Loogle!
Result
Found 2430 declarations mentioning CommMonoid. Of these, 97 match your pattern(s).
- CancelCommMonoid.toCommMonoid ๐ Mathlib.Algebra.Group.Defs
{M : Type u} [self : CancelCommMonoid M] : CommMonoid M - CommGroup.toCommMonoid ๐ Mathlib.Algebra.Group.Defs
{G : Type u} [self : CommGroup G] : CommMonoid G - DivisionCommMonoid.toCommMonoid ๐ Mathlib.Algebra.Group.Defs
{G : Type u} [self : DivisionCommMonoid G] : CommMonoid G - CommMonoid.ofIsMulCommutative ๐ Mathlib.Algebra.Group.Defs
{M : Type u_2} [Monoid M] [IsMulCommutative M] : CommMonoid M - CommMonoid.mk ๐ Mathlib.Algebra.Group.Defs
{M : Type u} [toMonoid : Monoid M] (mul_comm : โ (a b : M), a * b = b * a) : CommMonoid M - Pi.commMonoid ๐ Mathlib.Algebra.Group.Pi.Basic
{I : Type u} {f : I โ Type vโ} [(i : I) โ CommMonoid (f i)] : CommMonoid ((i : I) โ f i) - Multiplicative.commMonoid ๐ Mathlib.Algebra.Group.TypeTags.Basic
{ฮฑ : Type u} [AddCommMonoid ฮฑ] : CommMonoid (Multiplicative ฮฑ) - Function.Injective.commMonoid ๐ Mathlib.Algebra.Group.InjSurj
{Mโ : Type u_1} {Mโ : Type u_2} [Mul Mโ] [One Mโ] [Pow Mโ โ] [CommMonoid Mโ] (f : Mโ โ Mโ) (hf : Function.Injective f) (one : f 1 = 1) (mul : โ (x y : Mโ), f (x * y) = f x * f y) (npow : โ (x : Mโ) (n : โ), f (x ^ n) = f x ^ n) : CommMonoid Mโ - Function.Surjective.commMonoid ๐ Mathlib.Algebra.Group.InjSurj
{Mโ : Type u_1} {Mโ : Type u_2} [Mul Mโ] [One Mโ] [Pow Mโ โ] [CommMonoid Mโ] (f : Mโ โ Mโ) (hf : Function.Surjective f) (one : f 1 = 1) (mul : โ (x y : Mโ), f (x * y) = f x * f y) (npow : โ (x : Mโ) (n : โ), f (x ^ n) = f x ^ n) : CommMonoid Mโ - AddOpposite.instCommMonoid ๐ Mathlib.Algebra.Group.Opposite
{ฮฑ : Type u_1} [CommMonoid ฮฑ] : CommMonoid ฮฑแตแตแต - MulOpposite.instCommMonoid ๐ Mathlib.Algebra.Group.Opposite
{ฮฑ : Type u_1} [CommMonoid ฮฑ] : CommMonoid ฮฑแตแตแต - Prod.instCommMonoid ๐ Mathlib.Algebra.Group.Prod
{M : Type u_3} {N : Type u_4} [CommMonoid M] [CommMonoid N] : CommMonoid (M ร N) - CommMonoidWithZero.toCommMonoid ๐ Mathlib.Algebra.GroupWithZero.Defs
{Mโ : Type u_2} [self : CommMonoidWithZero Mโ] : CommMonoid Mโ - CommRing.toCommMonoid ๐ Mathlib.Algebra.Ring.Defs
{ฮฑ : Type u} [self : CommRing ฮฑ] : CommMonoid ฮฑ - CommSemiring.toCommMonoid ๐ Mathlib.Algebra.Ring.Defs
{R : Type u} [self : CommSemiring R] : CommMonoid R - Int.instCommMonoid ๐ Mathlib.Algebra.Group.Int.Defs
: CommMonoid โค - Nat.instCommMonoid ๐ Mathlib.Algebra.Group.Nat.Defs
: CommMonoid โ - MonoidHom.instCommMonoid ๐ Mathlib.Algebra.Group.Hom.Instances
{M : Type uM} {N : Type uN} [MulOneClass M] [CommMonoid N] : CommMonoid (M โ* N) - OneHom.instCommMonoid ๐ Mathlib.Algebra.Group.Hom.Instances
