizeOf i + sizeOf fromClass - Lean.mkModuleInitializationFunctionName π Lean.Compiler.NameMangling
(moduleName : Lean.Name) : String - Lean.Meta.mkFixOfMonFun π Lean.Meta.Order
(packedType packedInst hmono : Lean.Expr) : Lean.MetaM Lean.Expr - Lean.Firefox.instFromJsonFuncTable π Lean.Util.Profiler
: Lean.FromJson Lean.Firefox.FuncTable - Lean.Firefox.instToJsonFuncTable π Lean.Util.Profiler
: Lean.ToJson Lean.Firefox.FuncTable - Lean.Firefox.instToJsonFuncTable.toJson π Lean.Util.Profiler
: Lean.Firefox.FuncTable β Lean.Json - Lean.Firefox.instFromJsonFuncTable.fromJson π Lean.Util.Profiler
: Lean.Json β Except String Lean.Firefox.FuncTable - Function.onFun π Mathlib.Logic.Function.Defs
{Ξ± : Sort uβ} {Ξ² : Sort uβ} {Ο : Sort uβ} (f : Ξ² β Ξ² β Ο) (g : Ξ± β Ξ²) : Ξ± β Ξ± β Ο - Function.onFun_apply π Mathlib.Logic.Function.Basic
{Ξ± : Sort u_1} {Ξ² : Sort u_2} {Ξ³ : Sort u_3} (f : Ξ² β Ξ² β Ξ³) (g : Ξ± β Ξ²) (a b : Ξ±) : Function.onFun f g a b = f (g a) (g b) - directedOn_onFun_iff π Mathlib.Order.Directed
{Ξ± : Type u} {Ξ² : Type v} {r : Ξ± β Ξ± β Prop} {f : Ξ² β Ξ±} {s : Set Ξ²} : DirectedOn (Function.onFun r f) s β DirectedOn r (f '' s) - WellFounded.onFun π Mathlib.Order.WellFounded
{Ξ± : Sort u_4} {Ξ² : Sort u_5} {r : Ξ² β Ξ² β Prop} {f : Ξ± β Ξ²} : WellFounded r β WellFounded (Function.onFun r f) - Function.onFun.eq_1 π Mathlib.Algebra.BigOperators.Group.Finset.Basic
{Ξ± : Sort uβ} {Ξ² : Sort uβ} {Ο : Sort uβ} (f : Ξ² β Ξ² β Ο) (g : Ξ± β Ξ²) (x y : Ξ±) : Function.onFun f g x y = f (g x) (g y) - CategoryTheory.toSkeletonFunctor π Mathlib.CategoryTheory.Skeletal
(C : Type uβ) [CategoryTheory.Category.{vβ, uβ} C] : CategoryTheory.Functor C (CategoryTheory.Skeleton C) - CategoryTheory.toSkeletonFunctor_obj π Mathlib.CategoryTheory.Skeletal
(C : Type uβ) [CategoryTheory.Category.{vβ, uβ} C] (X : C) : (CategoryTheory.toSkeletonFunctor C).obj X = CategoryTheory.toSkeleton X - CategoryTheory.Functor.toSkeletonFunctorCompMapSkeletonIso π Mathlib.CategoryTheory.Skeletal
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (F : CategoryTheory.Functor C D) : (CategoryTheory.toSkeletonFunctor C).comp F.mapSkeleton β F.comp (CategoryTheory.toSkeletonFunctor D) - CategoryTheory.toSkeletonFunctor_map π Mathlib.CategoryTheory.Skeletal
(C : Type uβ) [CategoryTheory.Category.{vβ, uβ} C] {X Y : C} (f : X βΆ Y) : (CategoryTheory.toSkeletonFunctor C).map f = CategoryTheory.CategoryStruct.comp (CategoryTheory.preCounitIso X).hom (CategoryTheory.CategoryStruct.comp f (CategoryTheory.preCounitIso Y).inv) - CategoryTheory.MorphismProperty.instHasFunctorialFactorizationFunctorFunctorCategory π Mathlib.CategoryTheory.MorphismProperty.Factorization
{C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] (Wβ Wβ : CategoryTheory.MorphismProperty C) [Wβ.HasFunctorialFactorization Wβ] (J : Type u_2) [CategoryTheory.Category.{u_4, u_2} J] : (Wβ.functorCategory J).HasFunctorialFactorization (Wβ.functorCategory J) - CategoryTheory.Functor.mapMonFunctor π Mathlib.CategoryTheory.Monoidal.Mon_
(C : Type uβ) [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.MonoidalCategory C] (D : Type uβ) [CategoryTheory.Category.{vβ, uβ} D] [CategoryTheory.MonoidalCategory D] : CategoryTheory.Functor (CategoryTheory.LaxMonoidalFunctor C D) (CategoryTheory.Functor (Mon C) (Mon D)) - CategoryTheory.Functor.mapMonFunctor_obj π Mathlib.CategoryTheory.Monoidal.Mon_
(C : Type uβ) [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.MonoidalCategory C] (D : Type uβ) [CategoryTheory.Category.{vβ, uβ} D] [CategoryTheory.MonoidalCategory D] (F : CategoryTheory.LaxMonoidalFunctor C D) : (CategoryTheory.Functor.mapMonFunctor C D).obj F = F.mapMon - CategoryTheory.Functor.mapMonFunctor_map_app_hom π Mathlib.CategoryTheory.Monoidal.Mon_
(C : Type uβ) [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.MonoidalCategory C] (D : Type uβ) [CategoryTheory.Category.{vβ, uβ} D] [CategoryTheory.MonoidalCategory D] {Xβ Yβ : CategoryTheory.LaxMonoidalFunctor C D} (Ξ± : Xβ βΆ Yβ) (A : Mon C) : (((CategoryTheory.Functor.mapMonFunctor C D).map Ξ±).app A).hom = Ξ±.hom.app A.X - CategoryTheory.Abelian.coimageImageComparisonFunctor π Mathlib.CategoryTheory.Abelian.Images
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasKernels C] [CategoryTheory.Limits.HasCokernels C] : CategoryTheory.Functor (CategoryTheory.Arrow C) (CategoryTheory.Arrow C) - CategoryTheory.Abelian.coimageImageComparisonFunctor_obj π Mathlib.CategoryTheory.Abelian.Images
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasKernels C] [CategoryTheory.Limits.HasCokernels C] (f : CategoryTheory.Arrow C) : CategoryTheory.Abelian.coimageImageComparisonFunctor.obj f = CategoryTheory.Arrow.mk (CategoryTheory.Abelian.coimageImageComparison f.hom) - CategoryTheory.Abelian.coimageImageComparisonFunctor_map π Mathlib.CategoryTheory.Abelian.Images
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasKernels C] [CategoryTheory.Limits.HasCokernels C] {f g : CategoryTheory.Arrow C} (Ξ· : f βΆ g) : CategoryTheory.Abelian.coimageImageComparisonFunctor.map Ξ· = CategoryTheory.Arrow.homMk (CategoryTheory.Limits.cokernel.map (CategoryTheory.Limits.kernel.ΞΉ f.hom) (CategoryTheory.Limits.kernel.ΞΉ g.hom) (CategoryTheory.Limits.kernel.map f.hom g.hom Ξ·.left Ξ·.right β―) Ξ·.left β―) (CategoryTheory.Limits.kernel.map (CategoryTheory.Limits.cokernel.Ο f.hom) (CategoryTheory.Limits.cokernel.Ο g.hom) Ξ·.right (CategoryTheory.Limits.cokernel.map f.hom g.hom Ξ·.left Ξ·.right β―) β―) β― - ComplexShape.Embedding.restrictionFunctor π Mathlib.Algebra.Homology.Embedding.Restriction
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {c : ComplexShape ΞΉ} {c' : ComplexShape ΞΉ'} (e : c.Embedding c') (C : Type u_3) [CategoryTheory.Category.{u_4, u_3} C] [e.IsRelIff] [CategoryTheory.Limits.HasZeroMorphisms C] : CategoryTheory.Functor (HomologicalComplex C c') (HomologicalComplex C c) - ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexRestrictionFunctor π Mathlib.Algebra.Homology.Embedding.Restriction
