Loogle!
Result
Found 508 declarations mentioning Equiv and Fin. Of these, 22 match your pattern(s).
- finCongr ๐ Mathlib.Data.Fin.Basic
{n m : โ} (eq : n = m) : Fin n โ Fin m - Fintype.equivFin ๐ Mathlib.Data.Fintype.EquivFin
(ฮฑ : Type u_4) [Fintype ฮฑ] : ฮฑ โ Fin (Fintype.card ฮฑ) - Fintype.equivFinOfCardEq ๐ Mathlib.Data.Fintype.EquivFin
{ฮฑ : Type u_1} [Fintype ฮฑ] {n : โ} (h : Fintype.card ฮฑ = n) : ฮฑ โ Fin n - Finset.equivFin ๐ Mathlib.Data.Fintype.EquivFin
{ฮฑ : Type u_1} (s : Finset ฮฑ) : { x // x โ s } โ Fin s.card - Finset.equivFinOfCardEq ๐ Mathlib.Data.Fintype.EquivFin
{ฮฑ : Type u_1} {s : Finset ฮฑ} {n : โ} (h : s.card = n) : { x // x โ s } โ Fin n - Finset.Nat.antidiagonalEquivFin ๐ Mathlib.Data.Finset.NatAntidiagonal
(n : โ) : { x // x โ Finset.antidiagonal n } โ Fin (n + 1) - Ideal.equivFinTwo ๐ Mathlib.RingTheory.Ideal.Basic
(K : Type u_5) [DivisionSemiring K] [DecidableEq (Ideal K)] : Ideal K โ Fin 2 - finProdFinEquiv ๐ Mathlib.Logic.Equiv.Fin.Basic
{m n : โ} : Fin m ร Fin n โ Fin (m * n) - finSumFinEquiv ๐ Mathlib.Logic.Equiv.Fin.Basic
{m n : โ} : Fin m โ Fin n โ Fin (m + n) - finAddFlip ๐ Mathlib.Logic.Equiv.Fin.Basic
{m n : โ} : Fin (m + n) โ Fin (n + m) - finFunctionFinEquiv ๐ Mathlib.Algebra.BigOperators.Fin
{m n : โ} : (Fin n โ Fin m) โ Fin (m ^ n) - finPiFinEquiv ๐ Mathlib.Algebra.BigOperators.Fin
{m : โ} {n : Fin m โ โ} : ((i : Fin m) โ Fin (n i)) โ Fin (โ i, n i) - finSigmaFinEquiv ๐ Mathlib.Algebra.BigOperators.Fin
{m : โ} {n : Fin m โ โ} : (i : Fin m) ร Fin (n i) โ Fin (โ i, n i) - Nat.equivFinOfCardPos ๐ Mathlib.SetTheory.Cardinal.Finite
{ฮฑ : Type u_3} (h : Nat.card ฮฑ โ 0) : ฮฑ โ Fin (Nat.card ฮฑ) - Finite.equivFin ๐ Mathlib.Data.Finite.Card
(ฮฑ : Type u_4) [Finite ฮฑ] : ฮฑ โ Fin (Nat.card ฮฑ) - Finite.equivFinOfCardEq ๐ Mathlib.Data.Finite.Card
{ฮฑ : Type u_1} [Finite ฮฑ] {n : โ} (h : Nat.card ฮฑ = n) : ฮฑ โ Fin n - Composition.blocksFinEquiv ๐ Mathlib.Combinatorics.Enumerative.Composition
{n : โ} (c : Composition n) : (i : Fin c.length) ร Fin (c.blocksFun i) โ Fin n - Encodable.fintypeEquivFin ๐ Mathlib.Logic.Equiv.Finset
{ฮฑ : Type u_1} [Fintype ฮฑ] [Encodable ฮฑ] : ฮฑ โ Fin (Fintype.card ฮฑ) - SSet.stdSimplex.objโEquiv ๐ Mathlib.AlgebraicTopology.SimplicialSet.StdSimplex
{n : โ} : (SSet.stdSimplex.obj (SimplexCategory.mk n)).obj (Opposite.op (SimplexCategory.mk 0)) โ Fin (n + 1) - DirectSum.IsInternal.sigmaOrthonormalBasisIndexEquiv ๐ Mathlib.Analysis.InnerProductSpace.PiL2
{ฮน : Type u_7} {๐ : Type u_8} [RCLike ๐] {E : Type u_9} [NormedAddCommGroup E] [InnerProductSpace ๐ E] [Fintype ฮน] [FiniteDimensional ๐ E] {n : โ} (hn : Module.finrank ๐ E = n) [DecidableEq ฮน] {V : ฮน โ Submodule ๐ E} (hV : DirectSum.IsInternal V) (hV' : OrthogonalFamily ๐ (fun i => โฅ(V i)) fun i => (V i).subtypeโแตข) : (i : ฮน) ร Fin (Module.finrank ๐ โฅ(V i)) โ Fin n - OrderedFinpartition.equivSigma ๐ Mathlib.Analysis.Calculus.ContDiff.FaaDiBruno
{n : โ} (c : OrderedFinpartition n) : (i : Fin c.length) ร Fin (c.partSize i) โ Fin n - FinEnum.equiv ๐ Mathlib.Data.FinEnum
{ฮฑ : Sort u_1} [self : FinEnum ฮฑ] : ฮฑ โ Fin (FinEnum.card ฮฑ)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 1bd7adb