Loogle!
Result
Found 63304 declarations mentioning OfNat.ofNat. Of these, 793 have a name containing "rpow". Of these, only the first 200 are shown.
- ExteriorAlgebra.exteriorPower π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
(R : Type u1) [CommRing R] (n : β) (M : Type u2) [AddCommGroup M] [Module R M] : Submodule R (ExteriorAlgebra R M) - ExteriorAlgebra.exteriorPower.eq_1 π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
(R : Type u1) [CommRing R] (n : β) (M : Type u2) [AddCommGroup M] [Module R M] : β[R]^n M = LinearMap.range (ExteriorAlgebra.ΞΉ R) ^ n - exteriorPower.presentation.Rels.add.sizeOf_spec π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} {ΞΉ : Type u_4} {M : Type u_5} [SizeOf R] [SizeOf ΞΉ] [SizeOf M] (m : ΞΉ β M) (i : ΞΉ) (x y : M) : sizeOf (exteriorPower.presentation.Rels.add m i x y) = 1 + sizeOf i + sizeOf x + sizeOf y - exteriorPower.presentation.Rels.smul.sizeOf_spec π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} {ΞΉ : Type u_4} {M : Type u_5} [SizeOf R] [SizeOf ΞΉ] [SizeOf M] (m : ΞΉ β M) (i : ΞΉ) (r : R) (x : M) : sizeOf (exteriorPower.presentation.Rels.smul m i r x) = 1 + sizeOf i + sizeOf r + sizeOf x - exteriorPower.presentation.Rels.alt.sizeOf_spec π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} {ΞΉ : Type u_4} {M : Type u_5} [SizeOf R] [SizeOf ΞΉ] [SizeOf M] (m : ΞΉ β M) (i j : ΞΉ) (hm : m i = m j) (hij : i β j) : sizeOf (exteriorPower.presentation.Rels.alt m i j hm hij) = 1 + sizeOf i + sizeOf j + sizeOf hm - exteriorPower.ΞΉMulti_family π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) {M : Type u_1} [AddCommGroup M] [Module R M] {I : Type u_4} [LinearOrder I] (v : I β M) (s : { s // s.card = n }) : β₯(β[R]^n M) - exteriorPower.ΞΉMulti_family_apply_coe π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) {M : Type u_1} [AddCommGroup M] [Module R M] {I : Type u_4} [LinearOrder I] (v : I β M) (s : { s // s.card = n }) : β(exteriorPower.ΞΉMulti_family R n v s) = ExteriorAlgebra.ΞΉMulti_family R n v s - exteriorPower.presentation.relations_relation π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (ΞΉ : Type u_4) [DecidableEq ΞΉ] (M : Type u_5) [AddCommGroup M] [Module R M] (xβ : exteriorPower.presentation.Rels R ΞΉ M) : (exteriorPower.presentation.relations R ΞΉ M).relation xβ = match xβ with | exteriorPower.presentation.Rels.add m i x y => ((funβ | Function.update m i x => 1) + funβ | Function.update m i y => 1) - funβ | Function.update m i (x + y) => 1 | exteriorPower.presentation.Rels.smul m i r x => (funβ | Function.update m i (r β’ x) => 1) - r β’ funβ | Function.update m i x => 1 | exteriorPower.presentation.Rels.alt m i j hm hij => funβ | m => 1 - exteriorPower.ΞΉMulti_span_fixedDegree π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) (M : Type u_1) [AddCommGroup M] [Module R M] : Submodule.span R (Set.range β(ExteriorAlgebra.ΞΉMulti R n)) = β[R]^n M - exteriorPower.presentation π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) (M : Type u_1) [AddCommGroup M] [Module R M] : Module.Presentation R β₯(β[R]^n M) - exteriorPower.presentation_G π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) (M : Type u_1) [AddCommGroup M] [Module R M] : (exteriorPower.presentation R n M).G = (Fin n β M) - exteriorPower.presentation_R π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) (M : Type u_1) [AddCommGroup M] [Module R M] : (exteriorPower.presentation R n M).R = exteriorPower.presentation.Rels R (Fin n) M - exteriorPower.ΞΉMulti π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) {M : Type u_1} [AddCommGroup M] [Module R M] : M [β^Fin n]ββ[R] β₯(β[R]^n M) - exteriorPower.oneEquiv π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (M : Type u_1) [AddCommGroup M] [Module R M] : β₯(β[R]^1 M) ββ[R] M - exteriorPower.zeroEquiv π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (M : Type u_1) [AddCommGroup M] [Module R M] : β₯(β[R]^0 M) ββ[R] R - exteriorPower.presentation_relation π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) (M : Type u_1) [AddCommGroup M] [Module R M] (xβ : exteriorPower.presentation.Rels R (Fin n) M) : (exteriorPower.presentation R n