Loogle!
Result
Found 2181 declarations whose name contains "prime". Of these, 330 have a name containing "prime" and "iff". Of these, only the first 200 are shown.
- Nat.coprime_iff_gcd_eq_one π Batteries.Data.Nat.Gcd
{m n : β} : m.Coprime n β m.gcd n = 1 - Nat.coprime_mul_iff_left π Batteries.Data.Nat.Gcd
{m n k : β} : (m * n).Coprime k β m.Coprime k β§ n.Coprime k - Nat.coprime_mul_iff_right π Batteries.Data.Nat.Gcd
{k m n : β} : k.Coprime (m * n) β k.Coprime m β§ k.Coprime n - IsRelPrime.mul_left_iff π Mathlib.Algebra.Divisibility.Units
{Ξ± : Type u_1} [CommMonoid Ξ±] {x y z : Ξ±} [DecompositionMonoid Ξ±] : IsRelPrime (x * y) z β IsRelPrime x z β§ IsRelPrime y z - IsRelPrime.mul_right_iff π Mathlib.Algebra.Divisibility.Units
{Ξ± : Type u_1} [CommMonoid Ξ±] {x y z : Ξ±} [DecompositionMonoid Ξ±] : IsRelPrime x (y * z) β IsRelPrime x y β§ IsRelPrime x z - irreducible_iff_prime π Mathlib.Algebra.Prime.Defs
{M : Type u_1} [CancelCommMonoidWithZero M] [DecompositionMonoid M] {a : M} : Irreducible a β Prime a - Prime.dvd_pow_iff_dvd π Mathlib.Algebra.Prime.Defs
{M : Type u_1} [CommMonoidWithZero M] {p : M} (hp : Prime p) {a : M} {n : β} (hn : n β 0) : p β£ a ^ n β p β£ a - MulEquiv.prime_iff π Mathlib.Algebra.Prime.Lemmas
{M : Type u_1} {N : Type u_2} [CommMonoidWithZero M] [CommMonoidWithZero N] {p : M} {E : Type u_5} [EquivLike E M N] [MulEquivClass E M N] (e : E) : Prime (e p) β Prime p - Associated.prime_iff π Mathlib.Algebra.GroupWithZero.Associated
{M : Type u_1} [CommMonoidWithZero M] {p q : M} (h : Associated p q) : Prime p β Prime q - Irreducible.isRelPrime_iff_not_dvd π Mathlib.Algebra.GroupWithZero.Associated
{M : Type u_1} [Monoid M] {p n : M} (hp : Irreducible p) : IsRelPrime p n β Β¬p β£ n - Associates.mk_isRelPrime_iff π Mathlib.Algebra.GroupWithZero.Associated
{M : Type u_1} [CommMonoid M] {a b : M} : IsRelPrime (Associates.mk a) (Associates.mk b) β IsRelPrime a b - prime_pow_iff π Mathlib.Algebra.GroupWithZero.Associated
{M : Type u_1} [CancelCommMonoidWithZero M] {p : M} {n : β} : Prime (p ^ n) β Prime p β§ n = 1 - Prime.dvd_prime_iff_associated π Mathlib.Algebra.GroupWithZero.Associated
{M : Type u_1} [CancelCommMonoidWithZero M] {p q : M} (pp : Prime p) (qp : Prime q) : p β£ q β Associated p q - prime_dvd_prime_iff_eq π Mathlib.Algebra.GroupWithZero.Associated
{M : Type u_2} [CancelCommMonoidWithZero M] [Subsingleton MΛ£] {p q : M} (pp : Prime p) (qp : Prime q) : p β£ q β p = q - prime_mul_iff π Mathlib.Algebra.GroupWithZero.Associated
{M : Type u_1} [CancelCommMonoidWithZero M] {x y : M} : Prime (x * y) β Prime x β§ IsUnit y β¨ IsUnit x β§ Prime y - Associates.irreducible_iff_prime_iff π Mathlib.Algebra.GroupWithZero.Associated
{M : Type u_1} [CommMonoidWithZero M] : (β (a : M), Irreducible a β Prime a) β β (a : Associates M), Irreducible a β Prime a - associates_irreducible_iff_prime π Mathlib.Algebra.GroupWithZero.Associated
{M : Type u_1} [CancelCommMonoidWithZero M] [DecompositionMonoid M] {p : Associates M} : Irreducible p β Prime p - pow_eq_pow_iff_of_coprime π Mathlib.Data.Int.GCD
{Ξ± : Type u_1} [CommGroupWithZero Ξ±] {a b : Ξ±} {m n : β} (hmn : m.Coprime n) : a ^ m = b ^ n β β c, a = c ^ n β§ b = c ^ m - Commute.pow_eq_pow_iff_of_coprime π Mathlib.Data.Int.GCD
{Ξ± : Type u_1} [GroupWithZero Ξ±] {a b : Ξ±} {m n : β} (hab : Commute a b) (hmn : m.Coprime n) : a ^ m = b ^ n β β c, a = c ^ n β§ b = c ^ m - Nat.isCoprime_iff π Mathlib.RingTheory.Coprime.Basic
{m n : β} : IsCoprime m n β m = 1 β¨ n = 1 - IsCoprime.neg_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] (x y : R) : IsCoprime (-x) y β IsCoprime x y - IsCoprime.neg_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] (x y : R) : IsCoprime x (-y) β IsCoprime x y - PNat.isCoprime_iff π Mathlib.RingTheory.Coprime.Basic