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {c : ComplexShape ΞΉ} {c' : ComplexShape ΞΉ'} (e : c.Embedding c') (C : Type u_3) [CategoryTheory.Category.{u_4, u_3} C] [e.IsRelIff] [CategoryTheory.Limits.HasZeroMorphisms C] : (e.restrictionFunctor C).PreservesZeroMorphisms - ComplexShape.Embedding.restrictionFunctor_obj π Mathlib.Algebra.Homology.Embedding.Restriction
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {c : ComplexShape ΞΉ} {c' : ComplexShape ΞΉ'} (e : c.Embedding c') (C : Type u_3) [CategoryTheory.Category.{u_4, u_3} C] [e.IsRelIff] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') : (e.restrictionFunctor C).obj K = K.restriction e - ComplexShape.Embedding.instAdditiveHomologicalComplexRestrictionFunctor π Mathlib.Algebra.Homology.Embedding.Restriction
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {c : ComplexShape ΞΉ} {c' : ComplexShape ΞΉ'} (e : c.Embedding c') (C : Type u_3) [CategoryTheory.Category.{u_4, u_3} C] [e.IsRelIff] [CategoryTheory.Preadditive C] : (e.restrictionFunctor C).Additive - ComplexShape.Embedding.restrictionFunctor.congr_simp π Mathlib.Algebra.Homology.Embedding.Restriction
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {c : ComplexShape ΞΉ} {c' : ComplexShape ΞΉ'} (e eβ : c.Embedding c') (e_e : e = eβ) (C : Type u_3) [CategoryTheory.Category.{u_4, u_3} C] [e.IsRelIff] [CategoryTheory.Limits.HasZeroMorphisms C] : e.restrictionFunctor C = eβ.restrictionFunctor C - ComplexShape.Embedding.restrictionFunctor_map π Mathlib.Algebra.Homology.Embedding.Restriction
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {c : ComplexShape ΞΉ} {c' : ComplexShape ΞΉ'} (e : c.Embedding c') (C : Type u_3) [CategoryTheory.Category.{u_4, u_3} C] [e.IsRelIff] [CategoryTheory.Limits.HasZeroMorphisms C] {Xβ Yβ : HomologicalComplex C c'} (Ο : Xβ βΆ Yβ) : (e.restrictionFunctor C).map Ο = HomologicalComplex.restrictionMap Ο e - UniformOnFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) : Set (Set Ξ±) β Type (max u_1 u_2) - instNonemptyUniformOnFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Nonempty Ξ²] : Nonempty (UniformOnFun Ξ± Ξ² π) - instSubsingletonUniformOnFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Subsingleton Ξ²] : Subsingleton (UniformOnFun Ξ± Ξ² π) - UniformOnFun.ofFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} (π : Set (Set Ξ±)) : (Ξ± β Ξ²) β UniformOnFun Ξ± Ξ² π - UniformOnFun.toFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} (π : Set (Set Ξ±)) : UniformOnFun Ξ± Ξ² π β (Ξ± β Ξ²) - UniformOnFun.topologicalSpace π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) : TopologicalSpace (UniformOnFun Ξ± Ξ² π) - UniformOnFun.uniformSpace π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) : UniformSpace (UniformOnFun Ξ± Ξ² π) - UniformOnFun.instCompleteSpace π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] {π : Set (Set Ξ±)} [CompleteSpace Ξ²] : CompleteSpace (UniformOnFun Ξ± Ξ² π) - UniformOnFun.gen π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} (π : Set (Set Ξ±)) (S : Set Ξ±) (V : Set (Ξ² Γ Ξ²)) : Set (UniformOnFun Ξ± Ξ² π Γ UniformOnFun Ξ± Ξ² π) - UniformOnFun.topologicalSpace.eq_1 π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) : UniformOnFun.topologicalSpace Ξ± Ξ² π = (UniformOnFun.uniformSpace Ξ± Ξ² π).toTopologicalSpace - UniformOnFun.t2Space_of_covering π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] {π : Set (Set Ξ±)} [T2Space Ξ²] (h : ββ π = Set.univ) : T2Space (UniformOnFun Ξ± Ξ² π) - UniformOnFun.congrRight π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [UniformSpace Ξ²] {π : Set (Set Ξ±)} [UniformSpace Ξ³] (e : Ξ³ βα΅€ Ξ²) : UniformOnFun Ξ± Ξ³ π βα΅€ UniformOnFun Ξ± Ξ² π - UniformOnFun.uniformEquivUniformFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) (h : Set.univ β π) : UniformOnFun Ξ± Ξ² π βα΅€ UniformFun Ξ± Ξ² - UniformOnFun.comap_eq π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [UniformSpace Ξ²] {π : Set (Set Ξ±)} {f : Ξ³ β Ξ²} : UniformOnFun.uniformSpace Ξ± Ξ³ π = UniformSpace.comap (fun x => f β x) (UniformOnFun.uniformSpace Ξ± Ξ² π) - UniformOnFun.iInf_eq π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ³ : Type u_3} {ΞΉ : Type u_4} {π : Set (Set Ξ±)} {u : ΞΉ β UniformSpace Ξ³} : UniformOnFun.uniformSpace Ξ± Ξ³ π = β¨ i, UniformOnFun.uniformSpace Ξ± Ξ³ π - UniformOnFun.inf_eq π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ³ : Type u_3} {π : Set (Set Ξ±)} {uβ uβ : UniformSpace Ξ³} : UniformOnFun.uniformSpace Ξ± Ξ³ π = UniformOnFun.uniformSpace Ξ± Ξ³ π β UniformOnFun.uniformSpace Ξ± Ξ³ π - UniformOnFun.uniformEquivPiComm π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {ΞΉ : Type u_4} (π : Set (Set Ξ±)) (Ξ΄ : ΞΉ β Type u_5) [(i : ΞΉ) β UniformSpace (Ξ΄ i)] : UniformOnFun Ξ± ((i : ΞΉ) β Ξ΄ i) π βα΅€ ((i : ΞΉ) β UniformOnFun Ξ± (Ξ΄ i) π) - UniformOnFun.uniformEquivProdArrow π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [UniformSpace Ξ²] {π : Set (Set Ξ±)} [UniformSpace Ξ³] : UniformOnFun Ξ± (Ξ² Γ Ξ³) π βα΅€ UniformOnFun Ξ± Ξ² π Γ UniformOnFun Ξ± Ξ³ π - UniformOnFun.mono π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ³ : Type u_3} β¦uβ uβ : UniformSpace Ξ³β¦ (hu : uβ β€ uβ) β¦πβ πβ : Set (Set Ξ±)β¦ (hπ : πβ β πβ) : UniformOnFun.uniformSpace Ξ± Ξ³ πβ β€ UniformOnFun.uniformSpace Ξ± Ξ³ πβ - UniformOnFun.gen_mono π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} {S S' : Set Ξ±} {V V' : Set (Ξ² Γ Ξ²)} (hS : S' β S) (hV : V β V') : UniformOnFun.gen π S V β UniformOnFun.gen π S' V' - UniformOnFun.hasBasis_uniformity_of_basis_auxβ π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) {ΞΉ : Type u_4} [UniformSpace Ξ²] (π : Set (Set Ξ±)) {p : ΞΉ β Prop} {s : ΞΉ β Set (Ξ² Γ Ξ²)} (hb : (uniformity Ξ²).HasBasis p s) (S : Set Ξ±) : (uniformity (UniformOnFun Ξ± Ξ² π)).HasBasis p fun i => UniformOnFun.gen π S (s i) - UniformOnFun.uniformContinuous_toFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] {π : Set (Set Ξ±)} (h : ββ π = Set.univ) : UniformContinuous β(UniformOnFun.toFun π) - UniformOnFun.isClosed_setOf_continuous π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] {π : Set (Set Ξ±)} [TopologicalSpace Ξ±] (h : Topology.IsCoherentWith π) : IsClosed {f | Continuous ((UniformOnFun.toFun π) f)} - UniformOnFun.uniformContinuous_eval π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] {π : Set (Set Ξ±)} (h : ββ π = Set.univ) (x : Ξ±) : UniformContinuous (Function.eval x β β(UniformOnFun.toFun π)) - UniformOnFun.hasBasis_uniformity_of_basis_auxβ π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) {ΞΉ : Type u_4} [UniformSpace Ξ²] (π : Set (Set Ξ±)) (h : DirectedOn (fun x1 x2 => x1 β x2) π) {p : ΞΉ β Prop} {s : ΞΉ β Set (Ξ² Γ Ξ²)} (hb : (uniformity Ξ²).HasBasis p s) : DirectedOn ((fun s => UniformSpace.comap s.restrict (UniformFun.uniformSpace (βs) Ξ²)) β»ΒΉ'o GE.ge) π - UniformOnFun.uniformContinuous_eval_of_mem_sUnion π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) {x : Ξ±} (hx : x β ββ π) : UniformContinuous (Function.eval x β β(UniformOnFun.toFun π)) - UniformOnFun.gen_mem_uniformity π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} (Ξ² : Type u_2) {s : Set Ξ±} [UniformSpace Ξ²] (π : Set (Set Ξ±)) (hs : s β π) {V : Set (Ξ² Γ Ξ²)} (hV : V β uniformity Ξ²) : UniformOnFun.gen π s V β uniformity (UniformOnFun Ξ± Ξ² π) - UniformOnFun.toFun_ofFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} (f : Ξ± β Ξ²) : (UniformOnFun.toFun π) ((UniformOnFun.ofFun π) f) = f - UniformOnFun.isCountablyGenerated_uniformity π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] (π : Set (Set Ξ±)) [(uniformity Ξ²).IsCountablyGenerated] {t : β β Set Ξ±} (ht : β (n : β), t n β π) (hmono : Monotone t) (hex : β s β π, β n, s β t n) : (uniformity (UniformOnFun Ξ± Ξ² π)).IsCountablyGenerated - UniformOnFun.uniformContinuous_eval_of_mem π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} (Ξ² : Type u_2) {s : Set Ξ±} [UniformSpace Ξ²] (π : Set (Set Ξ±)) {x : Ξ±} (hxs : x β s) (hs : s β π) : UniformContinuous (Function.eval x β β(UniformOnFun.toFun π)) - UniformOnFun.ofFun_toFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} (f : UniformOnFun Ξ± Ξ² π) : (UniformOnFun.ofFun π) ((UniformOnFun.toFun π) f) = f - UniformOnFun.congrLeft π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [UniformSpace Ξ²] {π : Set (Set Ξ±)} {π : Set (Set Ξ³)} (e : Ξ³ β Ξ±) (he : π β Set.image βe β»ΒΉ' π) (he' : π β Set.preimage βe β»ΒΉ' π) : UniformOnFun Ξ³ Ξ² π βα΅€ UniformOnFun Ξ± Ξ² π - UniformOnFun.uniformContinuous_restrict_toFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] {π : Set (Set Ξ±)} : UniformContinuous ((ββ π).restrict β β(UniformOnFun.toFun π)) - UniformOnFun.uniformContinuous_ofUniformFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) : UniformContinuous fun f => (UniformOnFun.ofFun π) (UniformFun.toFun f) - UniformOnFun.hasBasis_uniformity_of_basis π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) {ΞΉ : Type u_4} [UniformSpace Ξ²] (π : Set (Set Ξ±)) (h : π.Nonempty) (h' : DirectedOn (fun x1 x2 => x1 β x2) π) {p : ΞΉ β Prop} {s : ΞΉ β Set (Ξ² Γ Ξ²)} (hb : (uniformity Ξ²).HasBasis p s) : (uniformity (UniformOnFun Ξ± Ξ² π)).HasBasis (fun Si => Si.1 β π β§ p Si.2) fun Si => UniformOnFun.gen π Si.1 (s Si.2) - UniformOnFun.isBasis_gen π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} (π : Set (Set Ξ±)) (h : π.Nonempty) (h' : DirectedOn (fun x1 x2 => x1 β x2) π) (π : FilterBasis (Ξ² Γ Ξ²)) : Filter.IsBasis (fun SV => SV.1 β π β§ SV.2 β π) fun SV => UniformOnFun.gen π SV.1 SV.2 - UniformOnFun.hasAntitoneBasis_uniformity π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] (π : Set (Set Ξ±)) {ΞΉ : Type u_5} [Preorder ΞΉ] [IsDirected ΞΉ fun x1 x2 => x1 β€ x2] {t : ΞΉ β Set Ξ±} {V : ΞΉ β Set (Ξ² Γ Ξ²)} (ht : β (n : ΞΉ), t n β π) (hmono : Monotone t) (hex : β s β π, β n, s β t n) (hb : (uniformity Ξ²).HasAntitoneBasis V) : (uniformity (UniformOnFun Ξ± Ξ² π)).HasAntitoneBasis fun n => UniformOnFun.gen π (t n) (V n) - UniformOnFun.hasBasis_uniformity π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) (h : π.Nonempty) (h' : DirectedOn (fun x1 x2 => x1 β x2) π) : (uniformity (UniformOnFun Ξ± Ξ² π)).HasBasis (fun SV => SV.1 β π β§ SV.2 β uniformity Ξ²) fun SV => UniformOnFun.gen π SV.1 SV.2 - UniformOnFun.hasBasis_uniformity_of_covering_of_basis π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] (π : Set (Set Ξ±)) {ΞΉ : Type u_5} {ΞΉ' : Type u_6} [Nonempty ΞΉ] {t : ΞΉ β Set Ξ±} {p : ΞΉ' β Prop} {V : ΞΉ' β Set (Ξ² Γ Ξ²)} (ht : β (i : ΞΉ), t i β π) (hdir : Directed (fun x1 x2 => x1 β x2) t) (hex : β s β π, β i, s β t i) (hb : (uniformity Ξ²).HasBasis p V) : (uniformity (UniformOnFun Ξ± Ξ² π)).HasBasis (fun i => p i.2) fun i => UniformOnFun.gen π (t i.1) (V i.2) - UniformOnFun.precomp_uniformContinuous π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [UniformSpace Ξ²] {π : Set (Set Ξ±)} {π : Set (Set Ξ³)} {f : Ξ³ β Ξ±} (hf : Set.MapsTo (fun x => f '' x) π π) : UniformContinuous fun g => (UniformOnFun.ofFun π) ((UniformOnFun.toFun π) g β f) - UniformOnFun.postcomp_isUniformEmbedding π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [UniformSpace Ξ²] {π : Set (Set Ξ±)} [UniformSpace Ξ³] {f : Ξ³ β Ξ²} (hf : IsUniformEmbedding f) : IsUniformEmbedding (β(UniformOnFun.ofFun π) β (fun x => f β x) β β(UniformOnFun.toFun π)) - UniformOnFun.postcomp_isUniformInducing π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [UniformSpace Ξ²] {π : Set (Set Ξ±)} [UniformSpace Ξ³] {f : Ξ³ β Ξ²} (hf : IsUniformInducing f) : IsUniformInducing (β(UniformOnFun.ofFun π) β (fun x => f β x) β β(UniformOnFun.toFun π)) - UniformOnFun.postcomp_uniformContinuous π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [UniformSpace Ξ²] {π : Set (Set Ξ±)} [UniformSpace Ξ³] {f : Ξ³ β Ξ²} (hf : UniformContinuous f) : UniformContinuous (β(UniformOnFun.ofFun π) β (fun x => f β x) β β(UniformOnFun.toFun π)) - UniformOnFun.tendsto_iff_tendstoUniformlyOn