Loogle!
Result
Found 1708 declarations mentioning One. Of these, 197 match your pattern(s).
- AddOpposite.instOne š Mathlib.Algebra.Opposites
{α : Type u_1} [One α] : One αįµįµįµ - MulOpposite.instOne š Mathlib.Algebra.Opposites
{α : Type u_1} [One α] : One αįµįµįµ - Pi.instOne š Mathlib.Algebra.Notation.Pi.Defs
{ι : Type u_1} {M : ι ā Type u_5} [(i : ι) ā One (M i)] : One ((i : ι) ā M i) - Pi.instOne.eq_1 š Mathlib.Algebra.Notation.Pi.Defs
{ι : Type u_1} {M : ι ā Type u_5} [(i : ι) ā One (M i)] : Pi.instOne = { one := fun x => 1 } - Pi.one_apply š Mathlib.Algebra.Notation.Pi.Defs
{ι : Type u_1} {M : ι ā Type u_5} [(i : ι) ā One (M i)] (i : ι) : 1 i = 1 - Pi.one_def š Mathlib.Algebra.Notation.Pi.Defs
{ι : Type u_1} {M : ι ā Type u_5} [(i : ι) ā One (M i)] : 1 = fun x => 1 - Pi.mulSingle š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} [(i : ι) ā One (M i)] [DecidableEq ι] (i : ι) (x : M i) (j : ι) : M j - Pi.mulSingle_injective š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} [(i : ι) ā One (M i)] [DecidableEq ι] (i : ι) : Function.Injective (Pi.mulSingle i) - Pi.mulSingle_eq_same š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} [(i : ι) ā One (M i)] [DecidableEq ι] (i : ι) (x : M i) : Pi.mulSingle i x i = x - Pi.mulSingle_eq_of_ne š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} [(i : ι) ā One (M i)] [DecidableEq ι] {i i' : ι} (h : i' ā i) (x : M i) : Pi.mulSingle i x i' = 1 - Pi.mulSingle_eq_of_ne' š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} [(i : ι) ā One (M i)] [DecidableEq ι] {i i' : ι} (h : i ā i') (x : M i) : Pi.mulSingle i x i' = 1 - Pi.mulSingle_inj š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} [(i : ι) ā One (M i)] [DecidableEq ι] (i : ι) {x y : M i} : Pi.mulSingle i x = Pi.mulSingle i y ā x = y - Pi.mulSingle.congr_simp š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} [(i : ι) ā One (M i)] {instā : DecidableEq ι} [DecidableEq ι] (i : ι) (x xā : M i) (e_x : x = xā) (j : ι) : Pi.mulSingle i x j = Pi.mulSingle i xā j - Pi.mulSingle_one š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} [(i : ι) ā One (M i)] [DecidableEq ι] (i : ι) : Pi.mulSingle i 1 = 1 - Pi.mulSingle.eq_1 š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} [(i : ι) ā One (M i)] [DecidableEq ι] (i : ι) (x : M i) : Pi.mulSingle i x = Function.update 1 i x - Pi.mulSingle_eq_one_iff š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} [(i : ι) ā One (M i)] [DecidableEq ι] {i : ι} {x : M i} : Pi.mulSingle i x = 1 ā x = 1 - Pi.mulSingle_ne_one_iff š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} [(i : ι) ā One (M i)] [DecidableEq ι] {i : ι} {x : M i} : Pi.mulSingle i x ā 1 ā x ā 1 - Pi.apply_mulSingle š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} {N : ι ā Type u_7} [(i : ι) ā One (M i)] [(i : ι) ā One (N i)] [DecidableEq ι] (f' : (i : ι) ā M i ā N i) (hf' : ā (i : ι), f' i 1 = 1) (i : ι) (x : M i) (j : ι) : f' j (Pi.mulSingle i x j) = Pi.mulSingle i (f' i x) j - Pi.mulSingle_op š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} {N : ι ā Type u_7} [(i : ι) ā One (M i)] [(i : ι) ā One (N i)] [DecidableEq ι] (op : (i : ι) ā M i ā N i) (h : ā (i : ι), op i 1 = 1) (i : ι) (x : M i) : Pi.mulSingle i (op i x) = fun j => op j (Pi.mulSingle i x j) - Pi.apply_mulSingleā š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} {N : ι ā Type u_7} {O : ι ā Type u_8} [(i : ι) ā One (M i)] [(i : ι) ā One (N i)] [(i : ι) ā One (O i)] [DecidableEq ι] (f' : (i : ι) ā M i ā N i ā O i) (hf' : ā (i : ι), f' i 1 1 = 1) (i : ι) (x : M i) (y : N i) (j : ι) : f' j (Pi.mulSingle i x j) (Pi.mulSingle i y j) = Pi.mulSingle i (f' i x y) j - Pi.mulSingle_opā š Mathlib.Algebra.Notation.Pi.Basic
{ι : Type u_1} {M : ι ā Type u_6} {N : ι ā Type u_7} {O : ι ā Type u_8} [(i : ι) ā One (M i)] [(i : ι) ā One (N i)] [(i : ι) ā One (O i)] [DecidableEq ι] (op : (i : ι) ā M i ā N i ā O i) (h : ā (i : ι), op i 1 1 = 1) (i : ι) (x : M i) (y : N i) : Pi.mulSingle i (op i x y) = fun j => op j (Pi.mulSingle i x j) (Pi.mulSingle i y j) - AddMonoid.End.instOne š Mathlib.Algebra.Group.Hom.Defs
(M : Type u_4) [AddZero M] : One (AddMonoid.End M) - Monoid.End.instOne š Mathlib.Algebra.Group.Hom.Defs
(M : Type u_4) [MulOne M] : One (Monoid.End M) - instOneOneHom š Mathlib.Algebra.Group.Hom.Defs