{m n : β+} : IsCoprime βm βn β m = 1 β¨ n = 1 - IsCoprime.mul_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommSemiring R] {x y z : R} : IsCoprime (x * y) z β IsCoprime x z β§ IsCoprime y z - IsCoprime.mul_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommSemiring R] {x y z : R} : IsCoprime x (y * z) β IsCoprime x y β§ IsCoprime x z - IsRelPrime.neg_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [CommRing R] (x y : R) : IsRelPrime (-x) y β IsRelPrime x y - IsRelPrime.neg_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [CommRing R] (x y : R) : IsRelPrime x (-y) β IsRelPrime x y - IsCoprime.neg_neg_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] (x y : R) : IsCoprime (-x) (-y) β IsCoprime x y - Semifield.isCoprime_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [Semifield R] {m n : R} : IsCoprime m n β m β 0 β¨ n β 0 - IsCoprime.add_mul_left_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] {x y z : R} : IsCoprime (x + y * z) y β IsCoprime x y - IsCoprime.add_mul_left_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] {x y z : R} : IsCoprime x (y + x * z) β IsCoprime x y - IsCoprime.add_mul_right_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] {x y z : R} : IsCoprime (x + z * y) y β IsCoprime x y - IsCoprime.add_mul_right_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] {x y z : R} : IsCoprime x (y + z * x) β IsCoprime x y - IsCoprime.mul_add_left_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] {x y z : R} : IsCoprime (y * z + x) y β IsCoprime x y - IsCoprime.mul_add_left_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] {x y z : R} : IsCoprime x (x * z + y) β IsCoprime x y - IsCoprime.mul_add_right_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] {x y z : R} : IsCoprime (z * y + x) y β IsCoprime x y - IsCoprime.mul_add_right_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] {x y z : R} : IsCoprime x (z * x + y) β IsCoprime x y - IsCoprime.abs_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] [LinearOrder R] [AddLeftMono R] (x y : R) : IsCoprime |x| y β IsCoprime x y - IsCoprime.abs_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] [LinearOrder R] [AddLeftMono R] (x y : R) : IsCoprime x |y| β IsCoprime x y - IsRelPrime.neg_neg_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [CommRing R] (x y : R) : IsRelPrime (-x) (-y) β IsRelPrime x y - IsRelPrime.add_mul_left_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [CommRing R] {x y z : R} : IsRelPrime (x + y * z) y β IsRelPrime x y - IsRelPrime.add_mul_left_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [CommRing R] {x y z : R} : IsRelPrime x (y + x * z) β IsRelPrime x y - IsRelPrime.add_mul_right_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [CommRing R] {x y z : R} : IsRelPrime (x + z * y) y β IsRelPrime x y - IsRelPrime.add_mul_right_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [CommRing R] {x y z : R} : IsRelPrime x (y + z * x) β IsRelPrime x y - IsRelPrime.mul_add_left_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [CommRing R] {x y z : R} : IsRelPrime (y * z + x) y β IsRelPrime x y - IsRelPrime.mul_add_left_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [CommRing R] {x y z : R} : IsRelPrime x (x * z + y) β IsRelPrime x y - IsRelPrime.mul_add_right_left_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [CommRing R] {x y z : R} : IsRelPrime (z * y + x) y β IsRelPrime x y - IsRelPrime.mul_add_right_right_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u_1} [CommRing R] {x y z : R} : IsRelPrime x (z * x + y) β IsRelPrime x y - IsCoprime.abs_abs_iff π Mathlib.RingTheory.Coprime.Basic
{R : Type u} [CommRing R] [LinearOrder R] [AddLeftMono R] (x y : R) : IsCoprime |x| |y| β IsCoprime x y - Nat.isCoprime_iff_coprime π Mathlib.RingTheory.Coprime.Lemmas
{m n : β} : IsCoprime βm βn β m.Coprime n - Int.isCoprime_iff_gcd_eq_one π Mathlib.RingTheory.Coprime.Lemmas
{m n : β€} : IsCoprime m n β m.gcd n = 1 - IsCoprime.prod_left_iff π Mathlib.RingTheory.Coprime.Lemmas
{R : Type u} {I : Type v} [CommSemiring R] {x : R} {s : I β R} {t : Finset I} : IsCoprime (β i β t, s i) x β β i β t, IsCoprime (s i) x - IsCoprime.prod_right_iff π Mathlib.RingTheory.Coprime.Lemmas
{R : Type u} {I : Type v} [CommSemiring R] {x : R} {s : I β R} {t : Finset I} : IsCoprime x (β i β t, s i) β β i β t, IsCoprime x (s i) - IsCoprime.pow_left_iff π Mathlib.RingTheory.Coprime.Lemmas
{R : Type u} [CommSemiring R] {x y : R} {m : β} (hm : 0 < m) : IsCoprime (x ^ m) y β IsCoprime x y - IsCoprime.pow_right_iff π Mathlib.RingTheory.Coprime.Lemmas