π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {ΞΉ : Type u_4} {p : Filter ΞΉ} [UniformSpace Ξ²] {π : Set (Set Ξ±)} {F : ΞΉ β UniformOnFun Ξ± Ξ² π} {f : UniformOnFun Ξ± Ξ² π} : Filter.Tendsto F p (nhds f) β β s β π, TendstoUniformlyOn (β(UniformOnFun.toFun π) β F) ((UniformOnFun.toFun π) f) p s - UniformOnFun.hasBasis_nhds_of_basis π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) {ΞΉ : Type u_4} [UniformSpace Ξ²] (π : Set (Set Ξ±)) (f : UniformOnFun Ξ± Ξ² π) (h : π.Nonempty) (h' : DirectedOn (fun x1 x2 => x1 β x2) π) {p : ΞΉ β Prop} {s : ΞΉ β Set (Ξ² Γ Ξ²)} (hb : (uniformity Ξ²).HasBasis p s) : (nhds f).HasBasis (fun Si => Si.1 β π β§ p Si.2) fun Si => {g | (g, f) β UniformOnFun.gen π Si.1 (s Si.2)} - UniformOnFun.gen_eq_preimage_restrict π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} (S : Set Ξ±) (V : Set (Ξ² Γ Ξ²)) : UniformOnFun.gen π S V = Prod.map (S.restrict β βUniformFun.toFun) (S.restrict β βUniformFun.toFun) β»ΒΉ' UniformFun.gen (βS) Ξ² V - UniformOnFun.uniformContinuous_ofFun_toFun π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} (Ξ² : Type u_2) [UniformSpace Ξ²] (π π : Set (Set Ξ±)) (h : β s β π, β T β π, T.Finite β§ s β ββ T) : UniformContinuous (β(UniformOnFun.ofFun π) β β(UniformOnFun.toFun π)) - UniformOnFun.uniformContinuous_restrict π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) {s : Set Ξ±} [UniformSpace Ξ²] (π : Set (Set Ξ±)) (h : s β π) : UniformContinuous (βUniformFun.ofFun β s.restrict β β(UniformOnFun.toFun π)) - UniformOnFun.uniformity_eq_of_basis π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) {ΞΉ : Sort u_5} {p : ΞΉ β Prop} {V : ΞΉ β Set (Ξ² Γ Ξ²)} (h : (uniformity Ξ²).HasBasis p V) : uniformity (UniformOnFun Ξ± Ξ² π) = β¨ s β π, β¨ i, β¨ (_ : p i), Filter.principal (UniformOnFun.gen π s (V i)) - UniformOnFun.hasBasis_nhds π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) (f : UniformOnFun Ξ± Ξ² π) (h : π.Nonempty) (h' : DirectedOn (fun x1 x2 => x1 β x2) π) : (nhds f).HasBasis (fun SV => SV.1 β π β§ SV.2 β uniformity Ξ²) fun SV => {g | (g, f) β UniformOnFun.gen π SV.1 SV.2} - UniformOnFun.gen.eq_1 π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} (π : Set (Set Ξ±)) (S : Set Ξ±) (V : Set (Ξ² Γ Ξ²)) : UniformOnFun.gen π S V = {uv | β x β S, ((UniformOnFun.toFun π) uv.1 x, (UniformOnFun.toFun π) uv.2 x) β V} - UniformOnFun.continuousAt_evalβ π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] {π : Set (Set Ξ±)} [TopologicalSpace Ξ±] {f : UniformOnFun Ξ± Ξ² π} {x : Ξ±} (hπ : β V β π, V β nhds x) (hc : ContinuousAt ((UniformOnFun.toFun π) f) x) : ContinuousAt (fun fx => (UniformOnFun.toFun π) fx.1 fx.2) (f, x) - UniformOnFun.continuous_rng_iff π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] {π : Set (Set Ξ±)} {X : Type u_5} [TopologicalSpace X] {f : X β UniformOnFun Ξ± Ξ² π} : Continuous f β β s β π, Continuous (βUniformFun.ofFun β s.restrict β β(UniformOnFun.toFun π) β f) - UniformOnFun.gen_mem_nhds π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} (Ξ² : Type u_2) {s : Set Ξ±} [UniformSpace Ξ²] (π : Set (Set Ξ±)) (f : UniformOnFun Ξ± Ξ² π) (hs : s β π) {V : Set (Ξ² Γ Ξ²)} (hV : V β uniformity Ξ²) : {g | β x β s, ((UniformOnFun.toFun π) f x, (UniformOnFun.toFun π) g x) β V} β nhds f - UniformOnFun.uniformity_eq π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) : uniformity (UniformOnFun Ξ± Ξ² π) = β¨ s β π, β¨ V β uniformity Ξ², Filter.principal (UniformOnFun.gen π s V) - UniformOnFun.continuousOn_evalβ π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] {π : Set (Set Ξ±)} [TopologicalSpace Ξ±] (hπ : β (x : Ξ±), β V β π, V β nhds x) : ContinuousOn (fun fx => (UniformOnFun.toFun π) fx.1 fx.2) {fx | ContinuousAt ((UniformOnFun.toFun π) fx.1) fx.2} - UniformOnFun.uniformSpace.eq_1 π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) : UniformOnFun.uniformSpace Ξ± Ξ² π = β¨ s β π, UniformSpace.comap (βUniformFun.ofFun β s.restrict β β(UniformOnFun.toFun π)) (UniformFun.uniformSpace (βs) Ξ²) - UniformOnFun.topologicalSpace_eq π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
(Ξ± : Type u_1) (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) : UniformOnFun.topologicalSpace Ξ± Ξ² π = β¨ s β π, TopologicalSpace.induced (βUniformFun.ofFun β s.restrict β β(UniformOnFun.toFun π)) (UniformFun.topologicalSpace (βs) Ξ²) - UniformOnFun.nhds_eq_of_basis π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) {ΞΉ : Sort u_5} {p : ΞΉ β Prop} {V : ΞΉ β Set (Ξ² Γ Ξ²)} (h : (uniformity Ξ²).HasBasis p V) (f : UniformOnFun Ξ± Ξ² π) : nhds f = β¨ s β π, β¨ i, β¨ (_ : p i), Filter.principal {g | β x β s, ((UniformOnFun.toFun π) f x, (UniformOnFun.toFun π) g x) β V i} - UniformOnFun.nhds_eq π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} (Ξ² : Type u_2) [UniformSpace Ξ²] (π : Set (Set Ξ±)) (f : UniformOnFun Ξ± Ξ² π) : nhds f = β¨ s β π, β¨ V β uniformity Ξ², Filter.principal {g | β x β s, ((UniformOnFun.toFun π) f x, (UniformOnFun.toFun π) g x) β V} - UniformOnFun.uniformSpace_eq_iInf_precomp_of_cover π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} {ΞΉ : Type u_4} [UniformSpace Ξ²] (π : Set (Set Ξ±)) {Ξ΄ : ΞΉ β Type u_5} (Ο : (i : ΞΉ) β Ξ΄ i β Ξ±) (π : (i : ΞΉ) β Set (Set (Ξ΄ i))) (h_image : β (i : ΞΉ), Set.MapsTo (fun x => Ο i '' x) (π i) π) (h_preimage : β (i : ΞΉ), Set.MapsTo (fun x => Ο i β»ΒΉ' x) π (π i)) (h_cover : β S β π, β I, I.Finite β§ S β β i β I, Set.range (Ο i)) : UniformOnFun.uniformSpace Ξ± Ξ² π = β¨ i, UniformSpace.comap (β(UniformOnFun.ofFun (π i)) β (fun x => x β Ο i) β β(UniformOnFun.toFun π)) (UniformOnFun.uniformSpace (Ξ΄ i) Ξ² (π i)) - UniformOnFun.uniformSpace_eq_inf_precomp_of_cover π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] (π : Set (Set Ξ±)) {Ξ΄β : Type u_5} {Ξ΄β : Type u_6} (Οβ : Ξ΄β β Ξ±) (Οβ : Ξ΄β β Ξ±) (πβ : Set (Set Ξ΄β)) (πβ : Set (Set Ξ΄β)) (h_imageβ : Set.MapsTo (fun x => Οβ '' x) πβ π) (h_imageβ : Set.MapsTo (fun x => Οβ '' x) πβ π) (h_preimageβ : Set.MapsTo (fun x => Οβ β»ΒΉ' x) π πβ) (h_preimageβ : Set.MapsTo (fun x => Οβ β»ΒΉ' x) π πβ) (h_cover : β S β π, S β Set.range Οβ βͺ Set.range Οβ) : UniformOnFun.uniformSpace Ξ± Ξ² π = UniformSpace.comap (β(UniformOnFun.ofFun πβ) β (fun x => x β Οβ) β β(UniformOnFun.toFun π)) (UniformOnFun.uniformSpace Ξ΄β Ξ² πβ) β UniformSpace.comap (β(UniformOnFun.ofFun πβ) β (fun x => x β Οβ) β β(UniformOnFun.toFun π)) (UniformOnFun.uniformSpace Ξ΄β Ξ² πβ) - UniformOnFun.isUniformInducing_pi_restrict π Mathlib.Topology.UniformSpace.UniformConvergenceTopology
