Loogle!
Result
Found 163 declarations mentioning Lean.Meta.Simp.Simproc. Of these, 141 match your pattern(s).
- Lean.Meta.Simp.Methods.post 📋 Lean.Meta.Tactic.Simp.Types
(self : Lean.Meta.Simp.Methods) : Lean.Meta.Simp.Simproc - Lean.Meta.Simp.Methods.pre 📋 Lean.Meta.Tactic.Simp.Types
(self : Lean.Meta.Simp.Methods) : Lean.Meta.Simp.Simproc - Lean.Meta.Simp.andThen 📋 Lean.Meta.Tactic.Simp.Types
(f g : Lean.Meta.Simp.Simproc) : Lean.Meta.Simp.Simproc - Lean.Meta.Simp.userPostSimprocs 📋 Lean.Meta.Tactic.Simp.Simproc
(s : Lean.Meta.Simp.SimprocsArray) : Lean.Meta.Simp.Simproc - Lean.Meta.Simp.userPreSimprocs 📋 Lean.Meta.Tactic.Simp.Simproc
(s : Lean.Meta.Simp.SimprocsArray) : Lean.Meta.Simp.Simproc - Lean.Meta.Simp.sevalGround 📋 Lean.Meta.Tactic.Simp.Rewrite
: Lean.Meta.Simp.Simproc - Lean.Meta.Simp.simpGround 📋 Lean.Meta.Tactic.Simp.Rewrite
: Lean.Meta.Simp.Simproc - Lean.Meta.Simp.simpMatch 📋 Lean.Meta.Tactic.Simp.Rewrite
: Lean.Meta.Simp.Simproc - Lean.Meta.Simp.simpUsingDecide 📋 Lean.Meta.Tactic.Simp.Rewrite
: Lean.Meta.Simp.Simproc - Lean.Meta.Simp.postDefault 📋 Lean.Meta.Tactic.Simp.Rewrite
(s : Lean.Meta.Simp.SimprocsArray) : Lean.Meta.Simp.Simproc - Lean.Meta.Simp.postSEval 📋 Lean.Meta.Tactic.Simp.Rewrite
(s : Lean.Meta.Simp.SimprocsArray) : Lean.Meta.Simp.Simproc - Lean.Meta.Simp.preDefault 📋 Lean.Meta.Tactic.Simp.Rewrite
(s : Lean.Meta.Simp.SimprocsArray) : Lean.Meta.Simp.Simproc - Lean.Meta.Simp.preSEval 📋 Lean.Meta.Tactic.Simp.Rewrite
(s : Lean.Meta.Simp.SimprocsArray) : Lean.Meta.Simp.Simproc - Lean.Meta.Simp.rewritePost 📋 Lean.Meta.Tactic.Simp.Rewrite
(rflOnly : Bool := false) : Lean.Meta.Simp.Simproc - Lean.Meta.Simp.rewritePre 📋 Lean.Meta.Tactic.Simp.Rewrite
(rflOnly : Bool := false) : Lean.Meta.Simp.Simproc - reduceCtorEq 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Core
: Lean.Meta.Simp.Simproc - reduceDIte 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Core
: Lean.Meta.Simp.Simproc - reduceIte 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Core
: Lean.Meta.Simp.Simproc - Nat.reduceBeqDiff 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat
: Lean.Meta.Simp.Simproc - Nat.reduceBneDiff 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat
: Lean.Meta.Simp.Simproc - Nat.reduceDvd 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat
: Lean.Meta.Simp.Simproc - Nat.reduceEqDiff 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat
: Lean.Meta.Simp.Simproc - Nat.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat
: Lean.Meta.Simp.Simproc - Nat.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat
: Lean.Meta.Simp.Simproc - Nat.reduceLeDiff 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat
: Lean.Meta.Simp.Simproc - Nat.reduceSubDiff 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat
: Lean.Meta.Simp.Simproc - Fin.reduceEq 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Fin
: Lean.Meta.Simp.Simproc - Fin.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Fin
: Lean.Meta.Simp.Simproc - Fin.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Fin
: Lean.Meta.Simp.Simproc - Fin.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Fin
: Lean.Meta.Simp.Simproc - Fin.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Fin
: Lean.Meta.Simp.Simproc - Fin.reduceNe 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Fin
: Lean.Meta.Simp.Simproc - UInt16.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt16.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt16.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt16.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt32.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt32.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt32.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt32.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt64.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt64.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt64.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt64.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt8.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt8.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt8.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - UInt8.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - USize.reduceToNat 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.UInt
: Lean.Meta.Simp.Simproc - Int.reduceDvd 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int
: Lean.Meta.Simp.Simproc - Int.reduceEq 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int
: Lean.Meta.Simp.Simproc - Int.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int
: Lean.Meta.Simp.Simproc - Int.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int
: Lean.Meta.Simp.Simproc - Int.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int
: Lean.Meta.Simp.Simproc - Int.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int
: Lean.Meta.Simp.Simproc - Int.reduceNe 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int
: Lean.Meta.Simp.Simproc - ISize.reduceToInt 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - ISize.reduceToNatClampNeg 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int16.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int16.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int16.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int16.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int32.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int32.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int32.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int32.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int64.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int64.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int64.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int64.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int8.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int8.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int8.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Int8.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
