Loogle!
Result
Found 224 definitions mentioning Differentiable. Of these, 130 match your pattern(s).
- differentiable_id π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] : Differentiable π id - differentiable_id' π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] : Differentiable π fun x => x - differentiable_const π Mathlib.Analysis.Calculus.FDeriv.Basic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] (c : F) : Differentiable π fun x => c - Differentiable.iterate π Mathlib.Analysis.Calculus.FDeriv.Comp
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {f : E β E} (hf : Differentiable π f) (n : β) : Differentiable π f^[n] - Differentiable.comp π Mathlib.Analysis.Calculus.FDeriv.Comp
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {f : E β F} {g : F β G} (hg : Differentiable π g) (hf : Differentiable π f) : Differentiable π (g β f) - Differentiable.restrictScalars π Mathlib.Analysis.Calculus.FDeriv.RestrictScalars
(π : Type u_1) [NontriviallyNormedField π] {π' : Type u_2} [NontriviallyNormedField π'] [NormedAlgebra π π'] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π E] [NormedSpace π' E] [IsScalarTower π π' E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace π F] [NormedSpace π' F] [IsScalarTower π π' F] {f : E β F} (h : Differentiable π' f) : Differentiable π f - IsBoundedLinearMap.differentiable π Mathlib.Analysis.Calculus.FDeriv.Linear
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} (h : IsBoundedLinearMap π f) : Differentiable π f - ContinuousLinearMap.differentiable π Mathlib.Analysis.Calculus.FDeriv.Linear
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] (e : E βL[π] F) : Differentiable π βe - Differentiable.neg π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} (h : Differentiable π f) : Differentiable π fun y => -f y - Differentiable.const_sub π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} (hf : Differentiable π f) (c : F) : Differentiable π fun y => c - f y - Differentiable.sub_const π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} (hf : Differentiable π f) (c : F) : Differentiable π fun y => f y - c - Differentiable.add_const π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} (hf : Differentiable π f) (c : F) : Differentiable π fun y => f y + c - Differentiable.const_add π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} (hf : Differentiable π f) (c : F) : Differentiable π fun y => c + f y - Differentiable.sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} (h : β i β u, Differentiable π (A i)) : Differentiable π fun y => β i β u, A i y - Differentiable.sub π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f g : E β F} (hf : Differentiable π f) (hg : Differentiable π g) : Differentiable π fun y => f y - g y - Differentiable.add π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f g : E β F} (hf : Differentiable π f) (hg : Differentiable π g) : Differentiable π fun y => f y + g y - Differentiable.const_smul π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {R : Type u_4} [Semiring R] [Module R F] [SMulCommClass π R F] [ContinuousConstSMul R F] (h : Differentiable π f) (c : R) : Differentiable π fun y => c β’ f y - LinearIsometryEquiv.differentiable π Mathlib.Analysis.Calculus.FDeriv.Equiv
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] (iso : E ββα΅’[π] F) : Differentiable π βiso - ContinuousLinearEquiv.differentiable π Mathlib.Analysis.Calculus.FDeriv.Equiv
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] (iso : E βL[π] F) : Differentiable π βiso - HasFTaylorSeriesUpTo.differentiable π Mathlib.Analysis.Calculus.ContDiff.FTaylorSeries
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {n : WithTop ββ} {p : E β FormalMultilinearSeries π E F} (h : HasFTaylorSeriesUpTo n f p) (hn : 1 β€ n) : Differentiable π f - differentiable_fst π Mathlib.Analysis.Calculus.FDeriv.Prod
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] : Differentiable π Prod.fst - differentiable_snd π Mathlib.Analysis.Calculus.FDeriv.Prod