{M : Type uM} {N : Type uN} [One M] [CommMonoid N] : CommMonoid (OneHom M N) - instCommMonoidColex ๐ Mathlib.Algebra.Order.Group.Synonym
{ฮฑ : Type u_1} [h : CommMonoid ฮฑ] : CommMonoid (Colex ฮฑ) - instCommMonoidLex ๐ Mathlib.Algebra.Order.Group.Synonym
{ฮฑ : Type u_1} [h : CommMonoid ฮฑ] : CommMonoid (Lex ฮฑ) - OrderDual.instCommMonoid ๐ Mathlib.Algebra.Order.Group.Synonym
{ฮฑ : Type u_1} [h : CommMonoid ฮฑ] : CommMonoid ฮฑแตแต - WithOne.instCommMonoid ๐ Mathlib.Algebra.Group.WithOne.Defs
{ฮฑ : Type u} [CommSemigroup ฮฑ] : CommMonoid (WithOne ฮฑ) - Rat.commMonoid ๐ Mathlib.Data.Rat.Defs
: CommMonoid โ - Positive.commMonoid ๐ Mathlib.Algebra.Order.Positive.Ring
{R : Type u_2} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] : CommMonoid { x // 0 < x } - PNat.instCommMonoid ๐ Mathlib.Data.PNat.Basic
: CommMonoid โ+ - Set.commMonoid ๐ Mathlib.Algebra.Group.Pointwise.Set.Basic
{ฮฑ : Type u_2} [CommMonoid ฮฑ] : CommMonoid (Set ฮฑ) - SubmonoidClass.toCommMonoid ๐ Mathlib.Algebra.Group.Submonoid.Defs
{M : Type u_5} [CommMonoid M] {A : Type u_4} [SetLike A M] [SubmonoidClass A M] (S : A) : CommMonoid โฅS - Submonoid.toCommMonoid ๐ Mathlib.Algebra.Group.Submonoid.Defs
{M : Type u_5} [CommMonoid M] (S : Submonoid M) : CommMonoid โฅS - Submonoid.center.commMonoid' ๐ Mathlib.GroupTheory.Submonoid.Center
{M : Type u_1} [MulOneClass M] : CommMonoid โฅ(Submonoid.center M) - Submonoid.center.commMonoid ๐ Mathlib.GroupTheory.Submonoid.Center
{M : Type u_1} [Monoid M] : CommMonoid โฅ(Submonoid.center M) - Submonoid.closureCommMonoidOfComm ๐ Mathlib.GroupTheory.Submonoid.Centralizer
(M : Type u_1) [Monoid M] {s : Set M} (hcomm : โ a โ s, โ b โ s, a * b = b * a) : CommMonoid โฅ(Submonoid.closure s) - Con.commMonoid ๐ Mathlib.GroupTheory.Congruence.Defs
{M : Type u_4} [CommMonoid M] (c : Con M) : CommMonoid c.Quotient - OreLocalization.instCommMonoid ๐ Mathlib.GroupTheory.OreLocalization.Basic
{R : Type u_1} [CommMonoid R] {S : Submonoid R} [OreLocalization.OreSet S] : CommMonoid (OreLocalization S R) - MulActionHom.instCommMonoid ๐ Mathlib.GroupTheory.GroupAction.Hom
{M : Type u_2} {N : Type u_3} {X : Type u_4} {Y : Type u_5} {ฯ : M โ N} [SMul M X] [Monoid N] [CommMonoid Y] [MulDistribMulAction N Y] : CommMonoid (X โโ[ฯ] Y) - DomMulAct.instCommMonoidOfMulOpposite ๐ Mathlib.GroupTheory.GroupAction.DomAct.Basic
{M : Type u_1} [CommMonoid Mแตแตแต] : CommMonoid Mแตแตแต - ULift.commMonoid ๐ Mathlib.Algebra.Group.ULift
{ฮฑ : Type u} [CommMonoid ฮฑ] : CommMonoid (ULift.{u_1, u} ฮฑ) - Associates.instCommMonoid ๐ Mathlib.Algebra.GroupWithZero.Associated
{M : Type u_1} [CommMonoid M] : CommMonoid (Associates M) - Fin.instCommMonoid ๐ Mathlib.Data.ZMod.Defs
(n : โ) [NeZero n] : CommMonoid (Fin n) - Cardinal.instCommMonoid ๐ Mathlib.SetTheory.Cardinal.Order