{M : Type u_4} {N : Type u_5} [One M] [One N] : One (OneHom M N) - instOneMultiplicativeOfZero š Mathlib.Algebra.Group.TypeTags.Basic
{α : Type u} [Zero α] : One (Multiplicative α) - Prod.instOne š Mathlib.Algebra.Notation.Prod
{M : Type u_3} {N : Type u_4} [One M] [One N] : One (M Ć N) - Units.instOne š Mathlib.Algebra.Group.Units.Defs
{α : Type u} [Monoid α] : One αˣ - Equiv.Perm.instOne š Mathlib.Algebra.Group.End
{α : Type u_4} : One (Equiv.Perm α) - MonoidWithZeroHom.one š Mathlib.Algebra.GroupWithZero.Hom
(Mā : Type u_7) (Nā : Type u_8) [MulZeroOneClass Mā] [MulZeroOneClass Nā] [DecidablePred fun x => x = 0] [Nontrivial Mā] [NoZeroDivisors Mā] : One (Mā ā*ā Nā) - RingHom.instOne š Mathlib.Algebra.Ring.Hom.Defs
{α : Type u_2} {xā : NonAssocSemiring α} : One (α ā+* α) - instOneColex š Mathlib.Algebra.Order.Group.Synonym
{α : Type u_1} [h : One α] : One (Colex α) - instOneLex š Mathlib.Algebra.Order.Group.Synonym
{α : Type u_1} [h : One α] : One (Lex α) - instOneOrderDual š Mathlib.Algebra.Order.Group.Synonym
{α : Type u_1} [h : One α] : One αįµįµ - Pi.instZeroLEOneClass š Mathlib.Algebra.Order.ZeroLEOne
{ι : Type u_2} {R : ι ā Type u_3} [(i : ι) ā Zero (R i)] [(i : ι) ā One (R i)] [(i : ι) ā LE (R i)] [ā (i : ι), ZeroLEOneClass (R i)] : ZeroLEOneClass ((i : ι) ā R i) - WithOne.instOne š Mathlib.Algebra.Group.WithOne.Defs
{α : Type u} : One (WithOne α) - WithZero.one š Mathlib.Algebra.GroupWithZero.WithZero
{α : Type u_1} [One α] : One (WithZero α) - WithBot.one š Mathlib.Algebra.Order.Monoid.Unbundled.WithTop
{α : Type u} [One α] : One (WithBot α) - WithTop.one š Mathlib.Algebra.Order.Monoid.Unbundled.WithTop
{α : Type u} [One α] : One (WithTop α) - AddConstMap.instOne š Mathlib.Algebra.AddConstMap.Basic
{G : Type u_1} [Add G] {a : G} : One (AddConstMap G G a a) - AddConstEquiv.instOne š Mathlib.Algebra.AddConstMap.Equiv
{G : Type u_1} [Add G] {a : G} : One (AddConstEquiv G G a a) - Set.one š Mathlib.Algebra.Group.Pointwise.Set.Basic
{α : Type u_2} [One α] : One (Set α) - ConjClasses.instOne š Mathlib.Algebra.Group.Conj
{α : Type u} [Monoid α] : One (ConjClasses α) - OneHom.mulSingle š Mathlib.Algebra.Group.Pi.Lemmas
{I : Type u} (f : I ā Type v) [DecidableEq I] [(i : I) ā One (f i)] (i : I) : OneHom (f i) ((i : I) ā f i) - Pi.mulSingle_mono š Mathlib.Algebra.Group.Pi.Lemmas
{I : Type u} {f : I ā Type v} (i : I) [DecidableEq I] [(i : I) ā Preorder (f i)] [(i : I) ā One (f i)] : Monotone (Pi.mulSingle i) - Pi.mulSingle_strictMono š Mathlib.Algebra.Group.Pi.Lemmas
{I : Type u} {f : I ā Type v} (i : I) [DecidableEq I] [(i : I) ā Preorder (f i)] [(i : I) ā One (f i)] : StrictMono (Pi.mulSingle i) - OneHom.mulSingle.eq_1 š Mathlib.Algebra.Group.Pi.Lemmas
{I : Type u} (f : I ā Type v) [DecidableEq I] [(i : I) ā One (f i)] (i : I) : OneHom.mulSingle f i = { toFun := Pi.mulSingle i, map_one' := ⯠} - Function.update_one š Mathlib.Algebra.Group.Pi.Lemmas
{I : Type u} {f : I ā Type v} [(i : I) ā One (f i)] [DecidableEq I] (i : I) : Function.update 1 i 1 = 1 - OneHom.coe_mulSingle š Mathlib.Algebra.Group.Pi.Lemmas
{I : Type u} {f : I ā Type v} [DecidableEq I] [(i : I) ā One (f i)] (i : I) : ā(OneHom.mulSingle f i) = Pi.mulSingle i - OneHom.mulSingle_apply š Mathlib.Algebra.Group.Pi.Lemmas
{I : Type u} {f : I ā Type v} [DecidableEq I] [(i : I) ā One (f i)] (i : I) (x : f i) : (OneHom.mulSingle f i) x = Pi.mulSingle i x - Pi.mulSingle_inf š Mathlib.Algebra.Group.Pi.Lemmas
{I : Type u} {f : I ā Type v} [DecidableEq I] [(i : I) ā SemilatticeInf (f i)] [(i : I) ā One (f i)] (i : I) (x y : f i) : Pi.mulSingle i (x ā y) = Pi.mulSingle i x ā Pi.mulSingle i y - Pi.mulSingle_sup š Mathlib.Algebra.Group.Pi.Lemmas
{I : Type u} {f : I ā Type v} [DecidableEq I] [(i : I) ā SemilatticeSup (f i)] [(i : I) ā One (f i)] (i : I) (x y : f i) : Pi.mulSingle i (x ā y) = Pi.mulSingle i x ā Pi.mulSingle i y - Pi.mulSingle.hcongr_7 š Mathlib.Algebra.Group.Pi.Lemmas
(ι ι' : Type u_1) (e_1 : ι = ι') (M : ι ā Type u_6) (M' : ι' ā Type u_6) (e_2 : M ā M') (instā : (i : ι) ā One (M i)) (inst'ā : (i : ι') ā One (M' i)) (e_3 : instā ā inst'ā) (instā¹ : DecidableEq ι) (inst'ā¹ : DecidableEq ι') (e_4 : instā¹ ā inst'ā¹) (i : ι) (i' : ι') (e_5 : i ā i') (x : M i) (x' : M' i') (e_6 : x ā x') (j : ι) (j' : ι') (e_7 : j ā j') : Pi.mulSingle i x j ā Pi.mulSingle i' x' j' - Sigma.uncurry_one š Mathlib.Algebra.Group.Pi.Lemmas