M).relation xβ = match xβ with | exteriorPower.presentation.Rels.add m i x y => ((funβ | Function.update m i x => 1) + funβ | Function.update m i y => 1) - funβ | Function.update m i (x + y) => 1 | exteriorPower.presentation.Rels.smul m i r x => (funβ | Function.update m i (r β’ x) => 1) - funβ | Function.update m i x => r | exteriorPower.presentation.Rels.alt m i j hm hij => funβ | m => 1 - exteriorPower.map π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] (n : β) {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M ββ[R] N) : β₯(β[R]^n M) ββ[R] β₯(β[R]^n N) - exteriorPower.map_id π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} [AddCommGroup M] [Module R M] : exteriorPower.map n LinearMap.id = LinearMap.id - exteriorPower.alternatingMapLinearEquiv π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] : M [β^Fin n]ββ[R] N ββ[R] β₯(β[R]^n M) ββ[R] N - exteriorPower.ΞΉMulti_family.eq_1 π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) {M : Type u_1} [AddCommGroup M] [Module R M] {I : Type u_4} [LinearOrder I] (v : I β M) (s : { s // s.card = n }) : exteriorPower.ΞΉMulti_family R n v s = (exteriorPower.ΞΉMulti R n) fun i => v β(((βs).orderIsoOfFin β―) i) - exteriorPower.ΞΉMulti_apply_coe π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) {M : Type u_1} [AddCommGroup M] [Module R M] (a : Fin n β M) : β((exteriorPower.ΞΉMulti R n) a) = (ExteriorAlgebra.ΞΉMulti R n) a - exteriorPower.map_comp_ΞΉMulti π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M ββ[R] N) : (exteriorPower.map n f).compAlternatingMap (exteriorPower.ΞΉMulti R n) = (exteriorPower.ΞΉMulti R n).compLinearMap f - exteriorPower.linearMap_ext π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {f g : β₯(β[R]^n M) ββ[R] N} (heq : f.compAlternatingMap (exteriorPower.ΞΉMulti R n) = g.compAlternatingMap (exteriorPower.ΞΉMulti R n)) : f = g - exteriorPower.linearMap_ext_iff π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {f g : β₯(β[R]^n M) ββ[R] N} : f = g β f.compAlternatingMap (exteriorPower.ΞΉMulti R n) = g.compAlternatingMap (exteriorPower.ΞΉMulti R n) - exteriorPower.map_comp π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} {N' : Type u_3} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup N'] [Module R N'] (f : M ββ[R] N) (g : N ββ[R] N') : exteriorPower.map n (g ββ f) = exteriorPower.map n g ββ exteriorPower.map n f - exteriorPower.zeroEquiv_naturality π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M ββ[R] N) : β(exteriorPower.zeroEquiv R N) ββ exteriorPower.map 0 f = β(exteriorPower.zeroEquiv R M) - exteriorPower.oneEquiv_naturality π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M ββ[R] N) : β(exteriorPower.oneEquiv R N) ββ exteriorPower.map 1 f = f ββ β(exteriorPower.oneEquiv R M) - exteriorPower.map_apply_ΞΉMulti_family π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {I : Type u_4} [LinearOrder I] (v : I β M) (f : M ββ[R] N) (s : { s // s.card = n }) : (exteriorPower.map n f) (exteriorPower.ΞΉMulti_family R n v s) = exteriorPower.ΞΉMulti_family R n (βf β v) s - exteriorPower.ΞΉMulti_span π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) (M : Type u_1) [AddCommGroup M] [Module R M] : Submodule.span R (Set.range β(exteriorPower.ΞΉMulti R n)) = β€ - exteriorPower.presentation_var π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) (M : Type u_1) [AddCommGroup M] [Module R M] (m : (exteriorPower.presentation.relations R (Fin n) M).G) : (exteriorPower.presentation R n M).var m = (exteriorPower.ΞΉMulti R n) m - exteriorPower.oneEquiv_ΞΉMulti π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {M : Type u_1} [AddCommGroup M] [Module R M] (f : Fin 1 β M) : (exteriorPower.oneEquiv R M) ((exteriorPower.ΞΉMulti R 1) f) = f 0 - exteriorPower.zeroEquiv_ΞΉMulti π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {M : Type u_1} [AddCommGroup M] [Module R M] (f : Fin 0 β M) : (exteriorPower.zeroEquiv R M) ((exteriorPower.ΞΉMulti R 0) f) = 1 - exteriorPower.map_comp_ΞΉMulti_family π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {I : Type u_4} [LinearOrder I] (v : I β M) (f : M ββ[R] N) : β(exteriorPower.map n f) β exteriorPower.