: CommMonoid Cardinal.{u} - Equiv.commMonoid ๐ Mathlib.Algebra.Group.TransferInstance
{ฮฑ : Type u_2} {ฮฒ : Type u_3} (e : ฮฑ โ ฮฒ) [CommMonoid ฮฒ] : CommMonoid ฮฑ - AddChar.instCommMonoid ๐ Mathlib.Algebra.Group.AddChar
{A : Type u_2} {M : Type u_3} [AddMonoid A] [CommMonoid M] : CommMonoid (AddChar A M) - Finset.commMonoid ๐ Mathlib.Algebra.Group.Pointwise.Finset.Basic
{ฮฑ : Type u_2} [DecidableEq ฮฑ] [CommMonoid ฮฑ] : CommMonoid (Finset ฮฑ) - Shrink.instCommMonoid ๐ Mathlib.Algebra.Group.Shrink
{ฮฑ : Type u_2} [Small.{v, u_2} ฮฑ] [CommMonoid ฮฑ] : CommMonoid (Shrink.{v, u_2} ฮฑ) - SetSemiring.instCommMonoid ๐ Mathlib.Data.Set.Semiring
{ฮฑ : Type u_1} [CommMonoid ฮฑ] : CommMonoid (SetSemiring ฮฑ) - Unitization.instCommMonoid ๐ Mathlib.Algebra.Algebra.Unitization
{R : Type u_1} {A : Type u_2} [CommMonoid R] [NonUnitalCommSemiring A] [DistribMulAction R A] [IsScalarTower R A A] [SMulCommClass R A A] : CommMonoid (Unitization R A) - ContinuousMonoidHom.instCommMonoid ๐ Mathlib.Topology.Algebra.ContinuousMonoidHom
{A : Type u_2} {E : Type u_6} [Monoid A] [TopologicalSpace A] [CommMonoid E] [TopologicalSpace E] [ContinuousMul E] : CommMonoid (A โโ* E) - Filter.commMonoid ๐ Mathlib.Order.Filter.Pointwise
{ฮฑ : Type u_2} [CommMonoid ฮฑ] : CommMonoid (Filter ฮฑ) - Submonoid.commMonoidTopologicalClosure ๐ Mathlib.Topology.Algebra.Monoid
{M : Type u_3} [TopologicalSpace M] [Monoid M] [ContinuousMul M] [T2Space M] (s : Submonoid M) (hs : โ (x y : โฅs), x * y = y * x) : CommMonoid โฅs.topologicalClosure - Real.instCommMonoid ๐ Mathlib.Data.Real.Basic
: CommMonoid โ - DirectLimit.instCommMonoidOfMonoidHomClass ๐ Mathlib.Algebra.Colimit.DirectLimit
{ฮน : Type u_2} [Preorder ฮน] {G : ฮน โ Type u_3} {T : โฆi j : ฮนโฆ โ i โค j โ Type u_4} {f : (x x_1 : ฮน) โ (h : x โค x_1) โ T h} [(i j : ฮน) โ (h : i โค j) โ FunLike (T h) (G i) (G j)] [DirectedSystem G fun x1 x2 x3 => โ(f x1 x2 x3)] [IsDirectedOrder ฮน] [Nonempty ฮน] [(i : ฮน) โ CommMonoid (G i)] [โ (i j : ฮน) (h : i โค j), MonoidHomClass (T h) (G i) (G j)] : CommMonoid (DirectLimit G f) - CommMonCat.str ๐ Mathlib.Algebra.Category.MonCat.Basic
(self : CommMonCat) : CommMonoid โself - CommMonCat.commMonoidObj ๐ Mathlib.Algebra.Category.MonCat.Limits
{J : Type v} [CategoryTheory.Category.{w, v} J] (F : CategoryTheory.Functor J CommMonCat) (j : J) : CommMonoid ((F.comp (CategoryTheory.forget CommMonCat)).obj j) - CommMonCat.limitCommMonoid ๐ Mathlib.Algebra.Category.MonCat.Limits
{J : Type v} [CategoryTheory.Category.{w, v} J] (F : CategoryTheory.Functor J CommMonCat) [Small.{u, max u v} โ(F.comp (CategoryTheory.forget CommMonCat)).sections] : CommMonoid (CategoryTheory.Limits.Types.Small.limitCone (F.comp (CategoryTheory.forget CommMonCat))).pt - ContinuousMap.instCommMonoidOfContinuousMul ๐ Mathlib.Topology.ContinuousMap.Algebra
