Loogle!
Result
Found 1299 declarations mentioning Int.cast. Of these, 22 have a name containing "rpow".
- Real.rpow_intCast ๐ Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : โ) (n : โค) : x ^ โn = x ^ n - Real.rpow_intCast_mul ๐ Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : โ} (hx : 0 โค x) (n : โค) (z : โ) : x ^ (โn * z) = (x ^ n) ^ z - Real.rpow_mul_intCast ๐ Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : โ} (hx : 0 โค x) (y : โ) (n : โค) : x ^ (y * โn) = (x ^ y) ^ n - Real.rpow_add_intCast ๐ Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : โ} (hx : x โ 0) (y : โ) (n : โค) : x ^ (y + โn) = x ^ y * x ^ n - Real.rpow_add_intCast' ๐ Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : โ} (hx : 0 โค x) {n : โค} (h : y + โn โ 0) : x ^ (y + โn) = x ^ y * x ^ n - Real.rpow_sub_intCast' ๐ Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : โ} (hx : 0 โค x) {n : โค} (h : y - โn โ 0) : x ^ (y - โn) = x ^ y / x ^ n - ENNReal.rpow_intCast ๐ Mathlib.Analysis.SpecialFunctions.Pow.NNReal
(x : ENNReal) (n : โค) : x ^ โn = x ^ n - NNReal.rpow_intCast ๐ Mathlib.Analysis.SpecialFunctions.Pow.NNReal
(x : NNReal) (n : โค) : x ^ โn = x ^ n - ENNReal.rpow_intCast_mul ๐ Mathlib.Analysis.SpecialFunctions.Pow.NNReal
(x : ENNReal) (n : โค) (z : โ) : x ^ (โn * z) = (x ^ n) ^ z - ENNReal.rpow_mul_intCast ๐ Mathlib.Analysis.SpecialFunctions.Pow.NNReal
(x : ENNReal) (y : โ) (n : โค) : x ^ (y * โn) = (x ^ y) ^ n - NNReal.rpow_intCast_mul ๐ Mathlib.Analysis.SpecialFunctions.Pow.NNReal
(x : NNReal) (n : โค) (z : โ) : x ^ (โn * z) = (x ^ n) ^ z - NNReal.rpow_mul_intCast ๐ Mathlib.Analysis.SpecialFunctions.Pow.NNReal
(x : NNReal) (y : โ) (n : โค) : x ^ (y * โn) = (x ^ y) ^ n - NNReal.rpow_add_intCast ๐ Mathlib.Analysis.SpecialFunctions.Pow.NNReal
{x : NNReal} (hx : x โ 0) (y : โ) (n : โค) : x ^ (y + โn) = x ^ y * x ^ n - NNReal.rpow_add_intCast' ๐ Mathlib.Analysis.SpecialFunctions.Pow.NNReal
{y : โ} {n : โค} (h : y + โn โ 0) (x : NNReal) : x ^ (y + โn) = x ^ y * x ^ n - NNReal.rpow_sub_intCast' ๐ Mathlib.Analysis.SpecialFunctions.Pow.NNReal
{y : โ} {n : โค} (h : y - โn โ 0) (x : NNReal) : x ^ (y - โn) = x ^ y / x ^ n - CFC.rpow_intCast ๐ Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.Rpow.Basic
{A : Type u_1} [PartialOrder A] [Ring A] [StarRing A] [TopologicalSpace A] [StarOrderedRing A] [Algebra โ A] [ContinuousFunctionalCalculus โ A IsSelfAdjoint] [NonnegSpectrumClass โ A] (a : Aหฃ) (n : โค) (ha : 0 โค โa := by cfc_tac) : โa ^ โn = โ(a ^ n) - Real.summable_abs_int_rpow ๐ Mathlib.Analysis.PSeries
{b : โ} (hb : 1 < b) : Summable fun n => |โn| ^ (-b) - Real.summable_one_div_int_add_rpow ๐ Mathlib.Analysis.PSeries
(a s : โ) : (Summable fun n => 1 / |โn + a| ^ s) โ 1 < s - Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay ๐ Mathlib.Analysis.Fourier.PoissonSummation
{f : โ โ โ} (hc : Continuous f) {b : โ} (hb : 1 < b) (hf : f =O[Filter.cocompact โ] fun x => |x| ^ (-b)) (hFf : Real.fourierIntegral f =O[Filter.cocompact โ] fun x => |x| ^ (-b)) (x : โ) : โ' (n : โค), f (x + โn) = โ' (n : โค), Real.fourierIntegral f โn * (fourier n) โx - Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay_of_summable ๐ Mathlib.Analysis.Fourier.PoissonSummation
{f : โ โ โ} (hc : Continuous f) {b : โ} (hb : 1 < b) (hf : f =O[Filter.cocompact โ] fun x => |x| ^ (-b)) (hFf : Summable fun n => Real.fourierIntegral f โn) (x : โ) : โ' (n : โค), f (x + โn) = โ' (n : โค), Real.fourierIntegral f โn * (fourier n) โx - NumberField.abs_discr_rpow_ge_of_isTotallyComplex ๐ Mathlib.NumberTheory.NumberField.Discriminant.Basic
(K : Type u_1) [Field K] [NumberField K] [NumberField.IsTotallyComplex K] : โ(Module.finrank โ K) ^ 2 / (4 / Real.pi * โ(Module.finrank โ K).factorial ^ (2 * (โ(Module.finrank โ K))โปยน)) โค โ|NumberField.discr K| ^ (โ(Module.finrank โ K))โปยน - LiouvilleWith.frequently_lt_rpow_neg ๐ Mathlib.NumberTheory.Transcendental.Liouville.LiouvilleWith
{p q x : โ} (h : LiouvilleWith p x) (hlt : q < p) : โแถ (n : โ) in Filter.atTop, โ m, x โ โm / โn โง |x - โm / โn| < โn ^ (-q)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision e0654b0