{R : Type u} [CommSemiring R] {x y : R} {m : β} (hm : 0 < m) : IsCoprime x (y ^ m) β IsCoprime x y - IsRelPrime.prod_left_iff π Mathlib.RingTheory.Coprime.Lemmas
{Ξ± : Type u_1} {I : Type u_2} [CommMonoid Ξ±] [DecompositionMonoid Ξ±] {x : Ξ±} {s : I β Ξ±} {t : Finset I} : IsRelPrime (β i β t, s i) x β β i β t, IsRelPrime (s i) x - IsRelPrime.prod_right_iff π Mathlib.RingTheory.Coprime.Lemmas
{Ξ± : Type u_1} {I : Type u_2} [CommMonoid Ξ±] [DecompositionMonoid Ξ±] {x : Ξ±} {s : I β Ξ±} {t : Finset I} : IsRelPrime x (β i β t, s i) β β i β t, IsRelPrime x (s i) - IsRelPrime.pow_left_iff π Mathlib.RingTheory.Coprime.Lemmas
{Ξ± : Type u_1} [CommMonoid Ξ±] [DecompositionMonoid Ξ±] {x y : Ξ±} {m : β} (hm : 0 < m) : IsRelPrime (x ^ m) y β IsRelPrime x y - IsRelPrime.pow_right_iff π Mathlib.RingTheory.Coprime.Lemmas
{Ξ± : Type u_1} [CommMonoid Ξ±] [DecompositionMonoid Ξ±] {x y : Ξ±} {m : β} (hm : 0 < m) : IsRelPrime x (y ^ m) β IsRelPrime x y - IsCoprime.pow_iff π Mathlib.RingTheory.Coprime.Lemmas
{R : Type u} [CommSemiring R] {x y : R} {m n : β} (hm : 0 < m) (hn : 0 < n) : IsCoprime (x ^ m) (y ^ n) β IsCoprime x y - IsRelPrime.pow_iff π Mathlib.RingTheory.Coprime.Lemmas
{Ξ± : Type u_1} [CommMonoid Ξ±] [DecompositionMonoid Ξ±] {x y : Ξ±} {m n : β} (hm : 0 < m) (hn : 0 < n) : IsRelPrime (x ^ m) (y ^ n) β IsRelPrime x y - pairwise_coprime_iff_coprime_prod π Mathlib.RingTheory.Coprime.Lemmas
{R : Type u} {I : Type v} [CommSemiring R] {s : I β R} {t : Finset I} [DecidableEq I] : Pairwise (Function.onFun IsCoprime fun i => s βi) β β i β t, IsCoprime (s i) (β j β t \ {i}, s j) - exists_sum_eq_one_iff_pairwise_coprime' π Mathlib.RingTheory.Coprime.Lemmas
{R : Type u} {I : Type v} [CommSemiring R] {s : I β R} [Fintype I] [Nonempty I] [DecidableEq I] : (β ΞΌ, β i, ΞΌ i * β j β {i}αΆ, s j = 1) β Pairwise (Function.onFun IsCoprime s) - pairwise_isRelPrime_iff_isRelPrime_prod π Mathlib.RingTheory.Coprime.Lemmas
{Ξ± : Type u_2} {I : Type u_1} [CommMonoid Ξ±] [DecompositionMonoid Ξ±] {s : I β Ξ±} {t : Finset I} [DecidableEq I] : Pairwise (Function.onFun IsRelPrime fun i => s βi) β β i β t, IsRelPrime (s i) (β j β t \ {i}, s j) - exists_sum_eq_one_iff_pairwise_coprime π Mathlib.RingTheory.Coprime.Lemmas
{R : Type u} {I : Type v} [CommSemiring R] {s : I β R} {t : Finset I} [DecidableEq I] (h : t.Nonempty) : (β ΞΌ, β i β t, ΞΌ i * β j β t \ {i}, s j = 1) β Pairwise (Function.onFun IsCoprime fun i => s βi) - Ideal.IsPrime.pow_mem_iff_mem π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} (hI : I.IsPrime) {r : Ξ±} (n : β) (hn : 0 < n) : r ^ n β I β r β I - Ideal.IsPrime.mul_mem_iff_mem_or_mem π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} [I.IsTwoSided] (hI : I.IsPrime) {x y : Ξ±} : x * y β I β x β I β¨ y β I - Ideal.isPrime_iff π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} : I.IsPrime β I β β€ β§ β {x y : Ξ±}, x * y β I β x β I β¨ y β I - Ideal.not_isPrime_iff π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} : Β¬I.IsPrime β I = β€ β¨ β x, β (_ : x β I), β y, β (_ : y β I), x * y β I - Ring.not_isField_iff_exists_prime π Mathlib.RingTheory.Ideal.Basic
{R : Type u_5} [CommSemiring R] [Nontrivial R] : Β¬IsField R β β p, p β β₯ β§ p.IsPrime - Ideal.isCoprime_span_singleton_iff π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] (x y : R) : IsCoprime (Ideal.span {x}) (Ideal.span {y}) β IsCoprime x y - Ideal.sup_eq_top_iff_isCoprime π Mathlib.RingTheory.Ideal.Operations
{R : Type u_2} [CommSemiring R] (x y : R) : Ideal.span {x} β Ideal.span {y} = β€ β IsCoprime x y - Ideal.isCoprime_iff_codisjoint π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I J : Ideal R} : IsCoprime I J β Codisjoint I J - Ideal.isCoprime_iff_sup_eq π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I J : Ideal R} : IsCoprime I J β I β J = β€ - Ideal.IsPrime.multiset_prod_mem_iff_exists_mem π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I : Ideal R} (hI : I.IsPrime) (s : Multiset R) : s.prod β I β β p β s, p β I - Ideal.IsPrime.prod_mem_iff_exists_mem π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I : Ideal R} (hI : I.IsPrime) (s : Finset R) : β x β s, x β I β β p β s, p β I - Ideal.isCoprime_iff_add π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I J : Ideal R} : IsCoprime I J β I + J = 1 - Ideal.IsPrime.prod_mem_iff π Mathlib.RingTheory.Ideal.Operations