ΞΉMulti_family R n v = exteriorPower.ΞΉMulti_family R n (βf β v) - exteriorPower.oneEquiv_symm_apply π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (M : Type u_1) [AddCommGroup M] [Module R M] (a : M) : (exteriorPower.oneEquiv R M).symm a = (exteriorPower.ΞΉMulti R 1) fun x => a - exteriorPower.zeroEquiv_symm_apply π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (M : Type u_1) [AddCommGroup M] [Module R M] (a : R) : (exteriorPower.zeroEquiv R M).symm a = a β’ (exteriorPower.ΞΉMulti R 0) fun a => β―.elim - exteriorPower.map_apply_ΞΉMulti π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M ββ[R] N) (m : Fin n β M) : (exteriorPower.map n f) ((exteriorPower.ΞΉMulti R n) m) = (exteriorPower.ΞΉMulti R n) (βf β m) - exteriorPower.alternatingMapLinearEquiv_comp_ΞΉMulti π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M [β^Fin n]ββ[R] N) : (exteriorPower.alternatingMapLinearEquiv f).compAlternatingMap (exteriorPower.ΞΉMulti R n) = f - exteriorPower.presentation.isPresentationCore π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) (M : Type u_1) [AddCommGroup M] [Module R M] : (exteriorPower.presentation.relationsSolutionEquiv.symm (exteriorPower.ΞΉMulti R n)).IsPresentationCore - exteriorPower.alternatingMapLinearEquiv_apply_ΞΉMulti π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M [β^Fin n]ββ[R] N) (a : Fin n β M) : (exteriorPower.alternatingMapLinearEquiv f) ((exteriorPower.ΞΉMulti R n) a) = f a - exteriorPower.alternatingMapLinearEquiv_symm_apply π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (F : β₯(β[R]^n M) ββ[R] N) (m : Fin n β M) : (exteriorPower.alternatingMapLinearEquiv.symm F) m = (F.compAlternatingMap (exteriorPower.ΞΉMulti R n)) m - exteriorPower.oneEquiv.eq_1 π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (M : Type u_1) [AddCommGroup M] [Module R M] : exteriorPower.oneEquiv R M = LinearEquiv.ofLinear (exteriorPower.alternatingMapLinearEquiv ((AlternatingMap.ofSubsingleton R M M 0) LinearMap.id)) (let_fun h := β―; { toFun := fun m => (exteriorPower.ΞΉMulti R 1) fun x => m, map_add' := β―, map_smul' := β― }) β― β― - exteriorPower.zeroEquiv.eq_1 π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (M : Type u_1) [AddCommGroup M] [Module R M] : exteriorPower.zeroEquiv R M = LinearEquiv.ofLinear (exteriorPower.alternatingMapLinearEquiv (AlternatingMap.constOfIsEmpty R M (Fin 0) 1)) { toFun := fun r => r β’ (exteriorPower.ΞΉMulti R 0) fun a => Fin.casesOn a fun i hi => β―.elim, map_add' := β―, map_smul' := β― } β― β― - exteriorPower.alternatingMapLinearEquiv_comp π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} {N' : Type u_3} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup N'] [Module R N'] (g : N ββ[R] N') (f : M [β^Fin n]ββ[R] N) : exteriorPower.alternatingMapLinearEquiv (g.compAlternatingMap f) = g ββ exteriorPower.alternatingMapLinearEquiv f - exteriorPower.map.eq_1 π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] (n : β) {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M ββ[R] N) : exteriorPower.map n f = exteriorPower.alternatingMapLinearEquiv ((exteriorPower.ΞΉMulti R n).compLinearMap f) - exteriorPower.alternatingMapLinearEquiv_ΞΉMulti π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} [AddCommGroup M] [Module R M] : exteriorPower.alternatingMapLinearEquiv (exteriorPower.ΞΉMulti R n) = LinearMap.id - exteriorPower.alternatingMapLinearEquiv_symm_map π Mathlib.LinearAlgebra.ExteriorPower.Basic
{R : Type u} [CommRing R] {n : β} {M : Type u_1} {N : Type u_2} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M ββ[R] N) : exteriorPower.alternatingMapLinearEquiv.symm (exteriorPower.map n f) = (exteriorPower.ΞΉMulti R n).compLinearMap f - ModuleCat.exteriorPower.isoβ π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] (M : ModuleCat R) : M.exteriorPower 1 β M - ModuleCat.exteriorPower.isoβ π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] (M : ModuleCat R) : M.exteriorPower 0 β ModuleCat.of R R - ModuleCat.exteriorPower.natIsoβ π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
