Loogle!
Result
Found 187 declarations mentioning nonZeroDivisors and LE.le. Of these, 32 match your pattern(s).
- isUnit_le_nonZeroDivisors π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
(Mβ : Type u_2) [MonoidWithZero Mβ] : IsUnit.submonoid Mβ β€ nonZeroDivisors Mβ - powers_le_nonZeroDivisors_of_noZeroDivisors π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{Mβ : Type u_2} [MonoidWithZero Mβ] {x : Mβ} [NoZeroDivisors Mβ] (hx : x β 0) : Submonoid.powers x β€ nonZeroDivisors Mβ - comap_nonZeroDivisors_le_of_injective π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{F : Type u_1} {Mβ : Type u_2} {Mβ' : Type u_3} [MonoidWithZero Mβ] [MonoidWithZero Mβ'] [FunLike F Mβ Mβ'] [MonoidWithZeroHomClass F Mβ Mβ'] {f : F} (hf : Function.Injective βf) : Submonoid.comap f (nonZeroDivisors Mβ') β€ nonZeroDivisors Mβ - le_nonZeroDivisors_of_noZeroDivisors π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{Mβ : Type u_2} [MonoidWithZero Mβ] [NoZeroDivisors Mβ] {S : Submonoid Mβ} (hS : 0 β S) : S β€ nonZeroDivisors Mβ - nonZeroDivisors_le_comap_nonZeroDivisors_of_injective π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{F : Type u_1} {Mβ : Type u_2} {Mβ' : Type u_3} [MonoidWithZero Mβ] [MonoidWithZero Mβ'] [FunLike F Mβ Mβ'] [NoZeroDivisors Mβ'] [MonoidWithZeroHomClass F Mβ Mβ'] (f : F) (hf : Function.Injective βf) : nonZeroDivisors Mβ β€ Submonoid.comap f (nonZeroDivisors Mβ') - map_le_nonZeroDivisors_of_injective π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{F : Type u_1} {Mβ : Type u_2} {Mβ' : Type u_3} [MonoidWithZero Mβ] [MonoidWithZero Mβ'] [FunLike F Mβ Mβ'] [NoZeroDivisors Mβ'] [MonoidWithZeroHomClass F Mβ Mβ'] (f : F) (hf : Function.Injective βf) {S : Submonoid Mβ} (hS : S β€ nonZeroDivisors Mβ) : Submonoid.map f S β€ nonZeroDivisors Mβ' - Ideal.primeCompl_le_nonZeroDivisors π Mathlib.RingTheory.Ideal.Operations
{R : Type u_1} [CommSemiring R] [NoZeroDivisors R] (P : Ideal R) [P.IsPrime] : P.primeCompl β€ nonZeroDivisors R - Submonoid.LocalizationMap.map_nonZeroDivisors_le π Mathlib.GroupTheory.MonoidLocalization.MonoidWithZero
{M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] (f : S.LocalizationMap N) : Submonoid.map f (nonZeroDivisors M) β€ nonZeroDivisors N - Submonoid.LocalizationMap.nonZeroDivisors_le_comap π Mathlib.GroupTheory.MonoidLocalization.MonoidWithZero
{M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] (f : S.LocalizationMap N) : nonZeroDivisors M β€ Submonoid.comap f (nonZeroDivisors N) - IsLocalization.map_nonZeroDivisors_le π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] : Submonoid.map (algebraMap R S) (nonZeroDivisors R) β€ nonZeroDivisors S - IsLocalization.nonZeroDivisors_le_comap π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] : nonZeroDivisors R β€ Submonoid.comap (algebraMap R S) (nonZeroDivisors S) - aleph0_le_rank_of_isEmpty_oreSet π Mathlib.LinearAlgebra.Dimension.Localization
{R : Type u_1} [Ring R] [IsDomain R] (hS : IsEmpty (OreLocalization.OreSet (nonZeroDivisors R))) : Cardinal.aleph0 β€ Module.rank R R - FractionalIdeal.GCongr.coeIdeal_le_coeIdeal π Mathlib.RingTheory.FractionalIdeal.Basic
{R : Type u_1} [CommRing R] (K : Type u_3) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : I β€ J β βI β€ βJ - FractionalIdeal.mul_one_div_le_one π Mathlib.RingTheory.FractionalIdeal.Operations