{R : Type u} {ΞΉ : Type u_1} [CommSemiring R] {s : Finset ΞΉ} {x : ΞΉ β R} {p : Ideal R} [hp : p.IsPrime] : β i β s, x i β p β β i β s, x i β p - Ideal.IsPrime.radical_le_iff π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I J : Ideal R} (hJ : J.IsPrime) : I.radical β€ J β I β€ J - Ideal.isCoprime_iff_exists π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I J : Ideal R} : IsCoprime I J β β i β I, β j β J, i + j = 1 - Ideal.IsPrime.pow_le_iff π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I P : Ideal R} [hP : P.IsPrime] {n : β} (hn : n β 0) : I ^ n β€ P β I β€ P - Ideal.comap_map_eq_self_iff_of_isPrime π Mathlib.RingTheory.Ideal.Maps
{R : Type u} [CommSemiring R] {S : Type u_2} [CommSemiring S] {f : R β+* S} (p : Ideal R) [p.IsPrime] : Ideal.comap f (Ideal.map f p) = p β β q, q.IsPrime β§ Ideal.comap f q = p - Ideal.disjoint_map_primeCompl_iff_comap_le π Mathlib.RingTheory.Ideal.Maps
{R : Type u} [CommSemiring R] {S : Type u_2} [Semiring S] {f : R β+* S} {p : Ideal R} {I : Ideal S} [p.IsPrime] : Disjoint βI β(Submonoid.map f p.primeCompl) β Ideal.comap f I β€ p - Nat.coprime_one_left_iff π Mathlib.Data.Nat.GCD.Basic
(n : β) : Nat.Coprime 1 n β True - Nat.coprime_one_right_iff π Mathlib.Data.Nat.GCD.Basic
(n : β) : n.Coprime 1 β True - Nat.coprime_iff_isRelPrime π Mathlib.Data.Nat.GCD.Basic
{m n : β} : m.Coprime n β IsRelPrime m n - Nat.add_coprime_iff_left π Mathlib.Data.Nat.GCD.Basic
{a b c : β} (h : c β£ b) : (a + b).Coprime c β a.Coprime c - Nat.add_coprime_iff_right π Mathlib.Data.Nat.GCD.Basic
{a b c : β} (h : c β£ a) : (a + b).Coprime c β b.Coprime c - Nat.coprime_add_iff_left π Mathlib.Data.Nat.GCD.Basic
{a b c : β} (h : a β£ c) : a.Coprime (b + c) β a.Coprime b - Nat.coprime_add_iff_right π Mathlib.Data.Nat.GCD.Basic
{a b c : β} (h : a β£ b) : a.Coprime (b + c) β a.Coprime c - Nat.coprime_pow_left_iff π Mathlib.Data.Nat.GCD.Basic
{n : β} (hn : 0 < n) (a b : β) : (a ^ n).Coprime b β a.Coprime b - Nat.coprime_pow_right_iff π Mathlib.Data.Nat.GCD.Basic
{n : β} (hn : 0 < n) (a b : β) : a.Coprime (b ^ n) β a.Coprime b - Nat.gcd_mul_gcd_eq_iff_dvd_mul_of_coprime π Mathlib.Data.Nat.GCD.Basic
{x n m : β} (hcop : n.Coprime m) : x.gcd n * x.gcd m = x β x β£ n * m - Ideal.Quotient.isDomain_iff_prime π Mathlib.RingTheory.Ideal.Quotient.Basic
{R : Type u} [Ring R] (I : Ideal R) [I.IsTwoSided] : IsDomain (R β§Έ I) β I.IsPrime - gcd_isUnit_iff_isRelPrime π Mathlib.Algebra.GCDMonoid.Basic
{Ξ± : Type u_1} [CancelCommMonoidWithZero Ξ±] [GCDMonoid Ξ±] {a b : Ξ±} : IsUnit (gcd a b) β IsRelPrime a b - UniqueFactorizationMonoid.irreducible_iff_prime π Mathlib.RingTheory.UniqueFactorizationDomain.Defs
{Ξ± : Type u_2} {instβ : CancelCommMonoidWithZero Ξ±} [self : UniqueFactorizationMonoid Ξ±] {a : Ξ±} : Irreducible a β Prime a - UniqueFactorizationMonoid.exists_prime_iff π Mathlib.RingTheory.UniqueFactorizationDomain.Defs
{Ξ± : Type u_1} [CancelCommMonoidWithZero Ξ±] [UniqueFactorizationMonoid Ξ±] : (β p, Prime p) β β x, x β 0 β§ Β¬IsUnit x - Irreducible.coprime_iff_not_dvd π Mathlib.RingTheory.PrincipalIdealDomain
{R : Type u} [CommRing R] [IsBezout R] {p n : R} (hp : Irreducible p) : IsCoprime p n β Β¬p β£ n - Irreducible.dvd_iff_not_coprime π Mathlib.RingTheory.PrincipalIdealDomain
{R : Type u} [CommRing R] [IsBezout R] {p n : R} (hp : Irreducible p) : p β£ n β Β¬IsCoprime p n - Irreducible.dvd_iff_not_isCoprime π Mathlib.RingTheory.PrincipalIdealDomain
{R : Type u} [CommRing R] [IsBezout R] {p n : R} (hp : Irreducible p) : p β£ n β Β¬IsCoprime p n - Prime.coprime_iff_not_dvd π Mathlib.RingTheory.PrincipalIdealDomain
{R : Type u} [CommRing R] [IsBezout R] [IsDomain R] {p n : R} (hp : Prime p) : IsCoprime p n β Β¬p β£ n - isRelPrime_iff_isCoprime π Mathlib.RingTheory.PrincipalIdealDomain
{R : Type u} [CommRing R] {x y : R} [Submodule.IsPrincipal (Ideal.span {x, y})] : IsRelPrime x y β IsCoprime x y - Nat.irreducible_iff_nat_prime π Mathlib.Data.Nat.Prime.Defs
(a : β) : Irreducible a β Nat.Prime a - Nat.prime_iff π Mathlib.Data.Nat.Prime.Defs
{p : β} : Nat.Prime p β Prime p - Nat.irreducible_iff_prime π Mathlib.Data.Nat.Prime.Defs