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [TopologicalSpace ฮฑ] [TopologicalSpace ฮฒ] [CommMonoid ฮฒ] [ContinuousMul ฮฒ] : CommMonoid C(ฮฑ, ฮฒ) - CommMonCat.FilteredColimits.colimitCommMonoid ๐ Mathlib.Algebra.Category.MonCat.FilteredColimits
{J : Type v} [CategoryTheory.SmallCategory J] [CategoryTheory.IsFiltered J] (F : CategoryTheory.Functor J CommMonCat) : CommMonoid โ(CommMonCat.FilteredColimits.M F) - CommMonTypeEquivalenceCommMon.commMonCommMonoid ๐ Mathlib.CategoryTheory.Monoidal.Internal.Types.Basic
(A : Type u) [CategoryTheory.MonObj A] [CategoryTheory.IsCommMonObj A] : CommMonoid A - CategoryTheory.Hom.commMonoid ๐ Mathlib.CategoryTheory.Monoidal.Cartesian.Mon_
{C : Type u_1} [CategoryTheory.Category.{v, u_1} C] [CategoryTheory.CartesianMonoidalCategory C] {M X : C} [CategoryTheory.MonObj M] [CategoryTheory.BraidedCategory C] [CategoryTheory.IsCommMonObj M] : CommMonoid (X โถ M) - commMonoidOfExponentTwo ๐ Mathlib.GroupTheory.Exponent
{G : Type u} [Monoid G] [IsCancelMul G] (hG : Monoid.exponent G = 2) : CommMonoid G - TrivSqZeroExt.commMonoid ๐ Mathlib.Algebra.TrivSqZeroExt
{R : Type u} {M : Type v} [CommMonoid R] [AddCommMonoid M] [DistribMulAction R M] [DistribMulAction Rแตแตแต M] [IsCentralScalar R M] : CommMonoid (TrivSqZeroExt R M) - GradedMonoid.GCommMonoid.toCommMonoid ๐ Mathlib.Algebra.GradedMonoid
{ฮน : Type u_1} (A : ฮน โ Type u_2) [AddCommMonoid ฮน] [GradedMonoid.GCommMonoid A] : CommMonoid (GradedMonoid A) - GradedMonoid.GradeZero.commMonoid ๐ Mathlib.Algebra.GradedMonoid
{ฮน : Type u_1} (A : ฮน โ Type u_2) [AddCommMonoid ฮน] [GradedMonoid.GCommMonoid A] : CommMonoid (A 0) - SetLike.GradeZero.instCommMonoid ๐ Mathlib.Algebra.GradedMonoid
{ฮน : Type u_1} [AddMonoid ฮน] {R : Type u_4} {S : Type u_5} [SetLike S R] [CommMonoid R] {A : ฮน โ S} [SetLike.GradedMonoid A] : CommMonoid โฅ(A 0) - IterateMulAct.instCommMonoid ๐ Mathlib.GroupTheory.GroupAction.IterateAct
{ฮฑ : Type u_1} {f : ฮฑ โ ฮฑ} : CommMonoid (IterateMulAct f) - MeasureTheory.SimpleFunc.instCommMonoid ๐ Mathlib.MeasureTheory.Function.SimpleFunc
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [MeasurableSpace ฮฑ] [CommMonoid ฮฒ] : CommMonoid (MeasureTheory.SimpleFunc ฮฑ ฮฒ) - ESeminormedCommMonoid.toCommMonoid ๐ Mathlib.Analysis.Normed.Group.Basic
{E : Type u_8} [TopologicalSpace E] [self : ESeminormedCommMonoid E] : CommMonoid E - SeparationQuotient.instCommMonoid ๐ Mathlib.Topology.Algebra.SeparationQuotient.Basic