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] : Differentiable π Prod.snd - differentiable_apply π Mathlib.Analysis.Calculus.FDeriv.Prod
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_6} [Fintype ΞΉ] {F' : ΞΉ β Type u_7} [(i : ΞΉ) β NormedAddCommGroup (F' i)] [(i : ΞΉ) β NormedSpace π (F' i)] (i : ΞΉ) : Differentiable π fun f => f i - differentiable_pi'' π Mathlib.Analysis.Calculus.FDeriv.Prod
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_6} [Fintype ΞΉ] {F' : ΞΉ β Type u_7} [(i : ΞΉ) β NormedAddCommGroup (F' i)] [(i : ΞΉ) β NormedSpace π (F' i)] {Ξ¦ : E β (i : ΞΉ) β F' i} (hΟ : β (i : ΞΉ), Differentiable π fun x => Ξ¦ x i) : Differentiable π Ξ¦ - Differentiable.fst π Mathlib.Analysis.Calculus.FDeriv.Prod
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {fβ : E β F Γ G} (h : Differentiable π fβ) : Differentiable π fun x => (fβ x).1 - Differentiable.snd π Mathlib.Analysis.Calculus.FDeriv.Prod
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {fβ : E β F Γ G} (h : Differentiable π fβ) : Differentiable π fun x => (fβ x).2 - Differentiable.prod π Mathlib.Analysis.Calculus.FDeriv.Prod
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {fβ : E β F} {fβ : E β G} (hfβ : Differentiable π fβ) (hfβ : Differentiable π fβ) : Differentiable π fun x => (fβ x, fβ x) - IsBoundedBilinearMap.differentiable π Mathlib.Analysis.Calculus.FDeriv.Bilinear
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {b : E Γ F β G} (h : IsBoundedBilinearMap π b) : Differentiable π b - Differentiable.pow π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {πΈ : Type u_5} [NormedRing πΈ] [NormedAlgebra π πΈ] {a : E β πΈ} (ha : Differentiable π a) (n : β) : Differentiable π fun x => a x ^ n - Differentiable.const_mul π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {πΈ : Type u_5} [NormedRing πΈ] [NormedAlgebra π πΈ] {a : E β πΈ} (ha : Differentiable π a) (b : πΈ) : Differentiable π fun y => b * a y - Differentiable.mul_const π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {πΈ : Type u_5} [NormedRing πΈ] [NormedAlgebra π πΈ] {a : E β πΈ} (ha : Differentiable π a) (b : πΈ) : Differentiable π fun y => a y * b - Differentiable.inverse π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {R : Type u_5} [NormedRing R] [HasSummableGeomSeries R] [NormedAlgebra π R] {h : E β R} (hf : Differentiable π h) (hz : β (x : E), IsUnit (h x)) : Differentiable π fun x => Ring.inverse (h x) - Differentiable.mul π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {πΈ : Type u_5} [NormedRing πΈ] [NormedAlgebra π πΈ] {a b : E β πΈ} (ha : Differentiable π a) (hb : Differentiable π b) : Differentiable π fun y => a y * b y - Differentiable.inv π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {R : Type u_5} [NormedDivisionRing R] [NormedAlgebra π R] {h : E β R} (hf : Differentiable π h) (hz : β (x : E), h x β 0) : Differentiable π fun x => (h x)β»ΒΉ - Differentiable.inv' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {R : Type u_5} [NormedDivisionRing R] [NormedAlgebra π R] {h : E β R} (hf : Differentiable π h) (hz : β (x : E), h x β 0) : Differentiable π fun x => (h x)β»ΒΉ - Differentiable.smul_const π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {π' : Type u_5} [NontriviallyNormedField π'] [NormedAlgebra π π'] [NormedSpace π' F] [IsScalarTower π π' F] {c : E β π'} (hc : Differentiable π c) (f : F) : Differentiable π fun y => c y β’ f - Differentiable.smul π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {π' : Type u_5} [NontriviallyNormedField π'] [NormedAlgebra π π'] [NormedSpace π' F] [IsScalarTower π π' F] {c : E β π'} (hc : Differentiable π c) (hf : Differentiable π f) : Differentiable π fun y => c y β’ f y - Differentiable.continuousMultilinear_apply_const π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} [Fintype ΞΉ] {M : ΞΉ β Type u_6} [(i : ΞΉ) β NormedAddCommGroup (M