Loogle!
Result
Found 159 declarations mentioning MeasureTheory.Measure, ENNReal, HSMul.hSMul, DFunLike.coe, MeasureTheory.Measure.instFunLike, and Set. Of these, 15 match your pattern(s).
- MeasureTheory.Measure.dmaSMul_apply 📋 Mathlib.MeasureTheory.Group.MeasurableEquiv
{G : Type u_1} {A : Type u_2} [Group G] [MulAction G A] [MeasurableSpace A] [MeasurableConstSMul G A] (μ : MeasureTheory.Measure A) (g : Gᵈᵐᵃ) (s : Set A) : (g • μ) s = μ (DomMulAct.mk.symm g • s) - MeasureTheory.measure_smul 📋 Mathlib.MeasureTheory.Group.Action
{G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] (μ : MeasureTheory.Measure α) [MeasureTheory.SMulInvariantMeasure G α μ] (c : G) (s : Set α) : μ (c • s) = μ s - MeasureTheory.measure_smul_null 📋 Mathlib.MeasureTheory.Group.Action
{G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] {s : Set α} (h : μ s = 0) (c : G) : μ (c • s) = 0 - MeasureTheory.measure_smul_eq_zero_iff 📋 Mathlib.MeasureTheory.Group.Action
{G : Type u} {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] {μ : MeasureTheory.Measure α} [MeasureTheory.SMulInvariantMeasure G α μ] {s : Set α} (c : G) : μ (c • s) = 0 ↔ μ s = 0 - MeasureTheory.smulInvariantMeasure_tfae 📋 Mathlib.MeasureTheory.Group.Action
(G : Type u) {α : Type w} {m : MeasurableSpace α} [Group G] [MulAction G α] (μ : MeasureTheory.Measure α) [MeasurableSpace G] [MeasurableSMul G α] : [MeasureTheory.SMulInvariantMeasure G α μ, ∀ (c : G) (s : Set α), MeasurableSet s → μ ((fun x => c • x) ⁻¹' s) = μ s, ∀ (c : G) (s : Set α), MeasurableSet s → μ (c • s) = μ s, ∀ (c : G) (s : Set α), μ ((fun x => c • x) ⁻¹' s) = μ s, ∀ (c : G) (s : Set α), μ (c • s) = μ s, ∀ (c : G), MeasureTheory.Measure.map (fun x => c • x) μ = μ, ∀ (c : G), MeasureTheory.MeasurePreserving (fun x => c • x) μ μ].TFAE - MeasureTheory.IsFundamentalDomain.mk_of_measure_univ_le 📋 Mathlib.MeasureTheory.Group.FundamentalDomain
{G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] [MeasurableSpace α] {s : Set α} {μ : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [Countable G] (h_meas : MeasureTheory.NullMeasurableSet s μ) (h_ae_disjoint : ∀ (g : G), g ≠ 1 → MeasureTheory.AEDisjoint μ (g • s) s) (h_qmp : ∀ (g : G), MeasureTheory.Measure.QuasiMeasurePreserving (fun x => g • x) μ μ) (h_measure_univ_le : μ Set.univ ≤ ∑' (g : G), μ (g • s)) : MeasureTheory.IsFundamentalDomain G s μ - MeasureTheory.Measure.addHaar_smul 📋 Mathlib.MeasureTheory.Measure.Lebesgue.EqHaar
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace ℝ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional ℝ E] (μ : MeasureTheory.Measure E) [μ.IsAddHaarMeasure] (r : ℝ) (s : Set E) : μ (r • s) = ENNReal.ofReal |r ^ Module.finrank ℝ E| * μ s - MeasureTheory.Measure.addHaar_smul_of_nonneg 📋 Mathlib.MeasureTheory.Measure.Lebesgue.EqHaar
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace ℝ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional ℝ E] (μ : MeasureTheory.Measure E) [μ.IsAddHaarMeasure] {r : ℝ} (hr : 0 ≤ r) (s : Set E) : μ (r • s) = ENNReal.ofReal (r ^ Module.finrank ℝ E) * μ s - MeasureTheory.Measure.toSphere_apply' 📋 Mathlib.MeasureTheory.Constructions.HaarToSphere