{M : Type u_1} [TopologicalSpace M] [CommMonoid M] [ContinuousMul M] : CommMonoid (SeparationQuotient M) - Set.Ioc.instCommMonoid ๐ Mathlib.Algebra.Order.Interval.Set.Instances
{R : Type u_2} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] : CommMonoid โ(Set.Ioc 0 1) - instCommMonoidUniformFun ๐ Mathlib.Topology.Algebra.UniformConvergence
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [CommMonoid ฮฒ] : CommMonoid (UniformFun ฮฑ ฮฒ) - instCommMonoidUniformOnFun ๐ Mathlib.Topology.Algebra.UniformConvergence
{ฮฑ : Type u_1} {ฮฒ : Type u_2} {๐ : Set (Set ฮฑ)} [CommMonoid ฮฒ] : CommMonoid (UniformOnFun ฮฑ ฮฒ ๐) - Filter.Germ.instCommMonoid ๐ Mathlib.Order.Filter.Germ.Basic
{ฮฑ : Type u_1} {l : Filter ฮฑ} {M : Type u_5} [CommMonoid M] : CommMonoid (l.Germ M) - MeasureTheory.AEEqFun.instCommMonoid ๐ Mathlib.MeasureTheory.Function.AEEqFun
{ฮฑ : Type u_1} {ฮณ : Type u_3} [MeasurableSpace ฮฑ] {ฮผ : MeasureTheory.Measure ฮฑ} [TopologicalSpace ฮณ] [CommMonoid ฮณ] [ContinuousMul ฮณ] : CommMonoid (ฮฑ โโ[ฮผ] ฮณ) - BoundedContinuousFunction.instCommMonoid ๐ Mathlib.Topology.ContinuousMap.Bounded.Basic
{ฮฑ : Type u} {R : Type u_2} [TopologicalSpace ฮฑ] [PseudoMetricSpace R] [CommMonoid R] [BoundedMul R] [ContinuousMul R] : CommMonoid (BoundedContinuousFunction ฮฑ R) - Interval.commMonoid ๐ Mathlib.Algebra.Order.Interval.Basic
{ฮฑ : Type u_2} [CommMonoid ฮฑ] [PartialOrder ฮฑ] [IsOrderedMonoid ฮฑ] : CommMonoid (Interval ฮฑ) - NonemptyInterval.commMonoid ๐ Mathlib.Algebra.Order.Interval.Basic
{ฮฑ : Type u_2} [CommMonoid ฮฑ] [PartialOrder ฮฑ] [IsOrderedMonoid ฮฑ] : CommMonoid (NonemptyInterval ฮฑ) - LowerSet.instCommMonoid ๐ Mathlib.Algebra.Order.UpperLower
{ฮฑ : Type u_1} [CommGroup ฮฑ] [PartialOrder ฮฑ] [IsOrderedMonoid ฮฑ] : CommMonoid (LowerSet ฮฑ) - UpperSet.instCommMonoid ๐ Mathlib.Algebra.Order.UpperLower
{ฮฑ : Type u_1} [CommGroup ฮฑ] [PartialOrder ฮฑ] [IsOrderedMonoid ฮฑ] : CommMonoid (UpperSet ฮฑ) - Tropical.instCommMonoidTropical ๐ Mathlib.Algebra.Tropical.Basic
{R : Type u} [AddCommMonoid R] : CommMonoid (Tropical R) - HomogeneousLocalization.NumDenSameDeg.instCommMonoid ๐ Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ฮน : Type u_1} {A : Type u_2} {ฯ : Type u_3} [CommRing A] [SetLike ฯ A] [AddSubmonoidClass ฯ A] {๐ : ฮน โ ฯ} (x : Submonoid A) [AddCommMonoid ฮน] [DecidableEq ฮน] [GradedRing ๐] : CommMonoid (HomogeneousLocalization.NumDenSameDeg ๐ x) - Metric.unitClosedBall.instCommMonoid ๐ Mathlib.Analysis.Normed.Field.UnitBall
{๐ : Type u_1} [SeminormedCommRing ๐] [NormOneClass ๐] : CommMonoid โ(Metric.closedBall 0 1) - Metric.unitSphere.instCommMonoid ๐ Mathlib.Analysis.Normed.Field.UnitBall
{๐ : Type u_1} [SeminormedCommRing ๐] [NormMulClass ๐] [NormOneClass ๐] : CommMonoid โ(Metric.sphere 0 1) - RatFunc.instCommMonoid ๐ Mathlib.FieldTheory.RatFunc.Basic