i)] [(i : ΞΉ) β NormedSpace π (M i)] {H : Type u_7} [NormedAddCommGroup H] [NormedSpace π H] {c : E β ContinuousMultilinearMap π M H} (hc : Differentiable π c) (u : (i : ΞΉ) β M i) : Differentiable π fun y => (c y) u - Differentiable.clm_apply π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {H : Type u_5} [NormedAddCommGroup H] [NormedSpace π H] {c : E β G βL[π] H} {u : E β G} (hc : Differentiable π c) (hu : Differentiable π u) : Differentiable π fun y => (c y) (u y) - Differentiable.clm_comp π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {H : Type u_5} [NormedAddCommGroup H] [NormedSpace π H] {c : E β G βL[π] H} {d : E β F βL[π] G} (hc : Differentiable π c) (hd : Differentiable π d) : Differentiable π fun y => (c y).comp (d y) - Differentiable.finset_prod π Mathlib.Analysis.Calculus.Deriv.Mul
{π : Type u} [NontriviallyNormedField π] {ΞΉ : Type u_2} {πΈ' : Type u_3} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} {f : ΞΉ β π β πΈ'} (hd : β i β u, Differentiable π (f i)) : Differentiable π fun x => β i β u, f i x - Differentiable.div_const π Mathlib.Analysis.Calculus.Deriv.Mul
{π : Type u} [NontriviallyNormedField π] {π' : Type u_2} [NontriviallyNormedField π'] [NormedAlgebra π π'] {c : π β π'} (hc : Differentiable π c) (d : π') : Differentiable π fun x => c x / d - differentiable_pow π Mathlib.Analysis.Calculus.Deriv.Pow
{π : Type u} [NontriviallyNormedField π] (n : β) : Differentiable π fun x => x ^ n - Differentiable.div π Mathlib.Analysis.Calculus.Deriv.Inv
{π : Type u} [NontriviallyNormedField π] {π' : Type u_1} [NontriviallyNormedField π'] [NormedAlgebra π π'] {c d : π β π'} (hc : Differentiable π c) (hd : Differentiable π d) (hx : β (x : π), d x β 0) : Differentiable π fun x => c x / d x - Differentiable.zpow π Mathlib.Analysis.Calculus.Deriv.ZPow
{π : Type u} [NontriviallyNormedField π] {E : Type v} [NormedAddCommGroup E] [NormedSpace π E] {m : β€} {f : E β π} (hf : Differentiable π f) (h : (β (x : E), f x β 0) β¨ 0 β€ m) : Differentiable π fun x => f x ^ m - ContDiff.differentiable π Mathlib.Analysis.Calculus.ContDiff.Defs
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {n : WithTop ββ} (h : ContDiff π n f) (hn : 1 β€ n) : Differentiable π f - ContDiff.differentiable_iteratedFDeriv π Mathlib.Analysis.Calculus.ContDiff.Defs
{π : Type u} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {n : WithTop ββ} {m : β} (hm : βm < n) (hf : ContDiff π n f) : Differentiable π fun x => iteratedFDeriv π m f x - differentiable_neg π Mathlib.Analysis.Calculus.Deriv.Add
{π : Type u} [NontriviallyNormedField π] : Differentiable π Neg.neg - AffineMap.differentiable π Mathlib.Analysis.Calculus.Deriv.AffineMap
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] (f : π βα΅[π] E) : Differentiable π βf - ContDiff.differentiable_iteratedDeriv π Mathlib.Analysis.Calculus.IteratedDeriv.Defs
{π : Type u_1} [NontriviallyNormedField π] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace π F] {f : π β F} {n : WithTop ββ} (m : β) (h : ContDiff π n f) (hmn : βm < n) : Differentiable π (iteratedDeriv m f) - Real.differentiable_exp π Mathlib.Analysis.SpecialFunctions.ExpDeriv
: Differentiable β Real.exp - Complex.differentiable_exp π Mathlib.Analysis.SpecialFunctions.ExpDeriv
{π : Type u_1} [NontriviallyNormedField π] [NormedAlgebra π β] : Differentiable π Complex.exp - Differentiable.exp π Mathlib.Analysis.SpecialFunctions.ExpDeriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hc : Differentiable β f) : Differentiable β fun x => Real.exp (f x) - Differentiable.cexp π Mathlib.Analysis.SpecialFunctions.ExpDeriv
{π : Type u_1} [NontriviallyNormedField π] [NormedAlgebra π β] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {f : E β β} (hc : Differentiable π f) : Differentiable π fun x => Complex.exp (f x) - Differentiable.log π Mathlib.Analysis.SpecialFunctions.Log.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hf : Differentiable β f) (hx : β (x : E), f x β 0) : Differentiable β fun x => Real.log (f x) - differentiable_circleMap π Mathlib.MeasureTheory.Integral.CircleIntegral