{Ξ± : Type u_1} {Ξ² : Type u_2} [UniformSpace Ξ²] {π : Set (Set Ξ±)} : IsUniformInducing fun f s => UniformFun.ofFun ((βs).restrict ((UniformOnFun.toFun π) f)) - ContinuousMap.toUniformOnFunIsCompact π Mathlib.Topology.UniformSpace.CompactConvergence
{Ξ± : Type uβ} {Ξ² : Type uβ} [TopologicalSpace Ξ±] [UniformSpace Ξ²] (f : C(Ξ±, Ξ²)) : UniformOnFun Ξ± Ξ² {K | IsCompact K} - ContinuousMap.isUniformEmbedding_toUniformOnFunIsCompact π Mathlib.Topology.UniformSpace.CompactConvergence
{Ξ± : Type uβ} {Ξ² : Type uβ} [TopologicalSpace Ξ±] [UniformSpace Ξ²] : IsUniformEmbedding ContinuousMap.toUniformOnFunIsCompact - ContinuousMap.range_toUniformOnFunIsCompact π Mathlib.Topology.UniformSpace.CompactConvergence
{Ξ± : Type uβ} {Ξ² : Type uβ} [TopologicalSpace Ξ±] [UniformSpace Ξ²] : Set.range ContinuousMap.toUniformOnFunIsCompact = {f | Continuous f} - ContinuousMap.toUniformOnFun_toFun π Mathlib.Topology.UniformSpace.CompactConvergence
{Ξ± : Type uβ} {Ξ² : Type uβ} [TopologicalSpace Ξ±] [UniformSpace Ξ²] (f : C(Ξ±, Ξ²)) : (UniformOnFun.toFun {K | IsCompact K}) f.toUniformOnFunIsCompact = βf - ContinuousMap.continuous_iff_continuous_uniformOnFun π Mathlib.Topology.UniformSpace.CompactConvergence
{Ξ± : Type uβ} {Ξ² : Type uβ} [TopologicalSpace Ξ±] [UniformSpace Ξ²] {X : Type u_1} [TopologicalSpace X] (f : X β C(Ξ±, Ξ²)) : Continuous f β Continuous fun x => (UniformOnFun.ofFun {K | IsCompact K}) β(f x) - ContinuousOn.continuous_restrict_iff_continuous_uniformOnFun π Mathlib.Topology.UniformSpace.CompactConvergence
{Ξ± : Type uβ} {Ξ² : Type uβ} [TopologicalSpace Ξ±] [UniformSpace Ξ²] {X : Type u_1} [TopologicalSpace X] {f : X β Ξ± β Ξ²} {s : Set Ξ±} (hf : β (x : X), ContinuousOn (f x) s) [CompactSpace βs] : (Continuous fun x => { toFun := s.restrict (f x), continuous_toFun := β― }) β Continuous fun x => (UniformOnFun.ofFun {s}) (f x) - CategoryTheory.OverPresheafAux.yonedaCollectionFunctor π Mathlib.CategoryTheory.Comma.Presheaf.Basic
{C : Type u} [CategoryTheory.Category.{v, u} C] (A : CategoryTheory.Functor Cα΅α΅ (Type v)) : CategoryTheory.Functor (CategoryTheory.Functor (CategoryTheory.CostructuredArrow CategoryTheory.yoneda A)α΅α΅ (Type v)) (CategoryTheory.Functor Cα΅α΅ (Type v)) - CategoryTheory.OverPresheafAux.yonedaCollectionFunctor_obj π Mathlib.CategoryTheory.Comma.Presheaf.Basic
{C : Type u} [CategoryTheory.Category.{v, u} C] (A : CategoryTheory.Functor Cα΅α΅ (Type v)) (F : CategoryTheory.Functor (CategoryTheory.CostructuredArrow CategoryTheory.yoneda A)α΅α΅ (Type v)) : (CategoryTheory.OverPresheafAux.yonedaCollectionFunctor A).obj F = CategoryTheory.OverPresheafAux.yonedaCollectionPresheaf A F - CategoryTheory.OverPresheafAux.yonedaCollectionFunctor_map π Mathlib.CategoryTheory.Comma.Presheaf.Basic
{C : Type u} [CategoryTheory.Category.{v, u} C] (A : CategoryTheory.Functor Cα΅α΅ (Type v)) {Xβ Yβ : CategoryTheory.Functor (CategoryTheory.CostructuredArrow CategoryTheory.yoneda A)α΅α΅ (Type v)} (Ξ· : Xβ βΆ Yβ) : (CategoryTheory.OverPresheafAux.yonedaCollectionFunctor A).map Ξ· = CategoryTheory.OverPresheafAux.yonedaCollectionPresheafMapβ Ξ· - CategoryTheory.Presheaf.instIsLeftKanExtensionFunctorOppositeTypeIdCompUliftYonedaOfPreservesColimitsOfSizeOfHasPointwiseLeftKanExtension π Mathlib.CategoryTheory.Limits.Presheaf
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {β° : Type uβ} [CategoryTheory.Category.{vβ, uβ} β°] (L : CategoryTheory.Functor (CategoryTheory.Functor Cα΅α΅ (Type (max w vβ vβ))) β°) [CategoryTheory.Limits.PreservesColimitsOfSize.{vβ, max w uβ vβ vβ, max (max (max uβ vβ) vβ) w, vβ, max (max (max uβ (vβ + 1)) (vβ + 1)) (w + 1), uβ} L] [CategoryTheory.uliftYoneda.{max w vβ, vβ, uβ}.HasPointwiseLeftKanExtension (CategoryTheory.uliftYoneda.{max w vβ, vβ, uβ}.comp L)] : L.IsLeftKanExtension (CategoryTheory.CategoryStruct.id (CategoryTheory.uliftYoneda.{max w vβ, vβ, uβ}.comp L)) - CategoryTheory.Presheaf.instIsLeftKanExtensionFunctorOppositeTypeLanOpHomCompULiftYonedaIsoULiftYonedaCompLan π Mathlib.CategoryTheory.Limits.Presheaf
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (F : CategoryTheory.Functor C D) [β (P : CategoryTheory.Functor Cα΅α΅ (Type (max w vβ vβ))), F.op.HasLeftKanExtension P] : F.op.lan.IsLeftKanExtension (CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan F).hom - CategoryTheory.Presheaf.instUniqueHomLeftExtensionFunctorOppositeTypeUliftYonedaCompMkLanOpHomCompULiftYonedaIsoULiftYonedaCompLan π Mathlib.CategoryTheory.Limits.Presheaf
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (F : CategoryTheory.Functor C D) [β (P : CategoryTheory.Functor Cα΅α΅ (Type (max w vβ vβ))), F.op.HasLeftKanExtension P] (Ξ¦ : CategoryTheory.StructuredArrow (F.comp CategoryTheory.uliftYoneda.{max w vβ, vβ, uβ}) ((CategoryTheory.Functor.whiskeringLeft C (CategoryTheory.Functor Cα΅α΅ (Type (max w vβ vβ))) (CategoryTheory.Functor Dα΅α΅ (Type (max w vβ vβ)))).obj CategoryTheory.uliftYoneda.{max w vβ, vβ, uβ})) : Unique (CategoryTheory.Functor.LeftExtension.mk F.op.lan (CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan F).hom βΆ Ξ¦) - CategoryTheory.Functor.mapCommMonFunctor π Mathlib.CategoryTheory.Monoidal.CommMon_
(C : Type uβ) [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] (D : Type uβ) [CategoryTheory.Category.{vβ, uβ} D] [CategoryTheory.MonoidalCategory D] [CategoryTheory.BraidedCategory D] : CategoryTheory.Functor (CategoryTheory.LaxBraidedFunctor C D) (CategoryTheory.Functor (CommMon C) (CommMon D)) - CategoryTheory.Functor.mapCommMonFunctor_obj π Mathlib.CategoryTheory.Monoidal.CommMon_