{α : Type u_4} {β : α ā Type u_5} {γ : (a : α) ā β a ā Type u_6} [(a : α) ā (b : β a) ā One (γ a b)] : Sigma.uncurry 1 = 1 - Sigma.uncurry_mulSingle_mulSingle š Mathlib.Algebra.Group.Pi.Lemmas
{α : Type u_4} {β : α ā Type u_5} {γ : (a : α) ā β a ā Type u_6} [DecidableEq α] [(a : α) ā DecidableEq (β a)] [(a : α) ā (b : β a) ā One (γ a b)] (a : α) (b : β a) (x : γ a b) : Sigma.uncurry (Pi.mulSingle a (Pi.mulSingle b x)) = Pi.mulSingle āØa, bā© x - Sigma.curry_one š Mathlib.Algebra.Group.Pi.Lemmas
{α : Type u_4} {β : α ā Type u_5} {γ : (a : α) ā β a ā Type u_6} [(a : α) ā (b : β a) ā One (γ a b)] : Sigma.curry 1 = 1 - Sigma.curry_mulSingle š Mathlib.Algebra.Group.Pi.Lemmas
{α : Type u_4} {β : α ā Type u_5} {γ : (a : α) ā β a ā Type u_6} [DecidableEq α] [(a : α) ā DecidableEq (β a)] [(a : α) ā (b : β a) ā One (γ a b)] (i : (a : α) à β a) (x : γ i.fst i.snd) : Sigma.curry (Pi.mulSingle i x) = Pi.mulSingle i.fst (Pi.mulSingle i.snd x) - FreeGroup.instOne š Mathlib.GroupTheory.FreeGroup.Basic
{α : Type u} : One (FreeGroup α) - Con.one š Mathlib.GroupTheory.Congruence.Defs
{M : Type u_1} [Mul M] [One M] (c : Con M) : One c.Quotient - FreeAbelianGroup.one š Mathlib.GroupTheory.FreeAbelianGroup
(α : Type u) [One α] : One (FreeAbelianGroup α) - OreLocalization.instOne š Mathlib.GroupTheory.OreLocalization.Basic
{R : Type u_1} [Monoid R] {S : Submonoid R} [OreLocalization.OreSet S] {X : Type u_2} [MulAction R X] [One X] : One (OreLocalization S X) - DistribMulActionHom.instOneId š Mathlib.GroupTheory.GroupAction.Hom
{M : Type u_1} [Monoid M] {A : Type u_4} [AddMonoid A] [DistribMulAction M A] : One (A ā+[M] A) - DomMulAct.instOneOfMulOpposite š Mathlib.GroupTheory.GroupAction.DomAct.Basic
{M : Type u_1} [One Mįµįµįµ] : One Mįµįµįµ - Module.End.instOne š Mathlib.Algebra.Module.LinearMap.End
{R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] : One (Module.End R M) - ULift.one š Mathlib.Algebra.Group.ULift
{α : Type u} [One α] : One (ULift.{u_1, u} α) - Associates.instOne š Mathlib.Algebra.GroupWithZero.Associated
{M : Type u_1} [Monoid M] : One (Associates M) - Part.instOne š Mathlib.Data.Part
{α : Type u_1} [One α] : One (Part α) - OrderMonoidHom.instOne š Mathlib.Algebra.Order.Hom.Monoid
{α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] : One (α ā*o β) - Fin.insertNth_one_right š Mathlib.Algebra.Group.Fin.Tuple
{n : ā} {α : Fin (n + 1) ā Type u_1} [(j : Fin (n + 1)) ā One (α j)] (i : Fin (n + 1)) (x : α i) : i.insertNth x 1 = Pi.mulSingle i x - RingCon.instOneQuotient š Mathlib.RingTheory.Congruence.Defs
{R : Type u_1} [Add R] [MulOneClass R] (c : RingCon R) : One c.Quotient - Ideal.Quotient.one š Mathlib.RingTheory.Ideal.Quotient.Defs
{R : Type u} [Ring R] (I : Ideal R) : One (R ā§ø I) - AddMonoidAlgebra.zero š Mathlib.Algebra.MonoidAlgebra.Defs
{M : Type u_2} {R : Type u_6} [Semiring R] [Zero M] : One (AddMonoidAlgebra R M) - MonoidAlgebra.one š Mathlib.Algebra.MonoidAlgebra.Defs
{M : Type u_2} {R : Type u_6} [Semiring R] [One M] : One (MonoidAlgebra R M) - AddChar.instOne š Mathlib.Algebra.Group.AddChar
{A : Type u_1} {M : Type u_3} [AddMonoid A] [Monoid M] : One (AddChar A M) - Finset.one š Mathlib.Algebra.Group.Pointwise.Finset.Basic
{α : Type u_2} [One α] : One (Finset α) - Polynomial.instOne š Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : One (Polynomial R) - NonUnitalAlgHom.instOneId š Mathlib.Algebra.Algebra.NonUnitalHom
{R : Type u} [Monoid R] {A : Type v} [NonUnitalNonAssocSemiring A] [DistribMulAction R A] : One (A āāā[R] A) - Shrink.instOne š Mathlib.Algebra.Group.Shrink
{α : Type u_2} [Small.{v, u_2} α] [One α] : One (Shrink.{v, u_2} α) - SetSemiring.instOne š Mathlib.Data.Set.Semiring
{α : Type u_1} [One α] : One (SetSemiring α) - Submodule.one š Mathlib.Algebra.Algebra.Operations
{R : Type u} [Semiring R] {A : Type v} [Semiring A] [Module R A] : One (Submodule R A) - Matrix.one š Mathlib.Data.Matrix.Diagonal
{n : Type u_3} {α : Type v} [DecidableEq n] [Zero α] [One α] : One (Matrix n n α) - Unitization.instOne š Mathlib.Algebra.Algebra.Unitization