(c : β) (R : β) : Differentiable β (circleMap c R) - Polynomial.differentiable π Mathlib.Analysis.Calculus.Deriv.Polynomial
{π : Type u} [NontriviallyNormedField π] (p : Polynomial π) : Differentiable π fun x => Polynomial.eval x p - Polynomial.differentiable_aeval π Mathlib.Analysis.Calculus.Deriv.Polynomial
{π : Type u} [NontriviallyNormedField π] {R : Type u_1} [CommSemiring R] [Algebra R π] (q : Polynomial R) : Differentiable π fun x => (Polynomial.aeval x) q - differentiable_tsum' π Mathlib.Analysis.Calculus.SmoothSeries
{Ξ± : Type u_1} {π : Type u_3} {F : Type u_5} [NontriviallyNormedField π] [IsRCLikeNormedField π] [NormedAddCommGroup F] [CompleteSpace F] {u : Ξ± β β} [NormedSpace π F] {g g' : Ξ± β π β F} (hu : Summable u) (hg : β (n : Ξ±) (y : π), HasDerivAt (g n) (g' n y) y) (hg' : β (n : Ξ±) (y : π), βg' n yβ β€ u n) : Differentiable π fun z => β' (n : Ξ±), g n z - differentiable_tsum π Mathlib.Analysis.Calculus.SmoothSeries
{Ξ± : Type u_1} {π : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField π] [IsRCLikeNormedField π] [NormedAddCommGroup E] [NormedSpace π E] [NormedAddCommGroup F] [CompleteSpace F] {u : Ξ± β β} [NormedSpace π F] {f : Ξ± β E β F} {f' : Ξ± β E β E βL[π] F} (hu : Summable u) (hf : β (n : Ξ±) (x : E), HasFDerivAt (f n) (f' n x) x) (hf' : β (n : Ξ±) (x : E), βf' n xβ β€ u n) : Differentiable π fun y => β' (n : Ξ±), f n y - Differentiable.sqrt π Mathlib.Analysis.SpecialFunctions.Sqrt
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hf : Differentiable β f) (hs : β (x : E), f x β 0) : Differentiable β fun y => β(f y) - Differentiable.norm_sq π Mathlib.Analysis.InnerProductSpace.Calculus
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] [NormedSpace β E] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace β G] {f : G β E} (hf : Differentiable β f) : Differentiable β fun y => βf yβ ^ 2 - Differentiable.norm π Mathlib.Analysis.InnerProductSpace.Calculus
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] [NormedSpace β E] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace β G] {f : G β E} (hf : Differentiable β f) (h0 : β (x : G), f x β 0) : Differentiable β fun y => βf yβ - Differentiable.dist π Mathlib.Analysis.InnerProductSpace.Calculus
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] [NormedSpace β E] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace β G] {f g : G β E} (hf : Differentiable β f) (hg : Differentiable β g) (hne : β (x : G), f x β g x) : Differentiable β fun y => dist (f y) (g y) - differentiable_inner π Mathlib.Analysis.InnerProductSpace.Calculus
{π : Type u_1} {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] [NormedSpace β E] : Differentiable β fun p => inner p.1 p.2 - Differentiable.inner π Mathlib.Analysis.InnerProductSpace.Calculus
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] [NormedSpace β E] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace β G] {f g : G β E} (hf : Differentiable β f) (hg : Differentiable β g) : Differentiable β fun x => inner (f x) (g x) - expNegInvGlue.differentiable_polynomial_eval_inv_mul π Mathlib.Analysis.SpecialFunctions.SmoothTransition
(p : Polynomial β) : Differentiable β fun x => Polynomial.eval xβ»ΒΉ p * expNegInvGlue x - Conformal.differentiable π Mathlib.Analysis.Calculus.Conformal.NormedSpace
{X : Type u_1} {Y : Type u_2} [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedSpace β X] [NormedSpace β Y] {f : X β Y} (h : Conformal f) : Differentiable β f - Differentiable.abs π Mathlib.Analysis.Calculus.Deriv.Abs
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hf : Differentiable β f) (hβ : β (x : E), f x β 0) : Differentiable β fun x => |f x| - Differentiable.star π Mathlib.Analysis.Calculus.FDeriv.Star