{p : β} : Irreducible p β Prime p - Nat.Prime.coprime_iff_not_dvd π Mathlib.Data.Nat.Prime.Defs
{p n : β} (pp : Nat.Prime p) : p.Coprime n β Β¬p β£ n - Nat.prime_dvd_prime_iff_eq π Mathlib.Data.Nat.Prime.Defs
{p q : β} (pp : Nat.Prime p) (qp : Nat.Prime q) : p β£ q β p = q - Nat.not_prime_iff_minFac_lt π Mathlib.Data.Nat.Prime.Defs
{n : β} (n2 : 2 β€ n) : Β¬Nat.Prime n β n.minFac < n - Polynomial.prime_C_iff π Mathlib.RingTheory.Polynomial.Basic
{R : Type u} [CommRing R] {r : R} : Prime (Polynomial.C r) β Prime r - MvPolynomial.prime_C_iff π Mathlib.RingTheory.Polynomial.Basic
{R : Type u} (Ο : Type v) [CommRing R] {r : R} : Prime (MvPolynomial.C r) β Prime r - Ideal.isPrime_map_C_iff_isPrime π Mathlib.RingTheory.Polynomial.Basic
{R : Type u} [CommRing R] (P : Ideal R) : (Ideal.map Polynomial.C P).IsPrime β P.IsPrime - MvPolynomial.prime_rename_iff π Mathlib.RingTheory.Polynomial.Basic
{R : Type u} {Ο : Type v} [CommRing R] (s : Set Ο) {p : MvPolynomial (βs) R} : Prime ((MvPolynomial.rename Subtype.val) p) β Prime p - CharP.charP_iff_prime_eq_zero π Mathlib.Algebra.CharP.Basic
{R : Type u_1} [NonAssocSemiring R] [Nontrivial R] {p : β} (hp : Nat.Prime p) : CharP R p β βp = 0 - CharZero.charZero_iff_forall_prime_ne_zero π Mathlib.Algebra.CharP.Basic
(R : Type u_1) [NonAssocRing R] [NoZeroDivisors R] [Nontrivial R] : CharZero R β β (p : β), Nat.Prime p β βp β 0 - Nat.Prime.dvd_iff_not_coprime π Mathlib.Data.Nat.Prime.Basic
{p n : β} (pp : Nat.Prime p) : p β£ n β Β¬p.Coprime n - Nat.Prime.even_iff π Mathlib.Data.Nat.Prime.Basic
{p : β} (hp : Nat.Prime p) : Even p β p = 2 - Nat.eq_one_iff_not_exists_prime_dvd π Mathlib.Data.Nat.Prime.Basic
{n : β} : n = 1 β β (p : β), Nat.Prime p β Β¬p β£ n - Nat.ne_one_iff_exists_prime_dvd π Mathlib.Data.Nat.Prime.Basic
{n : β} : n β 1 β β p, Nat.Prime p β§ p β£ n - Nat.Prime.dvd_iff_eq π Mathlib.Data.Nat.Prime.Basic
{p a : β} (hp : Nat.Prime p) (a1 : a β 1) : a β£ p β p = a - Nat.Prime.not_coprime_iff_dvd π Mathlib.Data.Nat.Prime.Basic
{m n : β} : Β¬m.Coprime n β β p, Nat.Prime p β§ p β£ m β§ p β£ n - Nat.Prime.mod_two_eq_one_iff_ne_two π Mathlib.Data.Nat.Prime.Basic
{p : β} [Fact (Nat.Prime p)] : p % 2 = 1 β p β 2 - Nat.Prime.pow_eq_iff π Mathlib.Data.Nat.Prime.Basic
{p a k : β} (hp : Nat.Prime p) : a ^ k = p β a = p β§ k = 1 - Nat.not_prime_iff_exists_dvd_ne π Mathlib.Data.Nat.Prime.Basic
{n : β} (h : 2 β€ n) : Β¬Nat.Prime n β β m, m β£ n β§ m β 1 β§ m β n - Nat.prime_mul_iff π Mathlib.Data.Nat.Prime.Basic
{a b : β} : Nat.Prime (a * b) β Nat.Prime a β§ b = 1 β¨ Nat.Prime b β§ a = 1 - Nat.not_prime_iff_exists_dvd_lt π Mathlib.Data.Nat.Prime.Basic
{n : β} (h : 2 β€ n) : Β¬Nat.Prime n β β m, m β£ n β§ 2 β€ m β§ m < n - Nat.Prime.mul_eq_prime_sq_iff π Mathlib.Data.Nat.Prime.Basic
{x y p : β} (hp : Nat.Prime p) (hx : x β 1) (hy : y β 1) : x * y = p ^ 2 β x = p β§ y = p - Function.minimalPeriod_eq_prime_iff π Mathlib.Dynamics.PeriodicPts.Lemmas
{Ξ± : Type u_1} {f : Ξ± β Ξ±} {x : Ξ±} {p : β} [hp : Fact (Nat.Prime p)] : Function.minimalPeriod f x = p β Function.IsPeriodicPt f p x β§ Β¬Function.IsFixedPt f x - isPrimePow_nat_iff π Mathlib.Algebra.IsPrimePow
(n : β) : IsPrimePow n β β p k, Nat.Prime p β§ 0 < k β§ p ^ k = n - isPrimePow_iff_pow_succ π Mathlib.Algebra.IsPrimePow
{R : Type u_1} [CommMonoidWithZero R] (n : R) : IsPrimePow n β β p k, Prime p β§ p ^ (k + 1) = n - isPrimePow_nat_iff_bounded π Mathlib.Algebra.IsPrimePow
(n : β) : IsPrimePow n β β p β€ n, β k β€ n, Nat.Prime p β§ 0 < k β§ p ^ k = n - Prime.dvd_prod_iff π Mathlib.Data.List.Prime
{M : Type u_1} [CommMonoidWithZero M] {p : M} {L : List M} (pp : Prime p) : p β£ L.prod β β a β L, p β£ a - Nat.mem_primeFactorsList_iff_dvd π Mathlib.Data.Nat.Factors
{n p : β} (hn : n β 0) (hp : Nat.Prime p) : p β n.primeFactorsList β p β£ n - Nat.replicate_subperm_primeFactorsList_iff π Mathlib.Data.Nat.Factors
{a b n : β} (ha : Nat.Prime a) (hb : b β 0) : (List.replicate n a).Subperm b.primeFactorsList β a ^ n β£ b - Nat.mem_primeFactors_iff_mem_primeFactorsList π Mathlib.Data.Nat.PrimeFin
{n p : β} : p β n.primeFactors β p β n.primeFactorsList - Nat.sum_properDivisors_eq_one_iff_prime π Mathlib.NumberTheory.Divisors
