Loogle!
Result
Found 290 declarations whose name contains "sub_eq". Of these, 62 have a name containing "sub_eq" and "iff".
- Nat.sub_eq_iff_eq_add ๐ Init.Data.Nat.Basic
{b a c : โ} (h : b โค a) : a - b = c โ a = c + b - Nat.sub_eq_iff_eq_add' ๐ Init.Data.Nat.Basic
{b a c : โ} (h : b โค a) : a - b = c โ a = b + c - Int.sub_eq_iff_eq_add ๐ Init.Data.Int.Lemmas
{b a c : โค} : a - b = c โ a = c + b - Int.sub_eq_iff_eq_add' ๐ Init.Data.Int.Lemmas
{b a c : โค} : a - b = c โ a = b + c - Nat.sub_eq_zero_iff_le ๐ Init.Data.Nat.Lemmas
{n m : โ} : n - m = 0 โ n โค m - Int.bmod_eq_bmod_iff_bmod_sub_eq_zero ๐ Init.Data.Int.DivMod.Lemmas
{m : โค} {n : โ} {k : โค} : m.bmod n = k.bmod n โ (m - k).bmod n = 0 - Int.fmod_eq_fmod_iff_fmod_sub_eq_zero ๐ Init.Data.Int.DivMod.Lemmas
{m n k : โค} : m.fmod n = k.fmod n โ (m - k).fmod n = 0 - Int.emod_eq_emod_iff_emod_sub_eq_zero ๐ Init.Data.Int.DivMod.Lemmas
{m n k : โค} : m % n = k % n โ (m - k) % n = 0 - BitVec.sub_eq_iff_eq_add ๐ Init.Data.BitVec.Lemmas
{w : โ} {x y z : BitVec w} : x - y = z โ x = z + y - UInt16.sub_eq_iff_eq_add ๐ Init.Data.UInt.Lemmas
{a b c : UInt16} : a - b = c โ a = c + b - UInt32.sub_eq_iff_eq_add ๐ Init.Data.UInt.Lemmas
{a b c : UInt32} : a - b = c โ a = c + b - UInt64.sub_eq_iff_eq_add ๐ Init.Data.UInt.Lemmas
{a b c : UInt64} : a - b = c โ a = c + b - UInt8.sub_eq_iff_eq_add ๐ Init.Data.UInt.Lemmas
{a b c : UInt8} : a - b = c โ a = c + b - USize.sub_eq_iff_eq_add ๐ Init.Data.UInt.Lemmas
{a b c : USize} : a - b = c โ a = c + b - Lean.Grind.AddCommGroup.sub_eq_zero_iff ๐ Init.Grind.Module.Basic
{M : Type u} [Lean.Grind.AddCommGroup M] {a b : M} : a - b = 0 โ a = b - Lean.Grind.AddCommGroup.sub_eq_iff ๐ Init.Grind.Module.Basic
{M : Type u} [Lean.Grind.AddCommGroup M] {a b c : M} : a - b = c โ a = c + b - ISize.sub_eq_iff_eq_add ๐ Init.Data.SInt.Lemmas
{a b c : ISize} : a - b = c โ a = c + b - Int16.sub_eq_iff_eq_add ๐ Init.Data.SInt.Lemmas
{a b c : Int16} : a - b = c โ a = c + b - Int32.sub_eq_iff_eq_add ๐ Init.Data.SInt.Lemmas
{a b c : Int32} : a - b = c โ a = c + b - Int64.sub_eq_iff_eq_add ๐ Init.Data.SInt.Lemmas
{a b c : Int64} : a - b = c โ a = c + b - Int8.sub_eq_iff_eq_add ๐ Init.Data.SInt.Lemmas
{a b c : Int8} : a - b = c โ a = c + b - Std.Tactic.BVDecide.Frontend.Normalize.BitVec.sub_eq_iff_eq_add ๐ Std.Tactic.BVDecide.Normalize.Equal
{w : โ} (a b c : BitVec w) : (a + (~~~b + 1#w) == c) = (a == c + b) - eq_iff_eq_of_sub_eq_sub ๐ Mathlib.Algebra.Group.Basic
{G : Type u_3} [AddGroup G] {a b c d : G} (H : a - b = c - d) : a = b โ c = d - sub_eq_iff_eq_add ๐ Mathlib.Algebra.Group.Basic