(C : Type uβ) [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] (D : Type uβ) [CategoryTheory.Category.{vβ, uβ} D] [CategoryTheory.MonoidalCategory D] [CategoryTheory.BraidedCategory D] (F : CategoryTheory.LaxBraidedFunctor C D) : (CategoryTheory.Functor.mapCommMonFunctor C D).obj F = F.mapCommMon - CategoryTheory.Functor.mapCommMonFunctor_map_app_hom π Mathlib.CategoryTheory.Monoidal.CommMon_
(C : Type uβ) [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] (D : Type uβ) [CategoryTheory.Category.{vβ, uβ} D] [CategoryTheory.MonoidalCategory D] [CategoryTheory.BraidedCategory D] {Xβ Yβ : CategoryTheory.LaxBraidedFunctor C D} (Ξ± : Xβ βΆ Yβ) (A : CommMon C) : (((CategoryTheory.Functor.mapCommMonFunctor C D).map Ξ±).app A).hom = Ξ±.hom.app A.X - instFaithfulMonFunctorOppositeMonCatYonedaMon π Mathlib.CategoryTheory.Monoidal.Cartesian.Mon_
{C : Type u_1} [CategoryTheory.Category.{v, u_1} C] [CategoryTheory.CartesianMonoidalCategory C] : yonedaMon.Faithful - instFullMonFunctorOppositeMonCatYonedaMon π Mathlib.CategoryTheory.Monoidal.Cartesian.Mon_
{C : Type u_1} [CategoryTheory.Category.{v, u_1} C] [CategoryTheory.CartesianMonoidalCategory C] : yonedaMon.Full - CategoryTheory.GrothendieckTopology.instIsLocalizationFunctorOppositeSheafPresheafToSheafW π Mathlib.CategoryTheory.Sites.Localization
{C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] (J : CategoryTheory.GrothendieckTopology C) {A : Type u_2} [CategoryTheory.Category.{u_4, u_2} A] [CategoryTheory.HasWeakSheafify J A] : (CategoryTheory.presheafToSheaf J A).IsLocalization J.W - instAddCommGroupUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [AddCommGroup Ξ²] : AddCommGroup (UniformOnFun Ξ± Ξ² π) - instAddCommMonoidUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [AddCommMonoid Ξ²] : AddCommMonoid (UniformOnFun Ξ± Ξ² π) - instAddGroupUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [AddGroup Ξ²] : AddGroup (UniformOnFun Ξ± Ξ² π) - instAddMonoidUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [AddMonoid Ξ²] : AddMonoid (UniformOnFun Ξ± Ξ² π) - instAddUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Add Ξ²] : Add (UniformOnFun Ξ± Ξ² π) - instCommGroupUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [CommGroup Ξ²] : CommGroup (UniformOnFun Ξ± Ξ² π) - instCommMonoidUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [CommMonoid Ξ²] : CommMonoid (UniformOnFun Ξ± Ξ² π) - instDivUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Div Ξ²] : Div (UniformOnFun Ξ± Ξ² π) - instGroupUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Group Ξ²] : Group (UniformOnFun Ξ± Ξ² π) - instInvUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Inv Ξ²] : Inv (UniformOnFun Ξ± Ξ² π) - instMonoidUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Monoid Ξ²] : Monoid (UniformOnFun Ξ± Ξ² π) - instMulUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Mul Ξ²] : Mul (UniformOnFun Ξ± Ξ² π) - instNegUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Neg Ξ²] : Neg (UniformOnFun Ξ± Ξ² π) - instOneUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [One Ξ²] : One (UniformOnFun Ξ± Ξ² π) - instSubUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Sub Ξ²] : Sub (UniformOnFun Ξ± Ξ² π) - instZeroUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Zero Ξ²] : Zero (UniformOnFun Ξ± Ξ² π) - instSMulUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} {M : Type u_5} [SMul M Ξ²] : SMul M (UniformOnFun Ξ± Ξ² π) - instMulActionUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} {M : Type u_5} [Monoid M] [MulAction M Ξ²] : MulAction M (UniformOnFun Ξ± Ξ² π) - instAddCommGroupUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [AddCommGroup Ξ²] : instAddCommGroupUniformOnFun = Pi.addCommGroup - instAddCommMonoidUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [AddCommMonoid Ξ²] : instAddCommMonoidUniformOnFun = Pi.addCommMonoid - instAddGroupUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [AddGroup Ξ²] : instAddGroupUniformOnFun = Pi.addGroup - instAddMonoidUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [AddMonoid Ξ²] : instAddMonoidUniformOnFun = Pi.addMonoid - instAddUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Add Ξ²] : instAddUniformOnFun = Pi.instAdd - instCommGroupUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [CommGroup Ξ²] : instCommGroupUniformOnFun = Pi.commGroup - instCommMonoidUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [CommMonoid Ξ²] : instCommMonoidUniformOnFun = Pi.commMonoid - instDivUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Div Ξ²] : instDivUniformOnFun = Pi.instDiv - instGroupUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Group Ξ²] : instGroupUniformOnFun = Pi.group - instInvUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Inv Ξ²] : instInvUniformOnFun = Pi.instInv - instMonoidUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Monoid Ξ²] : instMonoidUniformOnFun = Pi.monoid - instMulUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Mul Ξ²] : instMulUniformOnFun = Pi.instMul - instNegUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Neg Ξ²] : instNegUniformOnFun = Pi.instNeg - instOneUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [One Ξ²] : instOneUniformOnFun = Pi.instOne - instSubUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Sub Ξ²] : instSubUniformOnFun = Pi.instSub - instZeroUniformOnFun.eq_1 π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Zero Ξ²] : instZeroUniformOnFun = Pi.instZero - instDistribMulActionUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} {M : Type u_5} [Monoid M] [AddMonoid Ξ²] [DistribMulAction M Ξ²] : DistribMulAction M (UniformOnFun Ξ± Ξ² π) - instModuleUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {R : Type u_4} {π : Set (Set Ξ±)} [Semiring R] [AddCommMonoid Ξ²] [Module R Ξ²] : Module R (UniformOnFun