{Rβ : Type u_3} [CommRing Rβ] {K : Type u_4} [Field K] [Algebra Rβ K] [IsFractionRing Rβ K] [IsDomain Rβ] {I : FractionalIdeal (nonZeroDivisors Rβ) K} : I * (1 / I) β€ 1 - FractionalIdeal.le_self_mul_one_div π Mathlib.RingTheory.FractionalIdeal.Operations
{Rβ : Type u_3} [CommRing Rβ] {K : Type u_4} [Field K] [Algebra Rβ K] [IsFractionRing Rβ K] [IsDomain Rβ] {I : FractionalIdeal (nonZeroDivisors Rβ) K} (hI : I β€ 1) : I β€ I * (1 / I) - FractionalIdeal.num_le_mul_inv π Mathlib.RingTheory.FractionalIdeal.Inverse
{K : Type u_3} [Field K] {Rβ : Type u_4} [CommRing Rβ] [IsDomain Rβ] [Algebra Rβ K] [IsFractionRing Rβ K] (I : FractionalIdeal (nonZeroDivisors Rβ) K) : βI.num β€ I * Iβ»ΒΉ - FractionalIdeal.coe_ideal_le_self_mul_inv π Mathlib.RingTheory.FractionalIdeal.Inverse
(K : Type u_3) [Field K] {Rβ : Type u_4} [CommRing Rβ] [IsDomain Rβ] [Algebra Rβ K] [IsFractionRing Rβ K] (I : Ideal Rβ) : βI β€ βI * (βI)β»ΒΉ - FractionalIdeal.le_self_mul_inv π Mathlib.RingTheory.FractionalIdeal.Inverse
{K : Type u_3} [Field K] {Rβ : Type u_4} [CommRing Rβ] [IsDomain Rβ] [Algebra Rβ K] [IsFractionRing Rβ K] {I : FractionalIdeal (nonZeroDivisors Rβ) K} (hI : I β€ 1) : I β€ I * Iβ»ΒΉ - FractionalIdeal.inv_anti_mono π Mathlib.RingTheory.FractionalIdeal.Inverse
{K : Type u_3} [Field K] {Rβ : Type u_4} [CommRing Rβ] [IsDomain Rβ] [Algebra Rβ K] [IsFractionRing Rβ K] {I J : FractionalIdeal (nonZeroDivisors Rβ) K} (hI : I β 0) (hJ : J β 0) (hIJ : I β€ J) : Jβ»ΒΉ β€ Iβ»ΒΉ - FractionalIdeal.absNorm_nonneg π Mathlib.RingTheory.FractionalIdeal.Norm
{R : Type u_1} [CommRing R] [IsDedekindDomain R] [Module.Free β€ R] [Module.Finite β€ R] {K : Type u_2} [CommRing K] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal (nonZeroDivisors R) K) : 0 β€ FractionalIdeal.absNorm I - FractionalIdeal.le_one_of_extendedHomβ_le_one π Mathlib.RingTheory.FractionalIdeal.Extended
{A : Type u_1} {K : Type u_2} (L : Type u_3) (B : Type u_4) [CommRing A] [CommRing B] [IsDomain B] [Algebra A B] [NoZeroSMulDivisors A B] [Field K] [Field L] [Algebra A K] [Algebra B L] [IsFractionRing A K] [IsFractionRing B L] {I : FractionalIdeal (nonZeroDivisors A) K} [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [IsDomain A] [Algebra.IsIntegral A B] [IsIntegrallyClosed A] [IsIntegrallyClosed B] (hI : (FractionalIdeal.extendedHomβ L B) I β€ 1) : I β€ 1 - FractionalIdeal.dual_inv_le π Mathlib.RingTheory.DedekindDomain.Different
(A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] (I : FractionalIdeal (nonZeroDivisors B) L) : (FractionalIdeal.dual A K I)β»ΒΉ β€ I - FractionalIdeal.inv_le_dual π Mathlib.RingTheory.DedekindDomain.Different
(A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] (I : FractionalIdeal (nonZeroDivisors B) L) : Iβ»ΒΉ β€ FractionalIdeal.dual A K I - FractionalIdeal.one_le_dual_one π Mathlib.RingTheory.DedekindDomain.Different
(A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] : 1 β€ FractionalIdeal.dual A K 1 - FractionalIdeal.le_dual_inv_aux π Mathlib.RingTheory.DedekindDomain.Different