: Lean.Meta.Simp.Simproc - Char.reduceEq 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Char
: Lean.Meta.Simp.Simproc - Char.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Char
: Lean.Meta.Simp.Simproc - Char.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Char
: Lean.Meta.Simp.Simproc - Char.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Char
: Lean.Meta.Simp.Simproc - Char.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Char
: Lean.Meta.Simp.Simproc - Char.reduceNe 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.Char
: Lean.Meta.Simp.Simproc - String.reduceEq 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.String
: Lean.Meta.Simp.Simproc - String.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.String
: Lean.Meta.Simp.Simproc - String.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.String
: Lean.Meta.Simp.Simproc - String.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.String
: Lean.Meta.Simp.Simproc - String.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.String
: Lean.Meta.Simp.Simproc - String.reduceNe 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.String
: Lean.Meta.Simp.Simproc - BitVec.reduceEq 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.BitVec
: Lean.Meta.Simp.Simproc - BitVec.reduceGE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.BitVec
: Lean.Meta.Simp.Simproc - BitVec.reduceGT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.BitVec
: Lean.Meta.Simp.Simproc - BitVec.reduceLE 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.BitVec
: Lean.Meta.Simp.Simproc - BitVec.reduceLT 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.BitVec
: Lean.Meta.Simp.Simproc - BitVec.reduceNe 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.BitVec
: Lean.Meta.Simp.Simproc - BitVec.reduceShiftLeftShiftLeft 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.BitVec
: Lean.Meta.Simp.Simproc - BitVec.reduceShiftRightShiftRight 📋 Lean.Meta.Tactic.Simp.BuiltinSimprocs.BitVec
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.applyCondSimproc 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.ApplyControlFlow
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.applyIteSimproc 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.ApplyControlFlow
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.andOnes 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bool_and 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bool_beq 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bool_eq_self 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_add 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_allOnes_eq_and 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_and 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_and_eq_allOnes 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_beq_self 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_concat_extract 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_concat_not_extract 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_elim_setWidth 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_elim_shiftLeft_const 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_elim_signExtend 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_elim_ushiftRight_const 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_eq_self 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_equal_const_not 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_equal_const_not' 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_extractLsb'_not 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_extract_concat 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_lt_allOnes_iff 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_mul_ones 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_mul_twoPow 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_ones_mul 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_twoPow_mul 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_udiv_of_two_pow 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.eqSelfProc 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.eqToBEq 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.extract_add 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.extract_full 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.extract_mul 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.maxUlt 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.neg_eq_not_add 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.onesAnd 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.reduceCond 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.shiftRight_self 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bvAcNfpost 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.AC
: Lean.Meta.Simp.Simproc - Lean.Elab.Tactic.BVDecide.Frontend.Normalize.enumToBitVecCtor 📋 Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Enums
: Lean.Meta.Simp.Simproc - Lean.Meta.Grind.reduceSimpMatchDiscrsOnly 📋 Lean.Meta.Tactic.Grind.MatchDiscrOnly
: Lean.Meta.Simp.Simproc - Lean.Meta.Grind.simpBoolEq 📋 Lean.Meta.Tactic.Grind.SimpUtil
: Lean.Meta.Simp.Simproc - existsAndEq 📋 Mathlib.Tactic.Simproc.ExistsAndEq
: Lean.Meta.Simp.Simproc - Lean.Meta.Simp.Simproc.ofQ 📋 Qq.Simp
(proc : Lean.Meta.Simp.SimprocQ) : Lean.Meta.Simp.Simproc - Fin.prod_univ_ofNat 📋 Mathlib.Data.Fin.Tuple.Reflection
: Lean.Meta.Simp.Simproc - Fin.sum_univ_ofNat 📋 Mathlib.Data.Fin.Tuple.Reflection
: Lean.Meta.Simp.Simproc - Nat.primeFactorsList_ofNat 📋 Mathlib.Tactic.Simproc.Factors
: Lean.Meta.Simp.Simproc
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 07d4605
serving mathlib revision bee89f3