{π : Type u_1} [NontriviallyNormedField π] [StarRing π] [TrivialStar π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [StarAddMonoid F] [NormedSpace π F] [StarModule π F] [ContinuousStar F] {f : E β F} (h : Differentiable π f) : Differentiable π fun y => star (f y) - Differentiable.clog π Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hβ : Differentiable β f) (hβ : β (x : E), f x β Complex.slitPlane) : Differentiable β fun t => Complex.log (f t) - Complex.differentiable_cos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
: Differentiable β Complex.cos - Complex.differentiable_cosh π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
: Differentiable β Complex.cosh - Complex.differentiable_sin π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
: Differentiable β Complex.sin - Complex.differentiable_sinh π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
: Differentiable β Complex.sinh - Real.differentiable_cos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
: Differentiable β Real.cos - Real.differentiable_cosh π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
: Differentiable β Real.cosh - Real.differentiable_sin π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
: Differentiable β Real.sin - Real.differentiable_sinh π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
: Differentiable β Real.sinh - Differentiable.ccos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hc : Differentiable β f) : Differentiable β fun x => Complex.cos (f x) - Differentiable.ccosh π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hc : Differentiable β f) : Differentiable β fun x => Complex.cosh (f x) - Differentiable.cos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hc : Differentiable β f) : Differentiable β fun x => Real.cos (f x) - Differentiable.cosh π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hc : Differentiable β f) : Differentiable β fun x => Real.cosh (f x) - Differentiable.csin π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hc : Differentiable β f) : Differentiable β fun x => Complex.sin (f x) - Differentiable.csinh π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hc : Differentiable β f) : Differentiable β fun x => Complex.sinh (f x) - Differentiable.sin π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hc : Differentiable β f) : Differentiable β fun x => Real.sin (f x) - Differentiable.sinh π Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hc : Differentiable β f) : Differentiable β fun x => Real.sinh (f x) - differentiable_const_cpow_of_neZero π Mathlib.Analysis.SpecialFunctions.Pow.Deriv
(z : β) [NeZero z] : Differentiable β fun s => z ^ s - Real.differentiable_rpow_const π Mathlib.Analysis.SpecialFunctions.Pow.Deriv
{p : β} (hp : 1 β€ p) : Differentiable β fun x => x ^ p - Differentiable.const_cpow π Mathlib.Analysis.SpecialFunctions.Pow.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} {c : β} (hf : Differentiable β f) (h0 : c β 0 β¨ β (x : E), f x β 0) : Differentiable β fun x => c ^ f x - Differentiable.rpow_const π Mathlib.Analysis.SpecialFunctions.Pow.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} {p : β} (hf : Differentiable β f) (h : β (x : E), f x β 0 β¨ 1 β€ p) : Differentiable β fun x => f x ^ p - Differentiable.cpow π Mathlib.Analysis.SpecialFunctions.Pow.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f g : E β β} (hf : Differentiable β f) (hg : Differentiable β g) (h0 : β (x : E), f x β Complex.slitPlane) : Differentiable β fun x => f x ^ g x - Differentiable.rpow π Mathlib.Analysis.SpecialFunctions.Pow.Deriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f g : E β β} (hf : Differentiable β f) (hg : Differentiable β g) (h : β (x : E), f x β 0) : Differentiable β fun x => f x ^ g x - Real.differentiable_arctan π Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
: Differentiable β Real.arctan - Differentiable.arctan π Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (hc : Differentiable β f) : Differentiable β fun x => Real.arctan (f x) - MDifferentiable.differentiable π Mathlib.Geometry.Manifold.MFDeriv.FDeriv