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace ℝ E] [MeasurableSpace E] (μ : MeasureTheory.Measure E) [BorelSpace E] {s : Set ↑(Metric.sphere 0 1)} (hs : MeasurableSet s) : μ.toSphere s = ↑(Module.finrank ℝ E) * μ (Set.Ioo 0 1 • Subtype.val '' s) - MeasureTheory.Measure.toSphere_apply_aux 📋 Mathlib.MeasureTheory.Constructions.HaarToSphere
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace ℝ E] [MeasurableSpace E] (μ : MeasureTheory.Measure E) (s : Set ↑(Metric.sphere 0 1)) (r : ↑(Set.Ioi 0)) : μ (Subtype.val '' (⇑(homeomorphUnitSphereProd E) ⁻¹' s ×ˢ Set.Iio r)) = μ (Set.Ioo 0 ↑r • Subtype.val '' s) - MeasureTheory.distribHaarChar_mul 📋 Mathlib.MeasureTheory.Measure.Haar.DistribChar
{G : Type u_1} {A : Type u_2} [Group G] [AddCommGroup A] [DistribMulAction G A] [TopologicalSpace A] [IsTopologicalAddGroup A] [LocallyCompactSpace A] [ContinuousConstSMul G A] [MeasurableSpace A] [BorelSpace A] (μ : MeasureTheory.Measure A) [μ.IsAddHaarMeasure] [μ.Regular] (g : G) (s : Set A) : ↑((MeasureTheory.distribHaarChar A) g) * μ s = μ (g • s) - MeasureTheory.distribHaarChar_eq_div 📋 Mathlib.MeasureTheory.Measure.Haar.DistribChar
{G : Type u_1} {A : Type u_2} [Group G] [AddCommGroup A] [DistribMulAction G A] [TopologicalSpace A] [IsTopologicalAddGroup A] [LocallyCompactSpace A] [ContinuousConstSMul G A] [MeasurableSpace A] [BorelSpace A] {μ : MeasureTheory.Measure A} [μ.IsAddHaarMeasure] [μ.Regular] {s : Set A} (hs₀ : μ s ≠ 0) (hs : μ s ≠ ⊤) (g : G) : ↑((MeasureTheory.distribHaarChar A) g) = μ (g • s) / μ s - MeasureTheory.distribHaarChar_eq_of_measure_smul_eq_mul 📋 Mathlib.MeasureTheory.Measure.Haar.DistribChar
{G : Type u_1} {A : Type u_2} [Group G] [AddCommGroup A] [DistribMulAction G A] [TopologicalSpace A] [IsTopologicalAddGroup A] [LocallyCompactSpace A] [ContinuousConstSMul G A] {g : G} [MeasurableSpace A] [BorelSpace A] {μ : MeasureTheory.Measure A} [μ.IsAddHaarMeasure] [μ.Regular] {s : Set A} (hs₀ : μ s ≠ 0) (hs : μ s ≠ ⊤) {r : NNReal} (hμgs : μ (g • s) = ↑r * μ s) : (MeasureTheory.distribHaarChar A) g = r - MeasureTheory.hausdorffMeasure_smul 📋 Mathlib.MeasureTheory.Measure.Hausdorff
{X : Type u_2} [EMetricSpace X] [MeasurableSpace X] [BorelSpace X] {α : Type u_4} [SMul α X] [IsIsometricSMul α X] {d : ℝ} (c : α) (h : 0 ≤ d ∨ Function.Surjective fun x => c • x) (s : Set X) : (MeasureTheory.Measure.hausdorffMeasure d) (c • s) = (MeasureTheory.Measure.hausdorffMeasure d) s - MeasureTheory.Measure.hausdorffMeasure_smul₀ 📋 Mathlib.MeasureTheory.Measure.Hausdorff
{𝕜 : Type u_4} {E : Type u_5} [NormedAddCommGroup E] [NormedDivisionRing 𝕜] [Module 𝕜 E] [NormSMulClass 𝕜 E] [MeasurableSpace E] [BorelSpace E] {d : ℝ} (hd : 0 ≤ d) {r : 𝕜} (hr : r ≠ 0) (s : Set E) : (MeasureTheory.Measure.hausdorffMeasure d) (r • s) = ‖r‖₊ ^ d • (MeasureTheory.Measure.hausdorffMeasure d) s
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision fe81dd4