Loogle!
Result
Found 13 declarations mentioning CompleteLattice.toTop, TopologicalSpace.instCompleteLattice, TopologicalSpace and Top.top. Of these, 13 match your pattern(s).
- continuous_top 📋 Mathlib.Topology.Order
{α : Type u} {β : Type v} {f : α → β} {t : TopologicalSpace α} : Continuous f - nhds_top 📋 Mathlib.Topology.Order
{α : Type u} {a : α} : nhds a = ⊤ - induced_const 📋 Mathlib.Topology.Order
{α : Type u_1} {β : Type u_2} [t : TopologicalSpace α] {x : α} : TopologicalSpace.induced (fun x_1 => x) t = ⊤ - induced_top 📋 Mathlib.Topology.Order
{α : Type u_1} {β : Type u_2} {g : β → α} : TopologicalSpace.induced g ⊤ = ⊤ - TopologicalSpace.isOpen_top_iff 📋 Mathlib.Topology.Order
{α : Type u_2} (U : Set α) : IsOpen U ↔ U = ∅ ∨ U = Set.univ - AddGroupTopology.toTopologicalSpace_top 📋 Mathlib.Topology.Algebra.Group.GroupTopology
{α : Type u} [AddGroup α] : ⊤.toTopologicalSpace = ⊤ - GroupTopology.toTopologicalSpace_top 📋 Mathlib.Topology.Algebra.Group.GroupTopology
{α : Type u} [Group α] : ⊤.toTopologicalSpace = ⊤ - AddGroupTopology.instTop.eq_1 📋 Mathlib.Topology.Algebra.Group.GroupTopology
{α : Type u} [AddGroup α] : AddGroupTopology.instTop = { top := { toTopologicalSpace := ⊤, toIsTopologicalAddGroup := ⋯ } } - GroupTopology.instTop.eq_1 📋 Mathlib.Topology.Algebra.Group.GroupTopology
{α : Type u} [Group α] : GroupTopology.instTop = { top := { toTopologicalSpace := ⊤, toIsTopologicalGroup := ⋯ } } - UniformSpace.toTopologicalSpace_top 📋 Mathlib.Topology.UniformSpace.Basic
{α : Type ua} : UniformSpace.toTopologicalSpace = ⊤ - TopologicalSpace.Opens.eq_bot_or_top 📋 Mathlib.Topology.Sets.Opens
{α : Type u_5} [t : TopologicalSpace α] (h : t = ⊤) (U : TopologicalSpace.Opens α) : U = ⊥ ∨ U = ⊤ - TopCat.Presheaf.isSheaf_of_isTerminal_of_indiscrete 📋 Mathlib.Topology.Sheaves.PUnit
{C : Type u} [CategoryTheory.Category.{v, u} C] {X : TopCat} (hind : X.str = ⊤) (F : TopCat.Presheaf C X) (it : CategoryTheory.Limits.IsTerminal (F.obj (Opposite.op ⊥))) : F.IsSheaf - TopCat.Presheaf.isSheaf_iff_isTerminal_of_indiscrete 📋 Mathlib.Topology.Sheaves.PUnit
{C : Type u} [CategoryTheory.Category.{v, u} C] {X : TopCat} (hind : X.str = ⊤) (F : TopCat.Presheaf C X) : F.IsSheaf ↔ Nonempty (CategoryTheory.Limits.IsTerminal (F.obj (Opposite.op ⊥)))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65