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace π E'] {f : E β E'} : MDifferentiable (modelWithCornersSelf π E) (modelWithCornersSelf π E') f β Differentiable π f - Real.differentiable_arsinh π Mathlib.Analysis.SpecialFunctions.Arsinh
: Differentiable β Real.arsinh - Differentiable.arsinh π Mathlib.Analysis.SpecialFunctions.Arsinh
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : E β β} (h : Differentiable β f) : Differentiable β fun x => Real.arsinh (f x) - SchwartzMap.differentiable π Mathlib.Analysis.Distribution.SchwartzSpace
{E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] (f : SchwartzMap E F) : Differentiable β βf - Real.differentiable_fourierChar π Mathlib.Analysis.Fourier.FourierTransformDeriv
: Differentiable β fun x => β(Real.fourierChar x) - Real.differentiable_fourierIntegral π Mathlib.Analysis.Fourier.FourierTransformDeriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {V : Type u_2} [NormedAddCommGroup V] [InnerProductSpace β V] [FiniteDimensional β V] [MeasurableSpace V] [BorelSpace V] {f : V β E} (hf_int : MeasureTheory.Integrable f MeasureTheory.volume) (hvf_int : MeasureTheory.Integrable (fun v => βvβ * βf vβ) MeasureTheory.volume) : Differentiable β (Real.fourierIntegral f) - VectorFourier.differentiable_fourierIntegral π Mathlib.Analysis.Fourier.FourierTransformDeriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {V : Type u_2} {W : Type u_3} [NormedAddCommGroup V] [NormedSpace β V] [NormedAddCommGroup W] [NormedSpace β W] (L : V βL[β] W βL[β] β) {f : V β E} [MeasurableSpace V] [BorelSpace V] [SecondCountableTopology V] {ΞΌ : MeasureTheory.Measure V} (hf : MeasureTheory.Integrable f ΞΌ) (hf' : MeasureTheory.Integrable (fun v => βvβ * βf vβ) ΞΌ) : Differentiable β (VectorFourier.fourierIntegral Real.fourierChar ΞΌ L.toLinearMapβ f) - Real.differentiable_fourierChar_neg_bilinear_left π Mathlib.Analysis.Fourier.FourierTransformDeriv
{V : Type u_1} {W : Type u_2} [NormedAddCommGroup V] [NormedSpace β V] [NormedAddCommGroup W] [NormedSpace β W] (L : V βL[β] W βL[β] β) (w : W) : Differentiable β fun v => β(Real.fourierChar (-(L v) w)) - Real.differentiable_fourierChar_neg_bilinear_right π Mathlib.Analysis.Fourier.FourierTransformDeriv
{V : Type u_1} {W : Type u_2} [NormedAddCommGroup V] [NormedSpace β V] [NormedAddCommGroup W] [NormedSpace β W] (L : V βL[β] W βL[β] β) (v : V) : Differentiable β fun w => β(Real.fourierChar (-(L v) w)) - differentiable_norm_rpow π Mathlib.Analysis.InnerProductSpace.NormPow
{E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace β E] {p : β} (hp : 1 < p) : Differentiable β fun x => βxβ ^ p - Differentiable.norm_rpow π Mathlib.Analysis.InnerProductSpace.NormPow
{E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace β E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace β F] {f : F β E} (hf : Differentiable β f) {p : β} (hp : 1 < p) : Differentiable β fun x => βf xβ ^ p - Complex.differentiable_one_div_Gamma π Mathlib.Analysis.SpecialFunctions.Gamma.Beta
: Differentiable β fun s => (Complex.Gamma s)β»ΒΉ - Complex.differentiable_Gammaβ_inv π Mathlib.Analysis.SpecialFunctions.Gamma.Deligne
: Differentiable β fun s => s.Gammaββ»ΒΉ - Differentiable.inversion π Mathlib.Geometry.Euclidean.Inversion.Calculus
{E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [InnerProductSpace β F] {c x : E β F} {R : E β β} (hc : Differentiable β c) (hR : Differentiable β R) (hx : Differentiable β x) (hne : β (a : E), x a β c a) : Differentiable β fun a => EuclideanGeometry.inversion (c a) (R a) (x a) - StrongFEPair.differentiable_Ξ π Mathlib.NumberTheory.LSeries.AbstractFuncEq
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] (P : StrongFEPair E) : Differentiable β P.Ξ - WeakFEPair.differentiable_Ξβ π Mathlib.NumberTheory.LSeries.AbstractFuncEq
