Loogle!
Result
Found 3608 definitions mentioning List and Nat. Of these, 39 match your pattern(s).
- List.set 📋 Init.Prelude
{α : Type u_1} : List α → ℕ → α → List α - List.replicate 📋 Init.Data.List.Basic
{α : Type u} (n : ℕ) (a : α) : List α - List.replicateTR 📋 Init.Data.List.Basic
{α : Type u} (n : ℕ) (a : α) : List α - List.leftpad 📋 Init.Data.List.Basic
{α : Type u} (n : ℕ) (a : α) (l : List α) : List α - List.leftpadTR 📋 Init.Data.List.Basic
{α : Type u} (n : ℕ) (a : α) (l : List α) : List α - List.rightpad 📋 Init.Data.List.Basic
{α : Type u} (n : ℕ) (a : α) (l : List α) : List α - List.replicateTR.loop 📋 Init.Data.List.Basic
{α : Type u} (a : α) : ℕ → List α → List α - List.replicate_eq_replicateTR 📋 Init.Data.List.Basic
: @List.replicate = @List.replicateTR - List.leftpad_eq_leftpadTR 📋 Init.Data.List.Basic
: @List.leftpad = @List.leftpadTR - List.range' 📋 Init.Data.List.Basic
(start len : ℕ) (step : ℕ := 1) : List ℕ - List.range'TR 📋 Init.Data.List.Basic
(s n : ℕ) (step : ℕ := 1) : List ℕ - List.range'TR.go 📋 Init.Data.List.Basic
(step : ℕ := 1) : ℕ → ℕ → List ℕ → List ℕ - List.range'_eq_range'TR 📋 Init.Data.List.Basic
: @List.range' = @List.range'TR - List.setTR 📋 Init.Data.List.Impl
{α : Type u_1} (l : List α) (n : ℕ) (a : α) : List α - List.set_eq_setTR 📋 Init.Data.List.Impl
: @List.set = @List.setTR - List.setTR.go 📋 Init.Data.List.Impl
{α : Type u_1} (l : List α) (a : α) : List α → ℕ → Array α → List α - List.insertIdx 📋 Batteries.Data.List.Basic
{α : Type u_1} (n : ℕ) (a : α) : List α → List α - List.insertIdxTR 📋 Batteries.Data.List.Basic
{α : Type u_1} (n : ℕ) (a : α) (l : List α) : List α - List.insertNth 📋 Batteries.Data.List.Basic
{α : Type u_1} (n : ℕ) (a : α) : List α → List α - List.takeD 📋 Batteries.Data.List.Basic
{α : Type u_1} : ℕ → List α → α → List α - List.takeDTR 📋 Batteries.Data.List.Basic
{α : Type u_1} (n : ℕ) (l : List α) (dflt : α) : List α - List.toChunks 📋 Batteries.Data.List.Basic
{α : Type u_1} : ℕ → List α → List (List α) - List.insertIdxTR.go 📋 Batteries.Data.List.Basic
{α : Type u_1} (a : α) : ℕ → List α → Array α → List α - List.takeDTR.go 📋 Batteries.Data.List.Basic
{α : Type u_1} (dflt : α) : ℕ → List α → Array α → List α - List.insertIdx_eq_insertIdxTR 📋 Batteries.Data.List.Basic
: @List.insertIdx = @List.insertIdxTR - List.takeD_eq_takeDTR 📋 Batteries.Data.List.Basic
: @List.takeD = @List.takeDTR - List.toChunks.go 📋 Batteries.Data.List.Basic
{α : Type u_1} (n : ℕ) : List α → Array α → Array (List α) → List (List α) - List.iterate 📋 Mathlib.Data.List.Defs
{α : Type u_1} (f : α → α) (a : α) (n : ℕ) : List α - List.iterateTR 📋 Mathlib.Data.List.Defs
{α : Type u_1} (f : α → α) (a : α) (n : ℕ) : List α - List.iterateTR.loop 📋 Mathlib.Data.List.Defs
{α : Type u_1} (f : α → α) (a : α) (n : ℕ) (l : List α) : List α - List.iterate_eq_iterateTR 📋 Mathlib.Data.List.Defs
: @List.iterate = @List.iterateTR - List.sublistsLen 📋 Mathlib.Data.List.Sublists
{α : Type u} (n : ℕ) (l : List α) : List (List α) - List.splitWrtComposition 📋 Mathlib.Combinatorics.Enumerative.Composition
{n : ℕ} {α : Type u_1} (l : List α) (c : Composition n) : List (List α) - Nat.digits 📋 Mathlib.Data.Nat.Digits
: ℕ → ℕ → List ℕ - Nat.digitsAux 📋 Mathlib.Data.Nat.Digits
(b : ℕ) (h : 2 ≤ b) : ℕ → List ℕ - Matrix.Pivot.listTransvecCol 📋 Mathlib.LinearAlgebra.Matrix.Transvection
{𝕜 : Type u_3} [Field 𝕜] {r : ℕ} (M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜) : List (Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜) - Matrix.Pivot.listTransvecRow 📋 Mathlib.LinearAlgebra.Matrix.Transvection
{𝕜 : Type u_3} [Field 𝕜] {r : ℕ} (M : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜) : List (Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜) - List.Ico 📋 Mathlib.Data.List.Intervals
(n m : ℕ) : List ℕ - CoxeterSystem.alternatingWord 📋 Mathlib.GroupTheory.Coxeter.Basic
{B : Type u_1} (i i' : B) (m : ℕ) : List B
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
woould find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 4e1aab0
serving mathlib revision 2d53f5f