{G : Type u_3} [AddGroup G] {a b c : G} : a - b = c โ a = c + b - sub_eq_iff_eq_add' ๐ Mathlib.Algebra.Group.Basic
{G : Type u_3} [AddCommGroup G] {a b c : G} : a - b = c โ a = b + c - sub_eq_sub_iff_comm ๐ Mathlib.Algebra.Group.Basic
{ฮฑ : Type u_1} [SubtractionMonoid ฮฑ] (a b c : ฮฑ) {d : ฮฑ} : a - b = c - d โ b - a = d - c - sub_eq_sub_iff_sub_eq_sub ๐ Mathlib.Algebra.Group.Basic
{G : Type u_3} [AddCommGroup G] {a b c d : G} : a - b = c - d โ a - c = b - d - sub_eq_sub_iff_add_eq_add ๐ Mathlib.Algebra.Group.Basic
{G : Type u_3} [AddCommGroup G] {a b c d : G} : a - b = c - d โ a + d = c + b - IsAddUnit.sub_eq_zero_iff_eq ๐ Mathlib.Algebra.Group.Units.Basic
{ฮฑ : Type u} [SubtractionMonoid ฮฑ] {a b : ฮฑ} (h : IsAddUnit b) : a - b = 0 โ a = b - IsAddUnit.sub_eq_iff ๐ Mathlib.Algebra.Group.Units.Basic
{ฮฑ : Type u} [SubtractionMonoid ฮฑ] {a b c : ฮฑ} (h : IsAddUnit b) : a - b = c โ a = c + b - IsAddUnit.sub_eq_sub_iff ๐ Mathlib.Algebra.Group.Units.Basic
{ฮฑ : Type u} [SubtractionCommMonoid ฮฑ] {a b c d : ฮฑ} (hb : IsAddUnit b) (hd : IsAddUnit d) : a - b = c - d โ a + d = c + b - AddCommute.sub_eq_sub_iff_of_isAddUnit ๐ Mathlib.Algebra.Group.Commute.Units
{M : Type u_1} [SubtractionMonoid M] {a b c d : M} (hbd : AddCommute b d) (hb : IsAddUnit b) (hd : IsAddUnit d) : a - b = c - d โ a + d = c + b - WithTop.LinearOrderedAddCommGroup.sub_eq_top_iff ๐ Mathlib.Algebra.Order.AddGroupWithTop
{G : Type u_1} [AddCommGroup G] {x y : WithTop G} : x - y = โค โ x = โค โจ y = โค - tsub_eq_iff_eq_add_of_le ๐ Mathlib.Algebra.Order.Sub.Unbundled.Basic
{ฮฑ : Type u_1} [AddCommSemigroup ฮฑ] [PartialOrder ฮฑ] [ExistsAddOfLE ฮฑ] [AddLeftMono ฮฑ] [Sub ฮฑ] [OrderedSub ฮฑ] {a b c : ฮฑ} [AddLeftReflectLE ฮฑ] (h : b โค a) : a - b = c โ a = c + b - AddLECancellable.tsub_eq_iff_eq_add_of_le ๐ Mathlib.Algebra.Order.Sub.Unbundled.Basic
{ฮฑ : Type u_1} [AddCommSemigroup ฮฑ] [PartialOrder ฮฑ] [ExistsAddOfLE ฮฑ] [AddLeftMono ฮฑ] [Sub ฮฑ] [OrderedSub ฮฑ] {a b c : ฮฑ} (hb : AddLECancellable b) (h : b โค a) : a - b = c โ a = c + b - tsub_eq_zero_iff_le ๐ Mathlib.Algebra.Order.Sub.Basic
{ฮฑ : Type u_1} [AddCommMonoid ฮฑ] [PartialOrder ฮฑ] [CanonicallyOrderedAdd ฮฑ] [Sub ฮฑ] [OrderedSub ฮฑ] {a b : ฮฑ} : a - b = 0 โ a โค b - vsub_eq_zero_iff_eq ๐ Mathlib.Algebra.AddTorsor.Defs
{G : Type u_1} {P : Type u_2} [AddGroup G] [T : AddTorsor G P] {pโ pโ : P} : pโ -แตฅ pโ = 0 โ pโ = pโ - eq_vadd_iff_vsub_eq ๐ Mathlib.Algebra.AddTorsor.Defs