{R : Type u_1} {A : Type u_2} [One R] [Zero A] : One (Unitization R A) - PreQuasiregular.instOne š Mathlib.Algebra.Algebra.Spectrum.Quasispectrum
{R : Type u_1} [NonUnitalSemiring R] : One (PreQuasiregular R) - Algebra.TensorProduct.instOneTensorProduct š Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {A : Type uA} {B : Type uB} [CommSemiring R] [AddCommMonoidWithOne A] [Module R A] [AddCommMonoidWithOne B] [Module R B] : One (TensorProduct R A B) - FreeAlgebra.Pre.hasOne š Mathlib.Algebra.FreeAlgebra
(R : Type u_1) (X : Type u_2) [CommSemiring R] : One (FreeAlgebra.Pre R X) - FreeAlgebra.instOne š Mathlib.Algebra.FreeAlgebra
(R : Type u_1) (X : Type u_2) [CommSemiring R] : One (FreeAlgebra R X) - Pi.GCongr.mulSingle_mono š Mathlib.Algebra.Order.Pi
{ι : Type u_6} {α : ι ā Type u_7} [DecidableEq ι] [(i : ι) ā One (α i)] [(i : ι) ā Preorder (α i)] {i : ι} {a b : α i} : a ⤠b ā Pi.mulSingle i a ⤠Pi.mulSingle i b - Pi.mulSingle_le_mulSingle š Mathlib.Algebra.Order.Pi
{ι : Type u_6} {α : ι ā Type u_7} [DecidableEq ι] [(i : ι) ā One (α i)] [(i : ι) ā Preorder (α i)] {i : ι} {a b : α i} : Pi.mulSingle i a ⤠Pi.mulSingle i b ā a ⤠b - Pi.mulSingle_le_one š Mathlib.Algebra.Order.Pi
{ι : Type u_6} {α : ι ā Type u_7} [DecidableEq ι] [(i : ι) ā One (α i)] [(i : ι) ā Preorder (α i)] {i : ι} {a : α i} : Pi.mulSingle i a ⤠1 ā a ⤠1 - Pi.one_le_mulSingle š Mathlib.Algebra.Order.Pi
{ι : Type u_6} {α : ι ā Type u_7} [DecidableEq ι] [(i : ι) ā One (α i)] [(i : ι) ā Preorder (α i)] {i : ι} {a : α i} : 1 ⤠Pi.mulSingle i a ā 1 ⤠a - ContinuousMonoidHom.instOne š Mathlib.Topology.Algebra.ContinuousMonoidHom
(A : Type u_2) (B : Type u_3) [Monoid A] [Monoid B] [TopologicalSpace A] [TopologicalSpace B] : One (A āā* B) - continuous_mulSingle š Mathlib.Topology.Constructions
{ι : Type u_5} {A : ι ā Type u_6} [T : (i : ι) ā TopologicalSpace (A i)] [(i : ι) ā One (A i)] [DecidableEq ι] (i : ι) : Continuous fun x => Pi.mulSingle i x - Filter.instOne š Mathlib.Order.Filter.Pointwise
{α : Type u_2} [One α] : One (Filter α) - SeparationQuotient.instOne š Mathlib.Topology.Inseparable
{X : Type u_1} [TopologicalSpace X] [One X] : One (SeparationQuotient X) - ContinuousLinearMap.one š Mathlib.Topology.Algebra.Module.LinearMap
{Rā : Type u_1} [Semiring Rā] {Mā : Type u_4} [TopologicalSpace Mā] [AddCommMonoid Mā] [Module Rā Mā] : One (Mā āL[Rā] Mā) - ContinuousAlgHom.instOne š Mathlib.Topology.Algebra.Algebra
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [TopologicalSpace A] [Algebra R A] : One (A āA[R] A) - Set.image_mulSingle_uIcc š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [(i : ι) ā Lattice (α i)] [DecidableEq ι] [(i : ι) ā One (α i)] (i : ι) (a b : α i) : Pi.mulSingle i '' Set.uIcc a b = Set.uIcc (Pi.mulSingle i a) (Pi.mulSingle i b) - Set.image_mulSingle_Icc š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (a b : α i) : Pi.mulSingle i '' Set.Icc a b = Set.Icc (Pi.mulSingle i a) (Pi.mulSingle i b) - Set.image_mulSingle_Ico š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (a b : α i) : Pi.mulSingle i '' Set.Ico a b = Set.Ico (Pi.mulSingle i a) (Pi.mulSingle i b) - Set.image_mulSingle_Ioc š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (a b : α i) : Pi.mulSingle i '' Set.Ioc a b = Set.Ioc (Pi.mulSingle i a) (Pi.mulSingle i b) - Set.image_mulSingle_Ioo š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (a b : α i) : Pi.mulSingle i '' Set.Ioo a b = Set.Ioo (Pi.mulSingle i a) (Pi.mulSingle i b) - Set.image_mulSingle_uIcc_left š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [(i : ι) ā Lattice (α i)] [DecidableEq ι] [(i : ι) ā One (α i)] (i : ι) (a : α i) : Pi.mulSingle i '' Set.uIcc a 1 = Set.uIcc (Pi.mulSingle i a) 1 - Set.image_mulSingle_uIcc_right š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [(i : ι) ā Lattice (α i)] [DecidableEq ι] [(i : ι) ā One (α i)] (i : ι) (b : α i) : Pi.mulSingle i '' Set.uIcc 1 b = Set.uIcc 1 (Pi.mulSingle i b) - Set.image_mulSingle_Icc_left š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (a : α i) : Pi.mulSingle i '' Set.Icc a 1 = Set.Icc (Pi.mulSingle i a) 1 - Set.image_mulSingle_Icc_right š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (b : α i) : Pi.mulSingle i '' Set.Icc 1 b = Set.Icc 1 (Pi.mulSingle i b) - Set.image_mulSingle_Ico_left š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (a : α i) : Pi.mulSingle i '' Set.Ico a 1 = Set.Ico (Pi.mulSingle i a) 1 - Set.image_mulSingle_Ico_right š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (b : α i) : Pi.mulSingle i '' Set.Ico 1 b = Set.Ico 1 (Pi.mulSingle i b) - Set.image_mulSingle_Ioc_left š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (a : α i) : Pi.mulSingle i '' Set.Ioc a 1 = Set.Ioc (Pi.mulSingle i a) 1 - Set.image_mulSingle_Ioc_right š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (b : α i) : Pi.mulSingle i '' Set.Ioc 1 b = Set.Ioc 1 (Pi.mulSingle i b) - Set.image_mulSingle_Ioo_left š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (a : α i) : Pi.mulSingle i '' Set.Ioo a 1 = Set.Ioo (Pi.mulSingle i a) 1 - Set.image_mulSingle_Ioo_right š Mathlib.Order.Interval.Set.Pi
{ι : Type u_1} {α : ι ā Type u_2} [DecidableEq ι] [(i : ι) ā PartialOrder (α i)] [(i : ι) ā One (α i)] (i : ι) (b : α i) : Pi.mulSingle i '' Set.Ioo 1 b = Set.Ioo 1 (Pi.mulSingle i b) - CauSeq.instOne š Mathlib.Algebra.Order.CauSeq.Basic
{α : Type u_1} {β : Type u_2} [Field α] [LinearOrder α] [IsStrictOrderedRing α] [Ring β] {abv : β ā α} [IsAbsoluteValue abv] : One (CauSeq β abv) - CauSeq.Completion.instOneCauchy š Mathlib.Algebra.Order.CauSeq.Completion
{α : Type u_1} [Field α] [LinearOrder α] [IsStrictOrderedRing α] {β : Type u_2} [Ring β] {abv : β ā α} [IsAbsoluteValue abv] : One (CauSeq.Completion.Cauchy abv) - DirectLimit.instOne š Mathlib.Algebra.Colimit.DirectLimit
{ι : Type u_2} [Preorder ι] {G : ι ā Type u_3} {T : ā¦i j : ι⦠ā i ⤠j ā Type u_4} {f : (x x_1 : ι) ā (h : x ⤠x_1) ā T h} [(i j : ι) ā (h : i ⤠j) ā FunLike (T h) (G i) (G j)] [DirectedSystem G fun x1 x2 x3 => ā(f x1 x2 x3)] [IsDirectedOrder ι] [Nonempty ι] [(i : ι) ā One (G i)] : One (DirectLimit G f) - DirectLimit.instOne.eq_1 š Mathlib.Algebra.Colimit.DirectLimit
{ι : Type u_2} [Preorder ι] {G : ι ā Type u_3} {T : ā¦i j : ι⦠ā i ⤠j ā Type u_4} {f : (x x_1 : ι) ā (h : x ⤠x_1) ā T h} [(i j : ι) ā (h : i ⤠j) ā FunLike (T h) (G i) (G j)] [DirectedSystem G fun x1 x2 x3 => ā(f x1 x2 x3)] [IsDirectedOrder ι] [Nonempty ι] [(i : ι) ā One (G i)] : DirectLimit.instOne = { one := DirectLimit.mapā f fun x => 1 } - DirectLimit.one_def š Mathlib.Algebra.Colimit.DirectLimit
{ι : Type u_2} [Preorder ι] {G : ι ā Type u_3} {T : ā¦i j : ι⦠ā i ⤠j ā Type u_4} {f : (x x_1 : ι) ā (h : x ⤠x_1) ā T h} [(i j : ι) ā (h : i ⤠j) ā FunLike (T h) (G i) (G j)] [DirectedSystem G fun x1 x2 x3 => ā(f x1 x2 x3)] [IsDirectedOrder ι] [Nonempty ι] [(i : ι) ā One (G i)] [ā (i j : ι) (h : i ⤠j), OneHomClass (T h) (G i) (G j)] (i : ι) : 1 = ā¦āØi, 1ā©ā§ - DirectLimit.exists_eq_one š Mathlib.Algebra.Colimit.DirectLimit
{ι : Type u_2} [Preorder ι] {G : ι ā Type u_3} {T : ā¦i j : ι⦠ā i ⤠j ā Type u_4} {f : (x x_1 : ι) ā (h : x ⤠x_1) ā T h} [(i j : ι) ā (h : i ⤠j) ā FunLike (T h) (G i) (G j)] [DirectedSystem G fun x1 x2 x3 => ā(f x1 x2 x3)] [IsDirectedOrder ι] [Nonempty ι] [(i : ι) ā One (G i)] [ā (i j : ι) (h : i ⤠j), OneHomClass (T h) (G i) (G j)] (x : (i : ι) Ć G i) : ā¦xā§ = 1 ā ā i, ā (h : x.fst ⤠i), (f x.fst i h) x.snd = 1 - MonCat.instOneHom š Mathlib.Algebra.Category.MonCat.Basic
(X Y : MonCat) : One (X ā¶ Y) - CategoryTheory.End.one š Mathlib.CategoryTheory.Endomorphism
{C : Type u} [CategoryTheory.CategoryStruct.{v, u} C] (X : C) : One (CategoryTheory.End X) - CommGrpCat.instOneHom š Mathlib.Algebra.Category.Grp.Basic
(G H : CommGrpCat) : One (G ā¶ H) - GrpCat.instOneHom š Mathlib.Algebra.Category.Grp.Basic
(G H : GrpCat) : One (G ā¶ H) - ContinuousMap.instOne š Mathlib.Topology.ContinuousMap.Algebra
{α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [One β] : One C(α, β) - MonCat.FilteredColimits.colimitOne š Mathlib.Algebra.Category.MonCat.FilteredColimits
{J : Type v} [CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J MonCat) [CategoryTheory.IsFiltered J] : One (MonCat.FilteredColimits.M F) - RingQuot.instOne š Mathlib.Algebra.RingQuot
{R : Type uR} [Semiring R] (r : R ā R ā Prop) : One (RingQuot r) - TrivSqZeroExt.one š Mathlib.Algebra.TrivSqZeroExt
{R : Type u} {M : Type v} [One R] [Zero M] : One (TrivSqZeroExt R M) - Matrix.SpecialLinearGroup.hasOne š Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] : One (Matrix.SpecialLinearGroup n R) - GradedMonoid.GOne.toOne š Mathlib.Algebra.GradedMonoid