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] (P : WeakFEPair E) : Differentiable β P.Ξβ - HurwitzZeta.differentiable_completedCosZetaβ π Mathlib.NumberTheory.LSeries.HurwitzZetaEven
(a : UnitAddCircle) : Differentiable β (HurwitzZeta.completedCosZetaβ a) - HurwitzZeta.differentiable_completedHurwitzZetaEvenβ π Mathlib.NumberTheory.LSeries.HurwitzZetaEven
(a : UnitAddCircle) : Differentiable β (HurwitzZeta.completedHurwitzZetaEvenβ a) - HurwitzZeta.differentiable_hurwitzZetaEven_sub_hurwitzZetaEven π Mathlib.NumberTheory.LSeries.HurwitzZetaEven
(a b : UnitAddCircle) : Differentiable β fun s => HurwitzZeta.hurwitzZetaEven a s - HurwitzZeta.hurwitzZetaEven b s - HurwitzZeta.differentiable_cosZeta_of_ne_zero π Mathlib.NumberTheory.LSeries.HurwitzZetaEven
{a : UnitAddCircle} (ha : a β 0) : Differentiable β (HurwitzZeta.cosZeta a) - HurwitzZeta.differentiableAt_sinZeta π Mathlib.NumberTheory.LSeries.HurwitzZetaOdd
(a : UnitAddCircle) : Differentiable β (HurwitzZeta.sinZeta a) - HurwitzZeta.differentiable_completedHurwitzZetaOdd π Mathlib.NumberTheory.LSeries.HurwitzZetaOdd
(a : UnitAddCircle) : Differentiable β (HurwitzZeta.completedHurwitzZetaOdd a) - HurwitzZeta.differentiable_completedSinZeta π Mathlib.NumberTheory.LSeries.HurwitzZetaOdd
(a : UnitAddCircle) : Differentiable β (HurwitzZeta.completedSinZeta a) - HurwitzZeta.differentiable_hurwitzZetaOdd π Mathlib.NumberTheory.LSeries.HurwitzZetaOdd
(a : UnitAddCircle) : Differentiable β (HurwitzZeta.hurwitzZetaOdd a) - HurwitzZeta.differentiable_hurwitzZeta_sub_hurwitzZeta π Mathlib.NumberTheory.LSeries.HurwitzZeta
(a b : UnitAddCircle) : Differentiable β fun s => HurwitzZeta.hurwitzZeta a s - HurwitzZeta.hurwitzZeta b s - HurwitzZeta.differentiable_expZeta_of_ne_zero π Mathlib.NumberTheory.LSeries.HurwitzZeta
{a : UnitAddCircle} (ha : a β 0) : Differentiable β (HurwitzZeta.expZeta a) - differentiable_completedZetaβ π Mathlib.NumberTheory.LSeries.RiemannZeta
: Differentiable β completedRiemannZetaβ - ZMod.differentiable_completedLFunctionβ π Mathlib.NumberTheory.LSeries.ZMod
{N : β} [NeZero N] (Ξ¦ : ZMod N β β) : Differentiable β (ZMod.completedLFunctionβ Ξ¦) - ZMod.differentiable_LFunction_of_sum_zero π Mathlib.NumberTheory.LSeries.ZMod
{N : β} [NeZero N] {Ξ¦ : ZMod N β β} (hΞ¦ : β j : ZMod N, Ξ¦ j = 0) : Differentiable β (ZMod.LFunction Ξ¦) - ZMod.differentiable_completedLFunction π Mathlib.NumberTheory.LSeries.ZMod
{N : β} [NeZero N] {Ξ¦ : ZMod N β β} (hΞ¦β : Ξ¦ 0 = 0) (hΞ¦β : β j : ZMod N, Ξ¦ j = 0) : Differentiable β (ZMod.completedLFunction Ξ¦) - DirichletCharacter.differentiable_LFunctionTrivCharβ π Mathlib.NumberTheory.LSeries.DirichletContinuation
(n : β) [NeZero n] : Differentiable β (DirichletCharacter.LFunctionTrivCharβ n) - DirichletCharacter.differentiable_LFunction π Mathlib.NumberTheory.LSeries.DirichletContinuation
{N : β} [NeZero N] {Ο : DirichletCharacter β N} (hΟ : Ο β 1) : Differentiable β (DirichletCharacter.LFunction Ο) - DirichletCharacter.differentiable_completedLFunction π Mathlib.NumberTheory.LSeries.DirichletContinuation
{N : β} [NeZero N] {Ο : DirichletCharacter β N} (hΟ : Ο β 1) : Differentiable β (DirichletCharacter.completedLFunction Ο) - Differentiable.comp' π Mathlib.Tactic.FunProp.Differentiable
{K : Type u_1} [NontriviallyNormedField K] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace K E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace K F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace K G] {f : E β F} {g : F β G} (hg : Differentiable K g) (hf : Differentiable K f) : Differentiable K fun x => g (f x) - ContDiff.differentiable_iteratedDeriv' π Mathlib.Tactic.FunProp.ContDiff
{K : Type u_1} [NontriviallyNormedField K] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace K F] {m : β} {f : K β F} (hf : ContDiff K (βm + 1) f) : Differentiable K (iteratedDeriv m f)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
woould find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 026c9d9
serving mathlib revision 0e2973b