{n : β} : β x β n.properDivisors, x = 1 β Nat.Prime n - Nat.properDivisors_eq_singleton_one_iff_prime π Mathlib.NumberTheory.Divisors
{n : β} : n.properDivisors = {1} β Nat.Prime n - addOrderOf_eq_prime_iff π Mathlib.GroupTheory.OrderOfElement
{G : Type u_1} [AddMonoid G] {x : G} {p : β} [hp : Fact (Nat.Prime p)] : addOrderOf x = p β p β’ x = 0 β§ x β 0 - orderOf_eq_prime_iff π Mathlib.GroupTheory.OrderOfElement
{G : Type u_1} [Monoid G] {x : G} {p : β} [hp : Fact (Nat.Prime p)] : orderOf x = p β x ^ p = 1 β§ x β 1 - exists_addOrderOf_eq_prime_pow_iff π Mathlib.GroupTheory.OrderOfElement
{G : Type u_1} [AddMonoid G] {x : G} {p : β} [hp : Fact (Nat.Prime p)] : (β k, addOrderOf x = p ^ k) β β m, p ^ m β’ x = 0 - exists_orderOf_eq_prime_pow_iff π Mathlib.GroupTheory.OrderOfElement
{G : Type u_1} [Monoid G] {x : G} {p : β} [hp : Fact (Nat.Prime p)] : (β k, orderOf x = p ^ k) β β m, x ^ p ^ m = 1 - ZMod.isUnit_iff_coprime π Mathlib.Data.ZMod.Basic
(m n : β) : IsUnit βm β m.Coprime n - ZMod.isUnit_prime_iff_not_dvd π Mathlib.Data.ZMod.Basic
{n p : β} (hp : Nat.Prime p) : IsUnit βp β Β¬p β£ n - Nat.Prime.dvd_choose_pow_iff π Mathlib.Data.Nat.Multiplicity
{p n k : β} (hp : Nat.Prime p) : p β£ (p ^ n).choose k β k β 0 β§ k β p ^ n - Nat.Prime.pow_dvd_factorial_iff π Mathlib.Data.Nat.Multiplicity
{p n r b : β} (hp : Nat.Prime p) (hbn : Nat.log p n < b) : p ^ r β£ n.factorial β r β€ β i β Finset.Ico 1 b, n / p ^ i - Prime.dvd_finset_prod_iff π Mathlib.Algebra.BigOperators.Associated
{Ξ± : Type u_1} {M : Type u_5} [CommMonoidWithZero M] {S : Finset Ξ±} {p : M} (pp : Prime p) (g : Ξ± β M) : p β£ S.prod g β β a β S, p β£ g a - Prime.dvd_finsuppProd_iff π Mathlib.Algebra.BigOperators.Associated
{Ξ± : Type u_1} {M : Type u_5} [CommMonoidWithZero M] {f : Ξ± ββ M} {g : Ξ± β M β β} {p : β} (pp : Prime p) : p β£ f.prod g β β a β f.support, p β£ g a (f a) - Prime.dvd_finsupp_prod_iff π Mathlib.Algebra.BigOperators.Associated
{Ξ± : Type u_1} {M : Type u_5} [CommMonoidWithZero M] {f : Ξ± ββ M} {g : Ξ± β M β β} {p : β} (pp : Prime p) : p β£ f.prod g β β a β f.support, p β£ g a (f a) - Nat.coprime_multiset_prod_left_iff π Mathlib.Data.Nat.GCD.BigOperators
{m : Multiset β} {k : β} : m.prod.Coprime k β β n β m, n.Coprime k - Nat.coprime_multiset_prod_right_iff π Mathlib.Data.Nat.GCD.BigOperators
{k : β} {m : Multiset β} : k.Coprime m.prod β β n β m, k.Coprime n - Nat.coprime_list_prod_left_iff π Mathlib.Data.Nat.GCD.BigOperators
{l : List β} {k : β} : l.prod.Coprime k β β n β l, n.Coprime k - Nat.coprime_list_prod_right_iff π Mathlib.Data.Nat.GCD.BigOperators
{k : β} {l : List β} : k.Coprime l.prod β β n β l, k.Coprime n - Nat.coprime_fintype_prod_left_iff π Mathlib.Data.Nat.GCD.BigOperators
{ΞΉ : Type u_1} [Fintype ΞΉ] {s : ΞΉ β β} {x : β} : (β i, s i).Coprime x β β (i : ΞΉ), (s i).Coprime x - Nat.coprime_fintype_prod_right_iff π Mathlib.Data.Nat.GCD.BigOperators
{ΞΉ : Type u_1} [Fintype ΞΉ] {x : β} {s : ΞΉ β β} : x.Coprime (β i, s i) β β (i : ΞΉ), x.Coprime (s i) - Nat.coprime_prod_left_iff π Mathlib.Data.Nat.GCD.BigOperators
{ΞΉ : Type u_1} {t : Finset ΞΉ} {s : ΞΉ β β} {x : β} : (β i β t, s i).Coprime x β β i β t, (s i).Coprime x - Nat.coprime_prod_right_iff π Mathlib.Data.Nat.GCD.BigOperators
{ΞΉ : Type u_1} {x : β} {t : Finset ΞΉ} {s : ΞΉ β β} : x.Coprime (β i β t, s i) β β i β t, x.Coprime (s i) - Equiv.Perm.pow_prime_eq_one_iff π Mathlib.GroupTheory.Perm.Cycle.Type
{Ξ± : Type u_1} [Fintype Ξ±] [DecidableEq Ξ±] {Ο : Equiv.Perm Ξ±} {p : β} [hp : Fact (Nat.Prime p)] : Ο ^ p = 1 β β c β Ο.cycleType, c = p - le_padicValNat_iff_replicate_subperm_primeFactorsList π Mathlib.NumberTheory.Padics.PadicVal.Defs
{a b n : β} (ha : Nat.Prime a) (hb : b β 0) : n β€ padicValNat a b β (List.replicate n a).Subperm b.primeFactorsList - le_emultiplicity_iff_replicate_subperm_primeFactorsList π Mathlib.NumberTheory.Padics.PadicVal.Defs
{a b n : β} (ha : Nat.Prime a) (hb : b β 0) : βn β€ emultiplicity a b β (List.replicate n a).Subperm b.primeFactorsList - Nat.eq_iff_prime_padicValNat_eq π Mathlib.Data.Nat.Factorization.Basic
(a b : β) (ha : a β 0) (hb : b β 0) : a = b β β (p : β), Nat.Prime p β padicValNat p a = padicValNat p b - Nat.dvd_iff_prime_pow_dvd_dvd π Mathlib.Data.Nat.Factorization.Basic