{ι : Type u_1} (A : ι ā Type u_2) [Zero ι] [GradedMonoid.GOne A] : One (GradedMonoid A) - DirectSum.instOne š Mathlib.Algebra.DirectSum.Ring
{ι : Type u_1} [DecidableEq ι] (A : ι ā Type u_2) [Zero ι] [GradedMonoid.GOne A] [(i : ι) ā AddCommMonoid (A i)] : One (DirectSum ι fun i => A i) - QuaternionAlgebra.instOne š Mathlib.Algebra.Quaternion
{R : Type u_3} {cā cā cā : R} [Zero R] [One R] : One (QuaternionAlgebra R cā cā cā) - Expr.instOne š Mathlib.Algebra.Expr
{u : Lean.Level} (α : Q(Type u)) : Q(One Ā«$α») ā One Q(Ā«$α») - LieEquiv.instOne š Mathlib.Algebra.Lie.Basic
{R : Type u} {Lā : Type v} [CommRing R] [LieRing Lā] [LieAlgebra R Lā] : One (Lā āāā Rā Lā) - LieHom.instOne š Mathlib.Algebra.Lie.Basic
{R : Type u} {Lā : Type v} [CommRing R] [LieRing Lā] [LieAlgebra R Lā] : One (Lā āāā Rā Lā) - LieModuleEquiv.instOne š Mathlib.Algebra.Lie.Basic
{R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] : One (M āāā R,Lā M) - LieModuleHom.instOne š Mathlib.Algebra.Lie.Basic
{R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] : One (M āāā R,Lā M) - FractionalIdeal.instOne š Mathlib.RingTheory.FractionalIdeal.Basic
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] : One (FractionalIdeal S P) - MeasureTheory.SimpleFunc.instOne š Mathlib.MeasureTheory.Function.SimpleFunc
{α : Type u_1} {β : Type u_2} [MeasurableSpace α] [One β] : One (MeasureTheory.SimpleFunc α β) - AddGroupNorm.instOne š Mathlib.Analysis.Normed.Group.Seminorm
{E : Type u_3} [AddGroup E] [DecidableEq E] : One (AddGroupNorm E) - AddGroupNorm.toOne š Mathlib.Analysis.Normed.Group.Seminorm
{E : Type u_3} [AddGroup E] [DecidableEq E] : One (AddGroupNorm E) - AddGroupSeminorm.toOne š Mathlib.Analysis.Normed.Group.Seminorm
{E : Type u_3} [AddGroup E] [DecidableEq E] : One (AddGroupSeminorm E) - GroupNorm.toOne š Mathlib.Analysis.Normed.Group.Seminorm
{E : Type u_3} [Group E] [DecidableEq E] : One (GroupNorm E) - GroupSeminorm.toOne š Mathlib.Analysis.Normed.Group.Seminorm
{E : Type u_3} [Group E] [DecidableEq E] : One (GroupSeminorm E) - NonarchAddGroupNorm.instOneOfDecidableEq š Mathlib.Analysis.Normed.Group.Seminorm
{E : Type u_3} [AddGroup E] [DecidableEq E] : One (NonarchAddGroupNorm E) - NonarchAddGroupSeminorm.instOneOfDecidableEq š Mathlib.Analysis.Normed.Group.Seminorm
{E : Type u_3} [AddGroup E] [DecidableEq E] : One (NonarchAddGroupSeminorm E) - Pi.normOneClass š Mathlib.Analysis.Normed.Ring.Basic
{ι : Type u_5} {α : ι ā Type u_6} [Nonempty ι] [Fintype ι] [(i : ι) ā SeminormedAddCommGroup (α i)] [(i : ι) ā One (α i)] [ā (i : ι), NormOneClass (α i)] : NormOneClass ((i : ι) ā α i) - instOneUniformFun š Mathlib.Topology.Algebra.UniformConvergence
{α : Type u_1} {β : Type u_2} [One β] : One (UniformFun α β) - instOneUniformOnFun š Mathlib.Topology.Algebra.UniformConvergence
{α : Type u_1} {β : Type u_2} {š : Set (Set α)} [One β] : One (UniformOnFun α β š) - Filter.Germ.instOne š Mathlib.Order.Filter.Germ.Basic
{α : Type u_1} {l : Filter α} {M : Type u_5} [One M] : One (l.Germ M) - MeasureTheory.AEEqFun.instOne š Mathlib.MeasureTheory.Function.AEEqFun
{α : Type u_1} {β : Type u_2} [MeasurableSpace α] {μ : MeasureTheory.Measure α} [TopologicalSpace β] [One β] : One (α āā[μ] β) - BoundedContinuousFunction.instOne š Mathlib.Topology.ContinuousMap.Bounded.Basic
{α : Type u} {β : Type v} [TopologicalSpace α] [PseudoMetricSpace β] [One β] : One (BoundedContinuousFunction α β) - ArithmeticFunction.one š Mathlib.NumberTheory.ArithmeticFunction.Defs
{R : Type u_1} [Zero R] [One R] : One (ArithmeticFunction R) - HahnSeries.instOne š Mathlib.RingTheory.HahnSeries.Multiplication
{Ī : Type u_1} {R : Type u_3} [Zero Ī] [PartialOrder Ī] [Zero R] [One R] : One (HahnSeries Ī R) - Valuation.one š Mathlib.RingTheory.Valuation.Basic
(R : Type u_3) (Īā : Type u_4) [Ring R] [LinearOrderedCommMonoidWithZero Īā] [Nontrivial R] [NoZeroDivisors R] [DecidablePred fun x => x = 0] : One (Valuation R Īā) - ValuationRing.instOneValueGroup š Mathlib.RingTheory.Valuation.ValuationRing
(A : Type u) [CommRing A] (K : Type v) [Field K] [Algebra A K] : One (ValuationRing.ValueGroup A K) - QuadraticAlgebra.instOne š Mathlib.Algebra.QuadraticAlgebra.Defs