(K : Type u) [CommRing K] : CommMonoid (RatFunc K) - CategoryTheory.Skeleton.instCommMonoid ๐ Mathlib.CategoryTheory.Monoidal.Skeleton
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] : CommMonoid (CategoryTheory.Skeleton C) - CategoryTheory.commMonoidOfSkeletalBraided ๐ Mathlib.CategoryTheory.Monoidal.Skeleton
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] (hC : CategoryTheory.Skeletal C) : CommMonoid C - EckmannHilton.commMonoid ๐ Mathlib.GroupTheory.EckmannHilton
{X : Type u} {mโ : X โ X โ X} {eโ : X} (hโ : EckmannHilton.IsUnital mโ eโ) [h : MulOneClass X] (distrib : โ (a b c d : X), mโ (a * b) (c * d) = mโ a c * mโ b d) : CommMonoid X - PosNum.commMonoid ๐ Mathlib.Data.Num.Lemmas
: CommMonoid PosNum - LocallyConstant.instCommMonoid ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [CommMonoid Y] : CommMonoid (LocallyConstant X Y) - UInt16.instCommMonoid ๐ Mathlib.Data.UInt
: CommMonoid UInt16 - UInt32.instCommMonoid ๐ Mathlib.Data.UInt
: CommMonoid UInt32 - UInt64.instCommMonoid ๐ Mathlib.Data.UInt
: CommMonoid UInt64 - UInt8.instCommMonoid ๐ Mathlib.Data.UInt
: CommMonoid UInt8 - USize.instCommMonoid ๐ Mathlib.Data.UInt
: CommMonoid USize - PerfectClosure.instCommMonoid ๐ Mathlib.FieldTheory.PerfectClosure
(K : Type u) [CommRing K] (p : โ) [Fact (Nat.Prime p)] [CharP K p] : CommMonoid (PerfectClosure K p) - ContMDiffMap.commMonoid ๐ Mathlib.Geometry.Manifold.Algebra.SmoothFunctions
{๐ : Type u_1} [NontriviallyNormedField ๐] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐ E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace ๐ E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners ๐ E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners ๐ E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop โโ} {G : Type u_10} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] : CommMonoid (ContMDiffMap I I' N G n) - Zsqrtd.instCommMonoid ๐ Mathlib.NumberTheory.Zsqrtd.Basic
{d : โค} : CommMonoid (โคโd) - RestrictedProduct.instCommMonoidCoeOfSubmonoidClass ๐ Mathlib.Topology.Algebra.RestrictedProduct.Basic
{ฮน : Type u_1} (R : ฮน โ Type u_2) {๐ : Filter ฮน} {S : ฮน โ Type u_3} [(i : ฮน) โ SetLike (S i) (R i)] {B : (i : ฮน) โ S i} [(i : ฮน) โ CommMonoid (R i)] [โ (i : ฮน), SubmonoidClass (S i) (R i)] : CommMonoid (RestrictedProduct (fun i => R i) (fun i => โ(B i)) ๐) - GroupLike.instCommMonoid ๐ Mathlib.RingTheory.Bialgebra.GroupLike
{R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [Bialgebra R A] : CommMonoid (GroupLike R A)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโandโ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454