(n d : β) : d β£ n β β (p k : β), Nat.Prime p β p ^ k β£ d β p ^ k β£ n - Nat.Prime.dvd_iff_one_le_factorization π Mathlib.Data.Nat.Factorization.Basic
{p n : β} (pp : Nat.Prime p) (hn : n β 0) : p β£ n β 1 β€ n.factorization p - Nat.Prime.pow_dvd_iff_le_factorization π Mathlib.Data.Nat.Factorization.Basic
{p k n : β} (pp : Nat.Prime p) (hn : n β 0) : p ^ k β£ n β k β€ n.factorization p - Nat.factorization_prime_le_iff_dvd π Mathlib.Data.Nat.Factorization.Basic
{d n : β} (hd : d β 0) (hn : n β 0) : (β (p : β), Nat.Prime p β d.factorization p β€ n.factorization p) β d β£ n - Nat.Prime.pow_dvd_iff_dvd_ordProj π Mathlib.Data.Nat.Factorization.Basic
{p k n : β} (pp : Nat.Prime p) (hn : n β 0) : p ^ k β£ n β p ^ k β£ p ^ n.factorization p - Nat.Prime.pow_dvd_iff_dvd_ord_proj π Mathlib.Data.Nat.Factorization.Basic
{p k n : β} (pp : Nat.Prime p) (hn : n β 0) : p ^ k β£ n β p ^ k β£ p ^ n.factorization p - Nat.totient_eq_iff_prime π Mathlib.Data.Nat.Totient
{p : β} (hp : 0 < p) : p.totient = p - 1 β Nat.Prime p - Nat.prime_iff_card_units π Mathlib.Data.Nat.Totient
(p : β) [Fintype (ZMod p)Λ£] : Nat.Prime p β Fintype.card (ZMod p)Λ£ = p - 1 - AddMonoid.exponent_eq_prime_iff π Mathlib.GroupTheory.Exponent
{G : Type u_1} [AddMonoid G] [Nontrivial G] {p : β} (hp : Nat.Prime p) : AddMonoid.exponent G = p β β (g : G), g β 0 β addOrderOf g = p - Monoid.exponent_eq_prime_iff π Mathlib.GroupTheory.Exponent
{G : Type u_1} [Monoid G] [Nontrivial G] {p : β} (hp : Nat.Prime p) : Monoid.exponent G = p β β (g : G), g β 1 β orderOf g = p - AddCommGroup.is_simple_iff_isAddCyclic_and_prime_card π Mathlib.GroupTheory.SpecificGroups.Cyclic
{Ξ± : Type u_1} [Finite Ξ±] [AddCommGroup Ξ±] : IsSimpleAddGroup Ξ± β IsAddCyclic Ξ± β§ Nat.Prime (Nat.card Ξ±) - CommGroup.is_simple_iff_isCyclic_and_prime_card π Mathlib.GroupTheory.SpecificGroups.Cyclic
{Ξ± : Type u_1} [Finite Ξ±] [CommGroup Ξ±] : IsSimpleGroup Ξ± β IsCyclic Ξ± β§ Nat.Prime (Nat.card Ξ±) - not_isAddCyclic_iff_exponent_eq_prime π Mathlib.GroupTheory.SpecificGroups.Cyclic
{Ξ± : Type u_1} [AddGroup Ξ±] {p : β} (hp : Nat.Prime p) (hΞ± : Nat.card Ξ± = p ^ 2) : Β¬IsAddCyclic Ξ± β AddMonoid.exponent Ξ± = p - not_isCyclic_iff_exponent_eq_prime π Mathlib.GroupTheory.SpecificGroups.Cyclic
{Ξ± : Type u_1} [Group Ξ±] {p : β} (hp : Nat.Prime p) (hΞ± : Nat.card Ξ± = p ^ 2) : Β¬IsCyclic Ξ± β Monoid.exponent Ξ± = p - ExpChar.pow_prime_pow_mul_eq_one_iff π Mathlib.Algebra.CharP.Reduced
{R : Type u_1} [CommRing R] [IsReduced R] (p k m : β) [ExpChar R p] (x : R) : x ^ (p ^ k * m) = 1 β x ^ m = 1 - mem_rootsOfUnity_prime_pow_mul_iff π Mathlib.RingTheory.RootsOfUnity.Basic
(R : Type u_4) [CommRing R] [IsReduced R] (p k m : β) [ExpChar R p] {ΞΆ : RΛ£} : ΞΆ β rootsOfUnity (p ^ k * m) R β ΞΆ β rootsOfUnity m R - mem_rootsOfUnity_prime_pow_mul_iff' π Mathlib.RingTheory.RootsOfUnity.Basic
(R : Type u_4) [CommRing R] [IsReduced R] (p k m : β) [ExpChar R p] {ΞΆ : RΛ£} : ΞΆ ^ (p ^ k * m) = 1 β ΞΆ β rootsOfUnity m R - UniqueFactorizationMonoid.iff_exists_prime_factors π Mathlib.RingTheory.UniqueFactorizationDomain.Basic
{Ξ± : Type u_1} [CancelCommMonoidWithZero Ξ±] : UniqueFactorizationMonoid Ξ± β β (a : Ξ±), a β 0 β β f, (β b β f, Prime b) β§ Associated f.prod a - UniqueFactorizationMonoid.isRelPrime_iff_no_prime_factors π Mathlib.RingTheory.UniqueFactorizationDomain.Basic
{R : Type u_2} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R] {a b : R} (ha : a β 0) : IsRelPrime a b β β β¦d : Rβ¦, d β£ a β d β£ b β Β¬Prime d - irreducible_iff_prime_of_exists_prime_factors π Mathlib.RingTheory.UniqueFactorizationDomain.Basic
{Ξ± : Type u_1} [CancelCommMonoidWithZero Ξ±] (pf : β (a : Ξ±), a β 0 β β f, (β b β f, Prime b) β§ Associated f.prod a) {p : Ξ±} : Irreducible p β Prime p - irreducible_iff_prime_of_existsUnique_irreducible_factors π Mathlib.RingTheory.UniqueFactorizationDomain.Basic
{Ξ± : Type u_1} [CancelCommMonoidWithZero Ξ±] (eif : β (a : Ξ±), a β 0 β β f, (β b β f, Irreducible b) β§ Associated f.prod a) (uif : β (f g : Multiset Ξ±), (β x β f, Irreducible x) β (β x β g, Irreducible x) β Associated f.prod g.prod β Multiset.Rel Associated f g) (p : Ξ±) : Irreducible p β Prime p - irreducible_iff_prime_of_exists_unique_irreducible_factors π Mathlib.RingTheory.UniqueFactorizationDomain.Basic