Ξ± Ξ² π) - instIsUniformAddGroupUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {G : Type u_2} [AddGroup G] {π : Set (Set Ξ±)} [UniformSpace G] [IsUniformAddGroup G] : IsUniformAddGroup (UniformOnFun Ξ± G π) - instIsUniformGroupUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {G : Type u_2} [Group G] {π : Set (Set Ξ±)} [UniformSpace G] [IsUniformGroup G] : IsUniformGroup (UniformOnFun Ξ± G π) - instSMulCommClassUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} {M : Type u_5} {N : Type u_6} [SMul M Ξ²] [SMul N Ξ²] [SMulCommClass M N Ξ²] : SMulCommClass M N (UniformOnFun Ξ± Ξ² π) - instIsScalarTowerUniformOnFun π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} {M : Type u_5} {N : Type u_6} [SMul M N] [SMul M Ξ²] [SMul N Ξ²] [IsScalarTower M N Ξ²] : IsScalarTower M N (UniformOnFun Ξ± Ξ² π) - UniformOnFun.one_apply π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [One Ξ²] : (UniformOnFun.ofFun π) 1 = 1 - UniformOnFun.toFun_one π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [One Ξ²] : (UniformOnFun.toFun π) 1 = 1 - UniformOnFun.toFun_zero π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Zero Ξ²] : (UniformOnFun.toFun π) 0 = 0 - UniformOnFun.zero_apply π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Zero Ξ²] : (UniformOnFun.ofFun π) 0 = 0 - UniformOnFun.ofFun_inv π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Inv Ξ²] (f : Ξ± β Ξ²) : (UniformOnFun.ofFun π) fβ»ΒΉ = ((UniformOnFun.ofFun π) f)β»ΒΉ - UniformOnFun.ofFun_neg π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Neg Ξ²] (f : Ξ± β Ξ²) : (UniformOnFun.ofFun π) (-f) = -(UniformOnFun.ofFun π) f - UniformOnFun.toFun_inv π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Inv Ξ²] (f : UniformOnFun Ξ± Ξ² π) : (UniformOnFun.toFun π) fβ»ΒΉ = ((UniformOnFun.toFun π) f)β»ΒΉ - UniformOnFun.toFun_neg π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Neg Ξ²] (f : UniformOnFun Ξ± Ξ² π) : (UniformOnFun.toFun π) (-f) = -(UniformOnFun.toFun π) f - UniformOnFun.ofFun_prod π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {ΞΉ : Type u_3} {π : Set (Set Ξ±)} {Ξ² : Type u_4} [CommMonoid Ξ²] {f : ΞΉ β Ξ± β Ξ²} (I : Finset ΞΉ) : (UniformOnFun.ofFun π) (β i β I, f i) = β i β I, (UniformOnFun.ofFun π) (f i) - UniformOnFun.ofFun_sum π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {ΞΉ : Type u_3} {π : Set (Set Ξ±)} {Ξ² : Type u_4} [AddCommMonoid Ξ²] {f : ΞΉ β Ξ± β Ξ²} (I : Finset ΞΉ) : (UniformOnFun.ofFun π) (β i β I, f i) = β i β I, (UniformOnFun.ofFun π) (f i) - UniformOnFun.toFun_prod π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {ΞΉ : Type u_3} {π : Set (Set Ξ±)} {Ξ² : Type u_4} [CommMonoid Ξ²] {f : ΞΉ β Ξ± β Ξ²} (I : Finset ΞΉ) : (UniformOnFun.toFun π) (β i β I, f i) = β i β I, (UniformOnFun.toFun π) (f i) - UniformOnFun.toFun_sum π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {ΞΉ : Type u_3} {π : Set (Set Ξ±)} {Ξ² : Type u_4} [AddCommMonoid Ξ²] {f : ΞΉ β Ξ± β Ξ²} (I : Finset ΞΉ) : (UniformOnFun.toFun π) (β i β I, f i) = β i β I, (UniformOnFun.toFun π) (f i) - UniformOnFun.ofFun_smul π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} {M : Type u_5} [SMul M Ξ²] (c : M) (f : Ξ± β Ξ²) : (UniformOnFun.ofFun π) (c β’ f) = c β’ (UniformOnFun.ofFun π) f - UniformOnFun.toFun_smul π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} {M : Type u_5} [SMul M Ξ²] (c : M) (f : UniformOnFun Ξ± Ξ² π) : (UniformOnFun.toFun π) (c β’ f) = c β’ (UniformOnFun.toFun π) f - UniformOnFun.hasBasis_nhds_one π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {G : Type u_2} [Group G] [UniformSpace G] [IsUniformGroup G] (π : Set (Set Ξ±)) (hπβ : π.Nonempty) (hπβ : DirectedOn (fun x1 x2 => x1 β x2) π) : (nhds 1).HasBasis (fun SV => SV.1 β π β§ SV.2 β nhds 1) fun SV => {f | β x β SV.1, f x β SV.2} - UniformOnFun.hasBasis_nhds_zero π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {G : Type u_2} [AddGroup G] [UniformSpace G] [IsUniformAddGroup G] (π : Set (Set Ξ±)) (hπβ : π.Nonempty) (hπβ : DirectedOn (fun x1 x2 => x1 β x2) π) : (nhds 0).HasBasis (fun SV => SV.1 β π β§ SV.2 β nhds 0) fun SV => {f | β x β SV.1, f x β SV.2} - UniformOnFun.ofFun_add π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Add Ξ²] (f g : Ξ± β Ξ²) : (UniformOnFun.ofFun π) (f + g) = (UniformOnFun.ofFun π) f + (UniformOnFun.ofFun π) g - UniformOnFun.ofFun_div π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Div Ξ²] (f g : Ξ± β Ξ²) : (UniformOnFun.ofFun π) (f / g) = (UniformOnFun.ofFun π) f / (UniformOnFun.ofFun π) g - UniformOnFun.ofFun_mul π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Mul Ξ²] (f g : Ξ± β Ξ²) : (UniformOnFun.ofFun π) (f * g) = (UniformOnFun.ofFun π) f * (UniformOnFun.ofFun π) g - UniformOnFun.ofFun_sub π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Sub Ξ²] (f g : Ξ± β Ξ²) : (UniformOnFun.ofFun π) (f - g) = (UniformOnFun.ofFun π) f - (UniformOnFun.ofFun π) g - UniformOnFun.toFun_add π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Add Ξ²] (f g : UniformOnFun Ξ± Ξ² π) : (UniformOnFun.toFun π) (f + g) = (UniformOnFun.toFun π) f + (UniformOnFun.toFun π) g - UniformOnFun.toFun_div π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Div Ξ²] (f g : UniformOnFun Ξ± Ξ² π) : (UniformOnFun.toFun π) (f / g) = (UniformOnFun.toFun π) f / (UniformOnFun.toFun π) g - UniformOnFun.toFun_mul π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Mul Ξ²] (f g : UniformOnFun Ξ± Ξ² π) : (UniformOnFun.toFun π) (f * g) = (UniformOnFun.toFun π) f * (UniformOnFun.toFun π) g - UniformOnFun.toFun_sub π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Sub Ξ²] (f g : UniformOnFun Ξ± Ξ² π) : (UniformOnFun.toFun π) (f - g) = (UniformOnFun.toFun π) f - (UniformOnFun.toFun π) g - UniformOnFun.hasBasis_nhds_one_of_basis π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {G : Type u_2} {ΞΉ : Type u_3} [Group G] [UniformSpace G] [IsUniformGroup G] (π : Set (Set Ξ±)) (hπβ : π.Nonempty) (hπβ : DirectedOn (fun x1 x2 => x1 β x2) π) {p : ΞΉ β Prop} {b : ΞΉ β Set G} (h : (nhds 1).HasBasis p b) : (nhds 1).HasBasis (fun Si => Si.1 β π β§ p Si.2) fun Si => {f | β x β Si.1, (UniformOnFun.toFun π) f x β b Si.2} - UniformOnFun.hasBasis_nhds_zero_of_basis π Mathlib.Topology.Algebra.UniformConvergence