{G : Type u_1} {P : Type u_2} [AddGroup G] [T : AddTorsor G P] (pโ : P) (g : G) (pโ : P) : pโ = g +แตฅ pโ โ pโ -แตฅ pโ = g - vadd_eq_vadd_iff_sub_eq_vsub ๐ Mathlib.Algebra.AddTorsor.Basic
{G : Type u_1} {P : Type u_2} [AddCommGroup G] [AddTorsor G P] {vโ vโ : G} {pโ pโ : P} : vโ +แตฅ pโ = vโ +แตฅ pโ โ vโ - vโ = pโ -แตฅ pโ - AddOreLocalization.oreSub_eq_iff ๐ Mathlib.GroupTheory.OreLocalization.Basic
{R : Type u_1} [AddMonoid R] {S : AddSubmonoid R} [AddOreLocalization.AddOreSet S] {X : Type u_2} [AddAction R X] {rโ rโ : X} {sโ sโ : โฅS} : rโ -โ sโ = rโ -โ sโ โ โ u v, u +แตฅ rโ = v +แตฅ rโ โง โu + โsโ = v + โsโ - WithTop.sub_eq_top_iff ๐ Mathlib.Algebra.Order.Sub.WithTop
{ฮฑ : Type u_1} [Sub ฮฑ] [Bot ฮฑ] {a b : WithTop ฮฑ} : a - b = โค โ a = โค โง b โ โค - ENat.sub_eq_top_iff ๐ Mathlib.Data.ENat.Basic
{a b : โโ} : a - b = โค โ a = โค โง b โ โค - Ordinal.sub_eq_zero_iff_le ๐ Mathlib.SetTheory.Ordinal.Arithmetic
{a b : Ordinal.{u_4}} : a - b = 0 โ a โค b - Ordinal.lsub_eq_zero_iff ๐ Mathlib.SetTheory.Ordinal.Family
{ฮน : Type u_4} (f : ฮน โ Ordinal.{max v u_4}) : Ordinal.lsub f = 0 โ IsEmpty ฮน - Ordinal.blsub_eq_zero_iff ๐ Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u_4}} {f : (a : Ordinal.{u_4}) โ a < o โ Ordinal.{max u_5 u_4}} : o.blsub f = 0 โ o = 0 - Ordinal.isNormal_iff_lt_succ_and_blsub_eq ๐ Mathlib.SetTheory.Ordinal.Family
{f : Ordinal.{u} โ Ordinal.{max u v}} : Order.IsNormal f โ (โ (a : Ordinal.{u}), f a < f (Order.succ a)) โง โ (o : Ordinal.{u}), Order.IsSuccLimit o โ (o.blsub fun x x_1 => f x) = f o - AbsoluteValue.map_sub_eq_zero_iff ๐ Mathlib.Algebra.Order.AbsoluteValue.Basic
{R : Type u_5} {S : Type u_6} [Ring R] [Semiring S] [PartialOrder S] (abv : AbsoluteValue R S) (a b : R) : abv (a - b) = 0 โ a = b - ENNReal.sub_eq_top_iff ๐ Mathlib.Data.ENNReal.Operations
{a b : ENNReal} : a - b = โค โ a = โค โง b โ โค - Filter.vsub_eq_bot_iff ๐ Mathlib.Order.Filter.Pointwise
{ฮฑ : Type u_2} {ฮฒ : Type u_3} [VSub ฮฑ ฮฒ] {f g : Filter ฮฒ} : f -แตฅ g = โฅ โ f = โฅ โจ g = โฅ - Filter.sub_eq_bot_iff ๐ Mathlib.Order.Filter.Pointwise
{ฮฑ : Type u_2} [Sub ฮฑ] {f g : Filter ฮฑ} : f - g = โฅ โ f = โฅ โจ g = โฅ - norm_sub_eq_zero_iff ๐ Mathlib.Analysis.Normed.Group.Basic
{E : Type u_5} [NormedAddGroup E] {a b : E} : โa - bโ = 0 โ a = b - Complex.exp_eq_exp_iff_exp_sub_eq_one ๐ Mathlib.Analysis.SpecialFunctions.Complex.Log
{x y : โ} : Complex.exp x = Complex.exp y โ Complex.exp (x - y) = 1 - midpoint_eq_midpoint_iff_vsub_eq_vsub ๐ Mathlib.LinearAlgebra.AffineSpace.Midpoint