(A : Type u_1) (K : Type u_2) {L : Type u} {B : Type u_3} [CommRing A] [Field K] [CommRing B] [Field L] [Algebra A K] [Algebra B L] [Algebra A B] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [IsScalarTower A B L] [IsDomain A] [IsFractionRing A K] [FiniteDimensional K L] [Algebra.IsSeparable K L] [IsIntegralClosure B A L] [IsFractionRing B L] [IsIntegrallyClosed A] [IsDedekindDomain B] {I J : FractionalIdeal (nonZeroDivisors B) L} (hI : I β 0) (hIJ : I * J β€ 1) : J β€ FractionalIdeal.dual A K I - Submodule.traceDual_le_span_map_traceDual π Mathlib.RingTheory.DedekindDomain.LinearDisjoint
(A : Type u_1) (B : Type u_2) {K : Type u_3} {L : Type u_4} [CommRing A] [Field K] [Algebra A K] [IsFractionRing A K] [CommRing B] [Field L] [Algebra B L] [Algebra A L] [Algebra K L] [FiniteDimensional K L] [IsScalarTower A K L] (Rβ : Type u_5) (Rβ : Type u_6) [CommRing Rβ] [CommRing Rβ] [Algebra A Rβ] [Algebra A Rβ] [Algebra Rβ B] [Algebra Rβ B] [Algebra Rβ L] [Algebra Rβ L] [IsScalarTower A Rβ L] [IsScalarTower Rβ B L] [IsScalarTower Rβ B L] [Module.Finite A Rβ] {Fβ Fβ : IntermediateField K L} [Algebra Rβ β₯Fβ] [Algebra Rβ β₯Fβ] [NoZeroSMulDivisors Rβ β₯Fβ] [IsScalarTower A (β₯Fβ) L] [IsScalarTower A Rβ β₯Fβ] [IsScalarTower Rβ (β₯Fβ) L] [IsScalarTower Rβ (β₯Fβ) L] [Algebra.IsSeparable K β₯Fβ] [Algebra.IsSeparable (β₯Fβ) L] [Module.Free A Rβ] [IsLocalization (Algebra.algebraMapSubmonoid Rβ (nonZeroDivisors A)) β₯Fβ] (hβ : Fβ.LinearDisjoint β₯Fβ) (hβ : Fβ β Fβ = β€) : Submodule.restrictScalars Rβ (Submodule.traceDual Rβ (β₯Fβ) 1) β€ Submodule.span Rβ (β(algebraMap (β₯Fβ) L) '' β(Submodule.traceDual A K 1)) - FractionalIdeal.count_coe_nonneg π Mathlib.RingTheory.DedekindDomain.Factorization
{R : Type u_1} [CommRing R] (K : Type u_2) [Field K] [Algebra R K] [IsFractionRing R K] [IsDedekindDomain R] (v : IsDedekindDomain.HeightOneSpectrum R) (J : Ideal R) : 0 β€ FractionalIdeal.count K v βJ - FractionalIdeal.count_mono π Mathlib.RingTheory.DedekindDomain.Factorization
{R : Type u_1} [CommRing R] (K : Type u_2) [Field K] [Algebra R K] [IsFractionRing R K] [IsDedekindDomain R] (v : IsDedekindDomain.HeightOneSpectrum R) {I J : FractionalIdeal (nonZeroDivisors R) K} (hI : I β 0) (h : I β€ J) : FractionalIdeal.count K v J β€ FractionalIdeal.count K v I - algebraMapSubmonoid_le_nonZeroDivisors_of_faithfulSMul π Mathlib.RingTheory.DedekindDomain.Instances
{A : Type u_4} (B : Type u_5) [CommSemiring A] [CommSemiring B] [Algebra A B] [NoZeroDivisors B] [FaithfulSMul A B] {S : Submonoid A} (hS : S β€ nonZeroDivisors A) : Algebra.algebraMapSubmonoid B S β€ nonZeroDivisors B - NumberField.Units.dirichletUnitTheorem.seq_norm_le π Mathlib.NumberTheory.NumberField.Units.DirichletTheorem
(K : Type u_1) [Field K] [NumberField K] (wβ : NumberField.InfinitePlace K) {B : β} (hB : NumberField.mixedEmbedding.minkowskiBound K 1 < β(NumberField.mixedEmbedding.convexBodyLTFactor K) * βB) (n : β) : ((Algebra.norm β€) β(NumberField.Units.dirichletUnitTheorem.seq K wβ hB n)).natAbs β€ B - ringKrullDim_quotient_succ_le_of_nonZeroDivisor π Mathlib.RingTheory.KrullDimension.NonZeroDivisors
{R : Type u_1} [CommRing R] {r : R} (hr : r β nonZeroDivisors R) : ringKrullDim (R β§Έ Ideal.span {r}) + 1 β€ ringKrullDim R - ringKrullDim_succ_le_of_surjective π Mathlib.RingTheory.KrullDimension.NonZeroDivisors
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R β+* S) (hf : Function.Surjective βf) {r : R} (hr : r β nonZeroDivisors R) (hr' : f r = 0) : ringKrullDim S + 1 β€ ringKrullDim R
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 1c119a3