(R : Type u) [CommRing R] : ModuleCat.exteriorPower.functor R 1 β CategoryTheory.Functor.id (ModuleCat R) - ModuleCat.exteriorPower.isoβ_hom_naturality π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M N : ModuleCat R} (f : M βΆ N) : CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.map f 1) (ModuleCat.exteriorPower.isoβ N).hom = CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.isoβ M).hom f - ModuleCat.exteriorPower.isoβ_hom_naturality π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M N : ModuleCat R} (f : M βΆ N) : CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.map f 0) (ModuleCat.exteriorPower.isoβ N).hom = (ModuleCat.exteriorPower.isoβ M).hom - ModuleCat.exteriorPower.natIsoβ π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
(R : Type u) [CommRing R] : ModuleCat.exteriorPower.functor R 0 β (CategoryTheory.Functor.const (ModuleCat R)).obj (ModuleCat.of R R) - ModuleCat.exteriorPower.isoβ_hom_naturality_assoc π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M N : ModuleCat R} (f : M βΆ N) {Z : ModuleCat R} (h : N βΆ Z) : CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.map f 1) (CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.isoβ N).hom h) = CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.isoβ M).hom (CategoryTheory.CategoryStruct.comp f h) - ModuleCat.exteriorPower.isoβ_hom_naturality_assoc π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M N : ModuleCat R} (f : M βΆ N) {Z : ModuleCat R} (h : ModuleCat.of R R βΆ Z) : CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.map f 0) (CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.isoβ N).hom h) = CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.isoβ M).hom h - ModuleCat.exteriorPower.isoβ_hom_apply π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M : ModuleCat R} (f : Fin 1 β βM) : (CategoryTheory.ConcreteCategory.hom (ModuleCat.exteriorPower.isoβ M).hom) (ModuleCat.exteriorPower.mk f) = f 0 - ModuleCat.exteriorPower.isoβ_hom_apply π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M : ModuleCat R} (f : Fin 0 β βM) : (CategoryTheory.ConcreteCategory.hom (ModuleCat.exteriorPower.isoβ M).hom) (ModuleCat.exteriorPower.mk f) = 1 - Real.rpow_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) : x ^ 1 = x - Real.exp_one_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) : Real.exp 1 ^ x = Real.exp x - Real.one_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) : 1 ^ x = 1 - Real.rpow_zero π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) : x ^ 0 = 1 - Real.rpow_inv_log_le_exp_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} : x ^ (Real.log x)β»ΒΉ β€ Real.exp 1 - Real.rpow_neg_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) : x ^ (-1) = xβ»ΒΉ - Real.rpow_zero_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) : 0 < x ^ 0 - Real.zero_rpow_le_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) : 0 ^ x β€ 1 - Real.zero_rpow_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) : 0 β€ 0 ^ x - Real.monotone_rpow_of_base_ge_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{b : β} (hb : 1 β€ b) : Monotone fun x => b ^ x - Real.strictMono_rpow_of_base_gt_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{b : β} (hb : 1 < b) : StrictMono fun x => b ^ x - Real.rpow_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y : β) : 0 β€ x ^ y - Real.rpow_pos_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 < x) (y : β) : 0 < x ^ y - Real.zero_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (h : x β 0) : 0 ^ x = 0 - Real.log_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 < x) (y : β) : Real.log (x ^ y) = y * Real.log x - Real.rpow_def_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 < x) (y : β) : x ^ y = Real.exp (Real.log x * y) - Real.antitoneOn_rpow_Ioi_of_exponent_nonpos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{r : β} (hr : r β€ 0) : AntitoneOn (fun x => x ^ r) (Set.Ioi 0) - Real.monotoneOn_rpow_Ici_of_exponent_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{r : β} (hr : 0 β€ r) : MonotoneOn (fun x => x ^ r) (Set.Ici 0) - Real.rpow_le_self_of_one_le π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hβ : 1 β€ x) (hβ : y β€ 1) : x ^ y β€ x - Real.rpow_lt_self_of_one_lt π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hβ : 1 < x) (hβ : y < 1) : x ^ y < x - Real.self_le_rpow_of_one_le π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hβ : 1 β€ x) (hβ : 1 β€ y) : x β€ x ^ y - Real.self_lt_rpow_of_one_lt π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hβ : 1 < x) (hβ : 1 < y) : x < x ^ y - Real.strictAntiOn_rpow_Ioi_of_exponent_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{r : β} (hr : r < 0) : StrictAntiOn (fun x => x ^ r) (Set.Ioi 0) - Real.strictMonoOn_rpow_Ici_of_exponent_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{r : β} (hr : 0 < r) : StrictMonoOn (fun x => x ^ r) (Set.Ici 0) - Real.antitone_rpow_of_base_le_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{b : β} (hbβ : 0 < b) (hbβ : b β€ 1) : Antitone fun x => b ^ x - Real.rpow_left_injOn π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : x β 0) : Set.InjOn (fun y => y ^ x) {y | 0 β€ y} - Real.strictAnti_rpow_of_base_lt_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{b : β} (hbβ : 0 < b) (hbβ : b < 1) : StrictAnti fun x => b ^ x - HasCompactSupport.rpow_const π Mathlib.Analysis.SpecialFunctions.Pow.Real
{Ξ± : Type u_1} [TopologicalSpace Ξ±] {f : Ξ± β β} (hf : HasCompactSupport f) {r : β} (hr : r β 0) : HasCompactSupport fun x => f x ^ r - Complex.abs_cpow_eq_rpow_re_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 < x) (y : β) : ββx ^ yβ = x ^ y.re - Complex.norm_cpow_eq_rpow_re_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 < x) (y : β) : ββx ^ yβ = x ^ y.re - Real.inv_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y : β) : xβ»ΒΉ ^ y = (x ^ y)β»ΒΉ - Real.norm_rpow_of_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx_nonneg : 0 β€ x) : βx ^ yβ = βxβ ^ y - Real.rpow_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y : β) : x ^ (-y) = (x ^ y)β»ΒΉ - Real.one_le_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x z : β} (hx : 1 β€ x) (hz : 0 β€ z) : 1 β€ x ^ z - Real.one_lt_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x z : β} (hx : 1 < x) (hz : 0 < z) : 1 < x ^ z - Real.rpow_le_one_of_one_le_of_nonpos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x z : β} (hx : 1 β€ x) (hz : z β€ 0) : x ^ z β€ 1 - Real.rpow_le_rpow_of_exponent_le π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 1 β€ x) (hyz : y β€ z) : x ^ y β€ x ^ z - Real.rpow_lt_one_of_one_lt_of_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x z : β} (hx : 1 < x) (hz : z < 0) : x ^ z < 1 - Real.rpow_lt_rpow_of_exponent_lt π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 1 < x) (hyz : y < z) : x ^ y < x ^ z - Real.rpow_two π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) : x ^ 2 = x ^ 2 - Real.abs_rpow_of_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx_nonneg : 0 β€ x) : |x ^ y| = |x| ^ y - Real.le_log_of_rpow_le π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (h : x ^ z β€ y) : z * Real.log x β€ Real.log y - Real.le_rpow_of_log_le π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hy : 0 < y) (h : Real.log x β€ z * Real.log y) : x β€ y ^ z - Real.lt_log_of_rpow_lt π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (h : x ^ z < y) : z * Real.log x < Real.log y - Real.lt_rpow_of_log_lt π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hy : 0 < y) (h : Real.log x < z * Real.log y) : x < y ^ z - Real.rpow_le_of_le_log π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hy : 0 < y) (h : Real.log x β€ z * Real.log y) : x β€ y ^ z - Real.rpow_le_rpow_left_iff π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 1 < x) : x ^ y β€ x ^ z β y β€ z - Real.rpow_lt_of_lt_log π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hy : 0 < y) (h : Real.log x < z * Real.log y) : x < y ^ z - Real.rpow_lt_rpow_left_iff π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 1 < x) : x ^ y < x ^ z β y < z - Real.sqrt_eq_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x : β) : βx = x ^ (1 / 2) - Real.log_natCast_le_rpow_div π Mathlib.Analysis.SpecialFunctions.Pow.Real