{Ξ± : Type u_1} {G : Type u_2} {ΞΉ : Type u_3} [AddGroup G] [UniformSpace G] [IsUniformAddGroup G] (π : Set (Set Ξ±)) (hπβ : π.Nonempty) (hπβ : DirectedOn (fun x1 x2 => x1 β x2) π) {p : ΞΉ β Prop} {b : ΞΉ β Set G} (h : (nhds 0).HasBasis p b) : (nhds 0).HasBasis (fun Si => Si.1 β π β§ p Si.2) fun Si => {f | β x β Si.1, (UniformOnFun.toFun π) f x β b Si.2} - UniformOnFun.continuousSMul_induced_of_image_bounded π Mathlib.Topology.Algebra.Module.UniformConvergence
(π : Type u_1) (Ξ± : Type u_2) (E : Type u_3) (H : Type u_4) {hom : Type u_5} [NormedField π] [AddCommGroup H] [Module π H] [AddCommGroup E] [Module π E] [TopologicalSpace H] [UniformSpace E] [IsUniformAddGroup E] [ContinuousSMul π E] {π : Set (Set Ξ±)} [FunLike hom H (Ξ± β E)] [LinearMapClass hom π H (Ξ± β E)] (Ο : hom) (hΟ : Topology.IsInducing (β(UniformOnFun.ofFun π) β βΟ)) (h : β (u : H), β s β π, Bornology.IsVonNBounded π (Ο u '' s)) : ContinuousSMul π H - UniformOnFun.continuousSMul_submodule_of_image_bounded π Mathlib.Topology.Algebra.Module.UniformConvergence
(π : Type u_1) (Ξ± : Type u_2) (E : Type u_3) [NormedField π] [AddCommGroup E] [Module π E] [UniformSpace E] [IsUniformAddGroup E] [ContinuousSMul π E] {π : Set (Set Ξ±)} (H : Submodule π (UniformOnFun Ξ± E π)) (h : β u β H, β s β π, Bornology.IsVonNBounded π (u '' s)) : ContinuousSMul π β₯H - ContinuousLinearMap.isUniformEmbedding_toUniformOnFun π Mathlib.Topology.Algebra.Module.StrongTopology
{πβ : Type u_1} {πβ : Type u_2} [NormedField πβ] [NormedField πβ] {Ο : πβ β+* πβ} {E : Type u_4} {F : Type u_5} [AddCommGroup E] [Module πβ E] [AddCommGroup F] [Module πβ F] [TopologicalSpace E] [UniformSpace F] [IsUniformAddGroup F] : IsUniformEmbedding fun f => (UniformOnFun.ofFun {s | Bornology.IsVonNBounded πβ s}) βf - ContinuousMultilinearMap.toUniformOnFun π Mathlib.Topology.Algebra.Module.Multilinear.Topology
{π : Type u_1} {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} {F : Type u_4} [NormedField π] [(i : ΞΉ) β TopologicalSpace (E i)] [(i : ΞΉ) β AddCommGroup (E i)] [(i : ΞΉ) β Module π (E i)] [AddCommGroup F] [Module π F] [TopologicalSpace F] (f : ContinuousMultilinearMap π E F) : UniformOnFun ((i : ΞΉ) β E i) F {s | Bornology.IsVonNBounded π s} - ContinuousMultilinearMap.isUniformEmbedding_toUniformOnFun π Mathlib.Topology.Algebra.Module.Multilinear.Topology
{π : Type u_1} {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} {F : Type u_4} [NormedField π] [(i : ΞΉ) β TopologicalSpace (E i)] [(i : ΞΉ) β AddCommGroup (E i)] [(i : ΞΉ) β Module π (E i)] [AddCommGroup F] [Module π F] [UniformSpace F] [IsUniformAddGroup F] : IsUniformEmbedding ContinuousMultilinearMap.toUniformOnFun - ContinuousMultilinearMap.isUniformInducing_toUniformOnFun π Mathlib.Topology.Algebra.Module.Multilinear.Topology
{π : Type u_1} {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} {F : Type u_4} [NormedField π] [(i : ΞΉ) β TopologicalSpace (E i)] [(i : ΞΉ) β AddCommGroup (E i)] [(i : ΞΉ) β Module π (E i)] [AddCommGroup F] [Module π F] [UniformSpace F] [IsUniformAddGroup F] : IsUniformInducing ContinuousMultilinearMap.toUniformOnFun - ContinuousMultilinearMap.isEmbedding_toUniformOnFun π Mathlib.Topology.Algebra.Module.Multilinear.Topology
{π : Type u_1} {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} {F : Type u_4} [NormedField π] [(i : ΞΉ) β TopologicalSpace (E i)] [(i : ΞΉ) β AddCommGroup (E i)] [(i : ΞΉ) β Module π (E i)] [AddCommGroup F] [Module π F] [UniformSpace F] [IsUniformAddGroup F] : Topology.IsEmbedding ContinuousMultilinearMap.toUniformOnFun - ContinuousMultilinearMap.toUniformOnFun_toFun π Mathlib.Topology.Algebra.Module.Multilinear.Topology
{π : Type u_1} {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} {F : Type u_4} [NormedField π] [(i : ΞΉ) β TopologicalSpace (E i)] [(i : ΞΉ) β AddCommGroup (E i)] [(i : ΞΉ) β Module π (E i)] [AddCommGroup F] [Module π F] [TopologicalSpace F] (f : ContinuousMultilinearMap π E F) : (UniformOnFun.toFun {s | Bornology.IsVonNBounded π s}) f.toUniformOnFun = βf - ContinuousMultilinearMap.range_toUniformOnFun π Mathlib.Topology.Algebra.Module.Multilinear.Topology
{π : Type u_1} {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} {F : Type u_4} [NormedField π] [(i : ΞΉ) β TopologicalSpace (E i)] [(i : ΞΉ) β AddCommGroup (E i)] [(i : ΞΉ) β Module π (E i)] [AddCommGroup F] [Module π F] [DecidableEq ΞΉ] [TopologicalSpace F] : Set.range ContinuousMultilinearMap.toUniformOnFun = {f | Continuous ((UniformOnFun.toFun {s | Bornology.IsVonNBounded π s}) f) β§ (β (m : (i : ΞΉ) β E i) (i : ΞΉ) (x y : E i), (UniformOnFun.toFun {s | Bornology.IsVonNBounded π s}) f (Function.update m i (x + y)) = (UniformOnFun.toFun {s | Bornology.IsVonNBounded π s}) f (Function.update m i x) + (UniformOnFun.toFun {s | Bornology.IsVonNBounded π s}) f (Function.update m i y)) β§ β (m : (i : ΞΉ) β E i) (i : ΞΉ) (c : π) (x : E i), (UniformOnFun.toFun {s | Bornology.IsVonNBounded π s}) f (Function.update m i (c β’ x)) = c β’ (UniformOnFun.toFun {s | Bornology.IsVonNBounded π s}) f (Function.update m i x)} - UniformOnFun.instEDistOfFiniteElemSet π Mathlib.Topology.MetricSpace.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [PseudoEMetricSpace Ξ²] [Finite βπ] : EDist (UniformOnFun Ξ± Ξ² π) - UniformOnFun.instPseudoEMetricSpace π Mathlib.Topology.MetricSpace.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [PseudoEMetricSpace Ξ²] [Finite βπ] : PseudoEMetricSpace (UniformOnFun Ξ± Ξ² π) - UniformOnFun.instPseudoMetricSpaceOfBoundedSpace π Mathlib.Topology.MetricSpace.UniformConvergence
{Ξ± : Type u_1} {Ξ² : Type u_2} {π : Set (Set Ξ±)} [Finite βπ] [PseudoMetricSpace Ξ²] [BoundedSpace Ξ²] : PseudoMetricSpace (UniformOnFun Ξ± Ξ² π)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 187ba29 serving mathlib revision 6c19380