{R : Type u_1} {a b : R} [Zero R] [One R] : One (QuadraticAlgebra R a b) - CentroidHom.instOne š Mathlib.Algebra.Ring.CentroidHom
{α : Type u_5} [NonUnitalNonAssocSemiring α] : One (CentroidHom α) - SymAlg.instOne š Mathlib.Algebra.Symmetrized
{α : Type u_1} [One α] : One αˢʸᵠ- Tropical.instOneTropical š Mathlib.Algebra.Tropical.Basic
{R : Type u} [Zero R] : One (Tropical R) - TopCat.instOneHomObjTopCommRingCatForgetā š Mathlib.Topology.Sheaves.CommRingCat
(X : TopCat) (R : TopCommRingCat) : One (X ā¶ (CategoryTheory.forgetā TopCommRingCat TopCat).obj R) - WeierstrassCurve.VariableChange.instOne š Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] : One (WeierstrassCurve.VariableChange R) - UniformSpace.Completion.one š Mathlib.Topology.Algebra.UniformRing
(α : Type u_1) [Ring α] [UniformSpace α] : One (UniformSpace.Completion α) - ValuativeRel.instOneValueGroupWithZero š Mathlib.RingTheory.Valuation.ValuativeRel.Basic
{R : Type u_1} [CommRing R] [ValuativeRel R] : One (ValuativeRel.ValueGroupWithZero R) - HomogeneousLocalization.NumDenSameDeg.instOne š Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ι : Type u_1} {A : Type u_2} {Ļ : Type u_3} [CommRing A] [SetLike Ļ A] [AddSubmonoidClass Ļ A] {š : ι ā Ļ} (x : Submonoid A) [AddCommMonoid ι] [DecidableEq ι] [GradedRing š] : One (HomogeneousLocalization.NumDenSameDeg š x) - HomogeneousLocalization.instOne š Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ι : Type u_1} {A : Type u_2} {Ļ : Type u_3} [CommRing A] [SetLike Ļ A] [AddSubgroupClass Ļ A] [AddCommMonoid ι] [DecidableEq ι] {š : ι ā Ļ} [GradedRing š] (x : Submonoid A) : One (HomogeneousLocalization š x) - CStarMatrix.instOne š Mathlib.Analysis.CStarAlgebra.CStarMatrix
{n : Type u_2} {A : Type u_5} [Zero A] [One A] [DecidableEq n] : One (CStarMatrix n n A) - DoubleCentralizer.instOne š Mathlib.Analysis.CStarAlgebra.Multiplier
{š : Type u_1} {A : Type u_2} [NontriviallyNormedField š] [NonUnitalNormedRing A] [NormedSpace š A] [SMulCommClass š A A] [IsScalarTower š A A] : One (DoubleCentralizer š A) - instOneContMDiffMonoidMorphism š Mathlib.Geometry.Manifold.Algebra.Monoid
{š : Type u_1} [NontriviallyNormedField š] {n : WithTop āā} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace š E] {I : ModelWithCorners š E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace š E'] {I' : ModelWithCorners š E' H'} {G' : Type u_7} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] : One (ContMDiffMonoidMorphism I I' n G G') - RatFunc.instOne š Mathlib.FieldTheory.RatFunc.Basic
{K : Type u} [CommRing K] : One (RatFunc K) - MulChar.hasOne š Mathlib.NumberTheory.MulChar.Basic
{R : Type u_1} [CommMonoid R] {R' : Type u_2} [CommMonoidWithZero R'] : One (MulChar R R') - MulRingNorm.instOne š Mathlib.Analysis.Normed.Unbundled.RingSeminorm
(R : Type u_1) [NonAssocRing R] [DecidableEq R] [NoZeroDivisors R] [Nontrivial R] : One (MulRingNorm R) - MulRingSeminorm.instOne š Mathlib.Analysis.Normed.Unbundled.RingSeminorm
{R : Type u_1} [NonAssocRing R] [DecidableEq R] [NoZeroDivisors R] [Nontrivial R] : One (MulRingSeminorm R) - SemidirectProduct.instOne š Mathlib.GroupTheory.SemidirectProduct
{N : Type u_1} {G : Type u_2} [Group N] [Group G] {Ļ : G ā* MulAut N} : One (N ā[Ļ] G) - CategoryTheory.Conv.instOne š Mathlib.CategoryTheory.Monoidal.Conv
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] [CategoryTheory.MonoidalCategory C] {M N : C} [CategoryTheory.ComonObj M] [CategoryTheory.MonObj N] : One (CategoryTheory.Conv M N) - CategoryTheory.PresheafOfGroups.instOneH1 š Mathlib.CategoryTheory.Sites.NonabelianCohomology.H1
{C : Type u} [CategoryTheory.Category.{v, u} C] {G : CategoryTheory.Functor Cįµįµ GrpCat} {I : Type w'} {U : I ā C} : One (CategoryTheory.PresheafOfGroups.H1 G U) - CategoryTheory.PresheafOfGroups.OneCochain.instOne š Mathlib.CategoryTheory.Sites.NonabelianCohomology.H1
{C : Type u} [CategoryTheory.Category.{v, u} C] (G : CategoryTheory.Functor Cįµįµ GrpCat) {I : Type w'} (U : I ā C) : One (CategoryTheory.PresheafOfGroups.OneCochain G U) - CategoryTheory.PresheafOfGroups.OneCocycle.instOne š Mathlib.CategoryTheory.Sites.NonabelianCohomology.H1
{C : Type u} [CategoryTheory.Category.{v, u} C] (G : CategoryTheory.Functor Cįµįµ GrpCat) {I : Type w'} (U : I ā C) : One (CategoryTheory.PresheafOfGroups.OneCocycle G U) - MvPowerSeries.instOne š Mathlib.RingTheory.MvPowerSeries.Basic