(n : β) {Ξ΅ : β} (hΞ΅ : 0 < Ξ΅) : Real.log βn β€ βn ^ Ξ΅ / Ξ΅ - Real.rpow_inv_log π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hxβ : 0 < x) (hxβ : x β 1) : x ^ (Real.log x)β»ΒΉ = Real.exp 1 - Real.rpow_inv_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) (hy : y β 0) : (x ^ yβ»ΒΉ) ^ y = x - Real.rpow_le_self_of_le_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hβ : 0 β€ x) (hβ : x β€ 1) (hβ : 1 β€ y) : x ^ y β€ x - Real.rpow_lt_self_of_lt_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hβ : 0 < x) (hβ : x < 1) (hβ : 1 < y) : x ^ y < x - Real.rpow_rpow_inv π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) (hy : y β 0) : (x ^ y) ^ yβ»ΒΉ = x - Real.self_le_rpow_of_le_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hβ : 0 β€ x) (hβ : x β€ 1) (hβ : y β€ 1) : x β€ x ^ y - Real.self_lt_rpow_of_lt_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hβ : 0 < x) (hβ : x < 1) (hβ : y < 1) : x < x ^ y - Real.log_le_rpow_div π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x Ξ΅ : β} (hx : 0 β€ x) (hΞ΅ : 0 < Ξ΅) : Real.log x β€ x ^ Ξ΅ / Ξ΅ - Complex.abs_cpow_eq_rpow_re_of_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) {y : β} (hy : y.re β 0) : ββx ^ yβ = x ^ y.re - Complex.norm_cpow_eq_rpow_re_of_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) {y : β} (hy : y.re β 0) : ββx ^ yβ = x ^ y.re - Real.rpow_eq_zero π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) (hy : y β 0) : x ^ y = 0 β x = 0 - Real.rpow_ne_zero π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) (hy : y β 0) : x ^ y β 0 β x β 0 - Real.rpow_right_inj π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hxβ : 0 < x) (hxβ : x β 1) : x ^ y = x ^ z β y = z - Complex.norm_log_natCast_le_rpow_div π Mathlib.Analysis.SpecialFunctions.Pow.Real
(n : β) {Ξ΅ : β} (hΞ΅ : 0 < Ξ΅) : βComplex.log βnβ β€ βn ^ Ξ΅ / Ξ΅ - Real.pow_rpow_inv_natCast π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} {n : β} (hx : 0 β€ x) (hn : n β 0) : (x ^ n) ^ (βn)β»ΒΉ = x - Real.rpow_eq_zero_iff_of_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) : x ^ y = 0 β x = 0 β§ y β 0 - Real.rpow_inv_natCast_pow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} {n : β} (hx : 0 β€ x) (hn : n β 0) : (x ^ (βn)β»ΒΉ) ^ n = x - Real.one_le_rpow_of_pos_of_le_one_of_nonpos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x z : β} (hx1 : 0 < x) (hx2 : x β€ 1) (hz : z β€ 0) : 1 β€ x ^ z - Real.one_lt_rpow_of_pos_of_lt_one_of_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x z : β} (hx1 : 0 < x) (hx2 : x < 1) (hz : z < 0) : 1 < x ^ z - Real.rpow_le_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x z : β} (hx1 : 0 β€ x) (hx2 : x β€ 1) (hz : 0 β€ z) : x ^ z β€ 1 - Real.rpow_le_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (h : 0 β€ x) (hβ : x β€ y) (hβ : 0 β€ z) : x ^ z β€ y ^ z - Real.rpow_le_rpow_of_exponent_ge π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx0 : 0 < x) (hx1 : x β€ 1) (hyz : z β€ y) : x ^ y β€ x ^ z - Real.rpow_le_rpow_of_exponent_nonpos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{z x y : β} (hy : 0 < y) (hxy : y β€ x) (hz : z β€ 0) : x ^ z β€ y ^ z - Real.rpow_le_rpow_of_nonpos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hxy : x β€ y) (hz : z β€ 0) : y ^ z β€ x ^ z - Real.rpow_lt_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x z : β} (hx1 : 0 β€ x) (hx2 : x < 1) (hz : 0 < z) : x ^ z < 1 - Real.rpow_lt_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hxy : x < y) (hz : 0 < z) : x ^ z < y ^ z - Real.rpow_lt_rpow_of_exponent_gt π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx0 : 0 < x) (hx1 : x < 1) (hyz : z < y) : x ^ y < x ^ z - Real.rpow_lt_rpow_of_exponent_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hy : 0 < y) (hxy : y < x) (hz : z < 0) : x ^ z < y ^ z - Real.rpow_lt_rpow_of_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hxy : x < y) (hz : z < 0) : y ^ z < x ^ z - Real.rpow_def_of_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : x < 0) (y : β) : x ^ y = Real.exp (Real.log x * y) * Real.cos (y * Real.pi) - Real.rpow_le_rpow_left_iff_of_base_lt_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx0 : 0 < x) (hx1 : x < 1) : x ^ y β€ x ^ z β z β€ y - Real.rpow_lt_one_iff' π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) (hy : 0 < y) : x ^ y < 1 β x < 1 - Real.rpow_lt_rpow_left_iff_of_base_lt_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx0 : 0 < x) (hx1 : x < 1) : x ^ y < x ^ z β z < y - Real.rpow_mul π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y z : β) : x ^ (y * z) = (x ^ y) ^ z - Real.rpow_sum_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{ΞΉ : Type u_1} {a : β} (ha : 0 < a) (f : ΞΉ β β) (s : Finset ΞΉ) : a ^ β x β s, f x = β x β s, a ^ f x - Real.le_rpow_iff_log_le π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hy : 0 < y) : x β€ y ^ z β Real.log x β€ z * Real.log y - Real.lt_rpow_iff_log_lt π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hy : 0 < y) : x < y ^ z β Real.log x < z * Real.log y - Real.rpow_le_iff_le_log π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hy : 0 < y) : x ^ z β€ y β z * Real.log x β€ Real.log y - Real.rpow_lt_iff_lt_log π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hy : 0 < y) : x ^ z < y β z * Real.log x < Real.log y - Real.rpow_add_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : x β 0) (y : β) : x ^ (y + 1) = x ^ y * x - Real.rpow_sub_one π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : x β 0) (y : β) : x ^ (y - 1) = x ^ y / x - Real.rpow_div_two_eq_sqrt π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (r : β) (hx : 0 β€ x) : x ^ (r / 2) = βx ^ r - Real.rpow_intCast_mul π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (n : β€) (z : β) : x ^ (βn * z) = (x ^ n) ^ z - Real.rpow_mul_intCast π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y : β) (n : β€) : x ^ (y * βn) = (x ^ y) ^ n - Real.rpow_mul_natCast π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y : β) (n : β) : x ^ (y * βn) = (x ^ y) ^ n - Real.rpow_natCast_mul π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (n : β) (z : β) : x ^ (βn * z) = (x ^ n) ^ z - Real.rpow_pow_comm π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y : β) (n : β) : (x ^ y) ^ n = (x ^ n) ^ y - Real.rpow_zpow_comm π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y : β) (n : β€) : (x ^ y) ^ n = (x ^ n) ^ y - Real.rpow_left_inj π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hy : 0 β€ y) (hz : z β 0) : x ^ z = y ^ z β x = y - Real.eq_zero_rpow_iff π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x a : β} : a = 0 ^ x β x β 0 β§ a = 0 β¨ x = 0 β§ a = 1 - Real.rpow_add π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 < x) (y z : β) : x ^ (y + z) = x ^ y * x ^ z - Real.zero_rpow_eq_iff π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x a : β} : 0 ^ x = a β x β 0 β§ a = 0 β¨ x = 0 β§ a = 1 - Real.le_rpow_add π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) (y z : β) : x ^ y * x ^ z β€ x ^ (y + z) - Real.rpow_le_rpow_of_exponent_ge' π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx0 : 0 β€ x) (hx1 : x β€ 1) (hz : 0 β€ z) (hyz : z β€ y) : x ^ y β€ x ^ z - Real.eq_rpow_inv π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hy : 0 β€ y) (hz : z β 0) : x = y ^ zβ»ΒΉ β x ^ z = y - Real.rpow_inv_eq π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hy : 0 β€ y) (hz : z β 0) : x ^ zβ»ΒΉ = y β x = y ^ z - Real.rpow_le_rpow_iff π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hy : 0 β€ y) (hz : 0 < z) : x ^ z β€ y ^ z β x β€ y - Real.rpow_le_rpow_iff_of_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hy : 0 < y) (hz : z < 0) : x ^ z β€ y ^ z β y β€ x - Real.rpow_lt_rpow_iff π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hy : 0 β€ y) (hz : 0 < z) : x ^ z < y ^ z β x < y - Real.rpow_lt_rpow_iff_of_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hy : 0 < y) (hz : z < 0) : x ^ z < y ^ z β y < x - Real.rpow_sub π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 < x) (y z : β) : x ^ (y - z) = x ^ y / x ^ z - Real.rpow_add_intCast π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : x β 0) (y : β) (n : β€) : x ^ (y + βn) = x ^ y * x ^ n - Real.rpow_add_natCast π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : x β 0) (y : β) (n : β) : x ^ (y + βn) = x ^ y * x ^ n - Real.le_rpow_inv_iff_of_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hy : 0 < y) (hz : z < 0) : x β€ y ^ zβ»ΒΉ β y β€ x ^ z - Real.le_rpow_inv_iff_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hy : 0 β€ y) (hz : 0 < z) : x β€ y ^ zβ»ΒΉ β x ^ z β€ y - Real.lt_rpow_inv_iff_of_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hy : 0 < y) (hz : z < 0) : x < y ^ zβ»ΒΉ β y < x ^ z - Real.lt_rpow_inv_iff_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hy : 0 β€ y) (hz : 0 < z) : x < y ^ zβ»ΒΉ β x ^ z < y - Real.rpow_inv_le_iff_of_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hy : 0 < y) (hz : z < 0) : x ^ zβ»ΒΉ β€ y β y ^ z β€ x - Real.rpow_inv_le_iff_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hy : 0 β€ y) (hz : 0 < z) : x ^ zβ»ΒΉ β€ y β x β€ y ^ z - Real.rpow_inv_lt_iff_of_neg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 < x) (hy : 0 < y) (hz : z < 0) : x ^ zβ»ΒΉ < y β y ^ z < x - Real.rpow_inv_lt_iff_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hy : 0 β€ y) (hz : 0 < z) : x ^ zβ»ΒΉ < y β x < y ^ z - Real.rpow_sub_intCast π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : x β 0) (y : β) (n : β) : x ^ (y - βn) = x ^ y / x ^ n - Real.rpow_sub_natCast π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : x β 0) (y : β) (n : β) : x ^ (y - βn) = x ^ y / x ^ n - Real.mul_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hy : 0 β€ y) : (x * y) ^ z = x ^ z * y ^ z - Real.rpow_le_rpow_of_exponent_le_or_ge π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (h : 1 β€ x β§ y β€ z β¨ 0 < x β§ x β€ 1 β§ z β€ y) : x ^ y β€ x ^ z - Real.rpow_max π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y p : β} (hx : 0 β€ x) (hy : 0 β€ y) (hp : 0 β€ p) : max x y ^ p = max (x ^ p) (y ^ p) - Real.rpow_sum_of_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{ΞΉ : Type u_1} {a : β} (ha : 0 β€ a) {s : Finset ΞΉ} {f : ΞΉ β β} (h : β x β s, 0 β€ f x) : a ^ β x β s, f x = β x β s, a ^ f x - Real.abs_log_mul_self_rpow_lt π Mathlib.Analysis.SpecialFunctions.Pow.Real
(x t : β) (h1 : 0 < x) (h2 : x β€ 1) (ht : 0 < t) : |Real.log x * x ^ t| < 1 / t - Real.div_rpow π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) (hy : 0 β€ y) (z : β) : (x / y) ^ z = x ^ z / y ^ z - Real.rpow_of_add_eq π Mathlib.Analysis.SpecialFunctions.Pow.Real
{w x y z : β} (hx : 0 β€ x) (hw : w β 0) (h : y + z = w) : x ^ w = x ^ y * x ^ z - Real.one_lt_rpow_iff_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 < x) : 1 < x ^ y β 1 < x β§ 0 < y β¨ x < 1 β§ y < 0 - Real.rpow_le_one_iff_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 < x) : x ^ y β€ 1 β 1 β€ x β§ y β€ 0 β¨ x β€ 1 β§ 0 β€ y - Real.rpow_lt_one_iff_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 < x) : x ^ y < 1 β 1 < x β§ y < 0 β¨ x < 1 β§ 0 < y - Real.rpow_add' π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (h : y + z β 0) : x ^ (y + z) = x ^ y * x ^ z - Real.rpow_add_one' π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) (h : y + 1 β 0) : x ^ (y + 1) = x ^ y * x - Real.rpow_one_add' π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) (h : 1 + y β 0) : x ^ (1 + y) = x * x ^ y - Real.rpow_le_rpow_of_exponent_ge_of_imp π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx0 : 0 β€ x) (hx1 : x β€ 1) (hyz : z β€ y) (h : x = 0 β y = 0 β z = 0) : x ^ y β€ x ^ z - Real.rpow_one_sub' π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) (h : 1 - y β 0) : x ^ (1 - y) = x / x ^ y - Real.rpow_sub' π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x : β} (hx : 0 β€ x) {y z : β} (h : y - z β 0) : x ^ (y - z) = x ^ y / x ^ z - Real.rpow_sub_one' π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) (h : y - 1 β 0) : x ^ (y - 1) = x ^ y / x - Real.rpow_add_of_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y z : β} (hx : 0 β€ x) (hy : 0 β€ y) (hz : 0 β€ z) : x ^ (y + z) = x ^ y * x ^ z - Real.rpow_add_intCast' π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} (hx : 0 β€ x) {n : β€} (h : y + βn β 0) : x ^ (y + βn) = x ^ y * x ^ n - Real.rpow_add_natCast' π Mathlib.Analysis.SpecialFunctions.Pow.Real
{x y : β} {n : β} (hx : 0 β€ x) (h : y + βn β 0) : x ^ (y + βn) = x ^ y * x ^ n
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision e0654b0