(R : Type u_1) {V : Type u_2} {P : Type u_4} [Ring R] [Invertible 2] [AddCommGroup V] [Module R V] [AddTorsor V P] {x x' y y' : P} : midpoint R x y = midpoint R x' y' โ x -แตฅ x' = y' -แตฅ y - real_inner_add_sub_eq_zero_iff ๐ Mathlib.Analysis.InnerProductSpace.Basic
{F : Type u_3} [SeminormedAddCommGroup F] [InnerProductSpace โ F] (x y : F) : inner โ (x + y) (x - y) = 0 โ โxโ = โyโ - norm_sub_eq_sqrt_iff_real_inner_eq_zero ๐ Mathlib.Analysis.InnerProductSpace.Basic
{F : Type u_3} [SeminormedAddCommGroup F] [InnerProductSpace โ F] {x y : F} : โx - yโ = โ(โxโ * โxโ + โyโ * โyโ) โ inner โ x y = 0 - eventuallyConst_iff_analyticOrderAt_sub_eq_top ๐ Mathlib.Analysis.Analytic.Order
{๐ : Type u_1} {E : Type u_2} [NontriviallyNormedField ๐] [NormedAddCommGroup E] [NormedSpace ๐ E] {f : ๐ โ E} {zโ : ๐} : Filter.EventuallyConst f (nhds zโ) โ analyticOrderAt (fun x => f x - f zโ) zโ = โค - Affine.Simplex.eq_centroid_iff_sum_vsub_eq_zero ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Centroid
{k : Type u_1} {V : Type u_2} {P : Type u_3} [DivisionRing k] [AddCommGroup V] [Module k V] [AddTorsor V P] {n : โ} [CharZero k] {s : Affine.Simplex k P n} {p : P} : p = s.centroid โ โ i, (s.points i -แตฅ p) = 0 - InnerProductGeometry.norm_sub_eq_add_norm_iff_angle_eq_pi ๐ Mathlib.Geometry.Euclidean.Angle.Unoriented.Basic
{V : Type u_1} [NormedAddCommGroup V] [InnerProductSpace โ V] {x y : V} (hx : x โ 0) (hy : y โ 0) : โx - yโ = โxโ + โyโ โ InnerProductGeometry.angle x y = Real.pi - InnerProductGeometry.norm_sub_eq_abs_sub_norm_iff_angle_eq_zero ๐ Mathlib.Geometry.Euclidean.Angle.Unoriented.Basic
{V : Type u_1} [NormedAddCommGroup V] [InnerProductSpace โ V] {x y : V} (hx : x โ 0) (hy : y โ 0) : โx - yโ = |โxโ - โyโ| โ InnerProductGeometry.angle x y = 0 - Complex.norm_sub_eq_iff ๐ Mathlib.Analysis.Complex.Arg
{x y : โ} : โx - yโ = |โxโ - โyโ| โ x = 0 โจ y = 0 โจ x.arg = y.arg - eventuallyConst_nhdsNE_iff_meromorphicOrderAt_sub_eq_top ๐ Mathlib.Analysis.Meromorphic.Order
{๐ : Type u_1} [NontriviallyNormedField ๐] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐ E] {f : ๐ โ E} {x : ๐} : Filter.EventuallyConst f (nhdsWithin x {x}แถ) โ โ c, meromorphicOrderAt (fun x => f x - c) x = โค - AffineSubspace.mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero ๐ Mathlib.Geometry.Euclidean.PerpBisector
{V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace โ V] [MetricSpace P] [NormedAddTorsor V P] {c pโ pโ : P} : c โ AffineSubspace.perpBisector pโ pโ โ inner โ ((Equiv.pointReflection c) pโ -แตฅ pโ) (pโ -แตฅ pโ) = 0
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโandโ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 76f94b4