{Ļ : Type u_1} {R : Type u_2} [Semiring R] : One (MvPowerSeries Ļ R) - Language.instOne š Mathlib.Computability.Language
{α : Type u_1} : One (Language α) - εNFA.instOne š Mathlib.Computability.EpsilonNFA
{α : Type u} {Ļ : Type v} : One (εNFA α Ļ) - RegularExpression.instOne š Mathlib.Computability.RegularExpressions
{α : Type u_1} : One (RegularExpression α) - LocallyConstant.instOne š Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [One Y] : One (LocallyConstant X Y) - FirstOrder.Ring.instOneTermRing š Mathlib.ModelTheory.Algebra.Ring.Basic
(α : Type u_2) : One (FirstOrder.Language.ring.Term α) - ContMDiffMap.instOne š Mathlib.Geometry.Manifold.Algebra.SmoothFunctions
{š : Type u_1} [NontriviallyNormedField š] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace š E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace š E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners š E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners š E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop āā} {G : Type u_10} [One G] [TopologicalSpace G] [ChartedSpace H' G] : One (ContMDiffMap I I' N G n) - instOneTangentSpaceRealModelWithCornersSelf š Mathlib.Geometry.Manifold.Instances.Icc
(x : ā) : One (TangentSpace (modelWithCornersSelf ā ā) x) - instOneTangentSpaceRealEuclideanSpaceFinOfNatNatEuclideanHalfSpaceModelWithCornersEuclideanHalfSpaceElemIcc š Mathlib.Geometry.Manifold.Instances.Icc
{x y : ā} [h : Fact (x < y)] (z : ā(Set.Icc x y)) : One (TangentSpace (modelWithCornersEuclideanHalfSpace 1) z) - Monoid.PushoutI.one š Mathlib.GroupTheory.PushoutI
{ι : Type u_1} {G : ι ā Type u_2} {H : Type u_3} [(i : ι) ā Monoid (G i)] [Monoid H] {Ļ : (i : ι) ā H ā* G i} : One (Monoid.PushoutI Ļ) - RegularWreathProduct.instOne š Mathlib.GroupTheory.RegularWreathProduct
{D : Type u_1} {Q : Type u_2} [Group D] [Group Q] : One (D āįµ£ Q) - PiTensorProduct.instOne š Mathlib.RingTheory.PiTensorProduct
{ι : Type u_1} {R : Type u_3} {A : ι ā Type u_4} [CommSemiring R] [(i : ι) ā AddCommMonoidWithOne (A i)] [(i : ι) ā Module R (A i)] : One (PiTensorProduct R fun i => A i) - SpecialLinearGroup.instOne š Mathlib.LinearAlgebra.SpecialLinearGroup
{R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] : One (SpecialLinearGroup R V) - FirstOrder.Language.presburger.instOneTerm š Mathlib.ModelTheory.Arithmetic.Presburger.Basic
{α : Type u_1} : One (FirstOrder.Language.presburger.Term α) - Padic.instOne š Mathlib.NumberTheory.Padics.PadicNumbers
{p : ā} [Fact (Nat.Prime p)] : One ā_[p] - Zsqrtd.instOne š Mathlib.NumberTheory.Zsqrtd.Basic
{d : ā¤} : One (ā¤ād) - Poly.instOne š Mathlib.NumberTheory.Dioph
{α : Type u_1} : One (Poly α) - LucasLehmer.X.instOne š Mathlib.NumberTheory.LucasLehmer
{q : ā} : One (LucasLehmer.X q) - RestrictedProduct.instOneCoeOfOneMemClass š Mathlib.Topology.Algebra.RestrictedProduct.Basic
{ι : Type u_1} (R : ι ā Type u_2) {š : Filter ι} {S : ι ā Type u_3} [(i : ι) ā SetLike (S i) (R i)] {B : (i : ι) ā S i} [(i : ι) ā One (R i)] [ā (i : ι), OneMemClass (S i) (R i)] : One (RestrictedProduct (fun i => R i) (fun i => ā(B i)) š) - RestrictedProduct.one_apply š Mathlib.Topology.Algebra.RestrictedProduct.Basic
{ι : Type u_1} (R : ι ā Type u_2) {š : Filter ι} {S : ι ā Type u_3} [(i : ι) ā SetLike (S i) (R i)] {B : (i : ι) ā S i} [(i : ι) ā One (R i)] [ā (i : ι), OneMemClass (S i) (R i)] (i : ι) : 1 i = 1 - RestrictedProduct.instOneCoeOfOneMemClass.eq_1 š Mathlib.Topology.Algebra.RestrictedProduct.Basic
{ι : Type u_1} (R : ι ā Type u_2) {š : Filter ι} {S : ι ā Type u_3} [(i : ι) ā SetLike (S i) (R i)] {B : (i : ι) ā S i} [(i : ι) ā One (R i)] [ā (i : ι), OneMemClass (S i) (R i)] : RestrictedProduct.instOneCoeOfOneMemClass R = { one := āØfun x => 1, āÆā© } - WittVector.instOne š Mathlib.RingTheory.WittVector.Defs
{p : ā} {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] : One (WittVector p R) - TruncatedWittVector.instOne š Mathlib.RingTheory.WittVector.Truncated
(p n : ā) (R : Type u_1) [CommRing R] [Fact (Nat.Prime p)] : One (TruncatedWittVector p n R)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allāandā) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision abad10c