{Ξ± : Type u_1} [CancelCommMonoidWithZero Ξ±] (eif : β (a : Ξ±), a β 0 β β f, (β b β f, Irreducible b) β§ Associated f.prod a) (uif : β (f g : Multiset Ξ±), (β x β f, Irreducible x) β (β x β g, Irreducible x) β Associated f.prod g.prod β Multiset.Rel Associated f g) (p : Ξ±) : Irreducible p β Prime p - IsLocalization.isPrime_iff_isPrime_disjoint π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (J : Ideal S) : J.IsPrime β (Ideal.comap (algebraMap R S) J).IsPrime β§ Disjoint βM β(Ideal.comap (algebraMap R S) J) - Ideal.minimalPrimes_eq_empty_iff π Mathlib.RingTheory.Ideal.MinimalPrime.Basic
{R : Type u_1} [CommSemiring R] (I : Ideal R) : I.minimalPrimes = β β I = β€ - Ideal.IsPrime.smul_iff π Mathlib.RingTheory.Ideal.Pointwise
{M : Type u_1} {R : Type u_2} [Group M] [Semiring R] [MulSemiringAction M R] {I : Ideal R} (g : M) : (g β’ I).IsPrime β I.IsPrime - PrimeSpectrum.ext_iff π Mathlib.RingTheory.Spectrum.Prime.Defs
{R : Type u_1} {instβ : CommSemiring R} {x y : PrimeSpectrum R} : x = y β x.asIdeal = y.asIdeal - IsLocalization.AtPrime.isUnit_to_map_iff π Mathlib.RingTheory.Localization.AtPrime
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) : IsUnit ((algebraMap R S) x) β x β I.primeCompl - IsLocalization.AtPrime.isUnit_mk'_iff π Mathlib.RingTheory.Localization.AtPrime
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) (y : β₯I.primeCompl) : IsUnit (IsLocalization.mk' S x y) β x β I.primeCompl - IsLocalization.AtPrime.to_map_mem_maximal_iff π Mathlib.RingTheory.Localization.AtPrime
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) (h : IsLocalRing S := β―) : (algebraMap R S) x β IsLocalRing.maximalIdeal S β x β I - IsLocalization.AtPrime.mk'_mem_maximal_iff π Mathlib.RingTheory.Localization.AtPrime
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) (y : β₯I.primeCompl) (h : IsLocalRing S := β―) : IsLocalization.mk' S x y β IsLocalRing.maximalIdeal S β x β I - Localization.le_comap_primeCompl_iff π Mathlib.RingTheory.Localization.AtPrime
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] {I : Ideal R} [hI : I.IsPrime] {J : Ideal P} [J.IsPrime] {f : R β+* P} : I.primeCompl β€ Submonoid.comap f J.primeCompl β Ideal.comap f J β€ I - nilpotent_iff_mem_prime π Mathlib.RingTheory.Nilpotent.Lemmas
{R : Type u_1} [CommSemiring R] {x : R} : IsNilpotent x β β (J : Ideal R), J.IsPrime β x β J - PrimeSpectrum.isMax_iff π Mathlib.RingTheory.Spectrum.Prime.Basic
{R : Type u} [CommSemiring R] {x : PrimeSpectrum R} : IsMax x β x.asIdeal.IsMaximal - PrimeSpectrum.zeroLocus_diff_singleton_zero π Mathlib.RingTheory.Spectrum.Prime.Basic
{R : Type u} [CommSemiring R] (s : Set R) : PrimeSpectrum.zeroLocus (s \ {0}) = PrimeSpectrum.zeroLocus s - PrimeSpectrum.isMin_iff π Mathlib.RingTheory.Spectrum.Prime.Basic
{R : Type u} [CommSemiring R] {x : PrimeSpectrum R} : IsMin x β x.asIdeal β minimalPrimes R - PrimeSpectrum.zeroLocus_eq_top_iff π Mathlib.RingTheory.Spectrum.Prime.Basic
{R : Type u} [CommSemiring R] (s : Set R) : PrimeSpectrum.zeroLocus s = Set.univ β s β β(nilradical R) - PrimeSpectrum.zeroLocus_eq_univ_iff π Mathlib.RingTheory.Spectrum.Prime.Basic
{R : Type u} [CommSemiring R] (s : Set R) : PrimeSpectrum.zeroLocus s = Set.univ β s β β(nilradical R) - PrimeSpectrum.vanishingIdeal_eq_top_iff π Mathlib.RingTheory.Spectrum.Prime.Basic
{R : Type u} [CommSemiring R] {s : Set (PrimeSpectrum R)} : PrimeSpectrum.vanishingIdeal s = β€ β s = β - PrimeSpectrum.subset_zeroLocus_iff_subset_vanishingIdeal π Mathlib.RingTheory.Spectrum.Prime.Basic
(R : Type u) [CommSemiring R] (t : Set (PrimeSpectrum R)) (s : Set R) : t β PrimeSpectrum.zeroLocus s β s β β(PrimeSpectrum.vanishingIdeal t) - PrimeSpectrum.mem_compl_zeroLocus_iff_not_mem π Mathlib.RingTheory.Spectrum.Prime.Basic
{R : Type u} [CommSemiring R] {f : R} {I : PrimeSpectrum R} : I β (PrimeSpectrum.zeroLocus {f})αΆ β f β I.asIdeal - PrimeSpectrum.zeroLocus_subset_zeroLocus_singleton_iff π Mathlib.RingTheory.Spectrum.Prime.Basic
{R : Type u} [CommSemiring R] (f g : R) : PrimeSpectrum.zeroLocus {f} β PrimeSpectrum.zeroLocus {g} β g β (Ideal.span {f}).radical
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65