Loogle!
Result
Found 145 declarations mentioning OrderIso, LE.le, OrderIso.symm, RelIso.instFunLike, Eq, and DFunLike.coe. Of these, 64 match your pattern(s).
- OrderIso.symm_apply_apply 📋 Mathlib.Order.Hom.Basic
{α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) (x : α) : e.symm (e x) = x - OrderIso.symm_trans_apply 📋 Mathlib.Order.Hom.Basic
{α : Type u_2} {β : Type u_3} {γ : Type u_4} [LE α] [LE β] [LE γ] (e₁ : α ≃o β) (e₂ : β ≃o γ) (c : γ) : (e₁.trans e₂).symm c = e₁.symm (e₂.symm c) - OrderIso.dualDual_symm_apply 📋 Mathlib.Order.Hom.Basic
{α : Type u_2} [LE α] (a : αᵒᵈᵒᵈ) : (OrderIso.dualDual α).symm a = OrderDual.ofDual (OrderDual.ofDual a) - OrderIso.dual_symm_apply 📋 Mathlib.Order.Hom.Basic
{α : Type u_2} {β : Type u_3} [LE α] [LE β] (f : α ≃o β) (x : βᵒᵈ) : f.dual.symm x = OrderDual.toDual (f.symm (OrderDual.ofDual x)) - OrderIso.ofHomInv_symm_apply 📋 Mathlib.Order.Hom.Basic
{α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] {F : Type u_6} {G : Type u_7} [FunLike F α β] [OrderHomClass F α β] [FunLike G β α] [OrderHomClass G β α] (f : F) (g : G) (h₁ : (↑f).comp ↑g = OrderHom.id) (h₂ : (↑g).comp ↑f = OrderHom.id) (a : β) : (OrderIso.ofHomInv f g h₁ h₂).symm a = g a - StrictMono.orderIsoOfSurjective_symm_apply_self 📋 Mathlib.Order.Hom.Set
{α : Type u_1} {β : Type u_2} [LinearOrder α] [Preorder β] (f : α → β) (h_mono : StrictMono f) (h_surj : Function.Surjective f) (a : α) : (StrictMono.orderIsoOfSurjective f h_mono h_surj).symm (f a) = a - Fin.revOrderIso_symm_apply 📋 Mathlib.Order.Fin.Basic
{n : ℕ} (i : Fin n) : Fin.revOrderIso.symm i = OrderDual.toDual i.rev - AddSubgroup.MapSubtype.orderIso_symm_apply 📋 Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] (H : AddSubgroup G) (sH' : { H' // H' ≤ H }) : (AddSubgroup.MapSubtype.orderIso H).symm sH' = (↑sH').addSubgroupOf H - Subgroup.MapSubtype.orderIso_symm_apply 📋 Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] (H : Subgroup G) (sH' : { H' // H' ≤ H }) : (Subgroup.MapSubtype.orderIso H).symm sH' = (↑sH').subgroupOf H - Finset.sumEquiv_symm_apply 📋 Mathlib.Data.Finset.Sum
{α : Type u_4} {β : Type u_5} (s : Finset α × Finset β) : Finset.sumEquiv.symm s = s.1.disjSum s.2 - WithBot.toDualTopEquiv_symm_bot 📋 Mathlib.Order.Hom.WithTopBot
{α : Type u_1} [LE α] : WithBot.toDualTopEquiv.symm ⊥ = ⊥ - WithTop.toDualBotEquiv_symm_top 📋 Mathlib.Order.Hom.WithTopBot
{α : Type u_1} [LE α] : WithTop.toDualBotEquiv.symm ⊤ = ⊤ - WithBot.toDualTopEquiv_symm_coe 📋 Mathlib.Order.Hom.WithTopBot
{α : Type u_1} [LE α] (a : α) : WithBot.toDualTopEquiv.symm (OrderDual.toDual ↑a) = ↑(OrderDual.toDual a) - WithTop.toDualBotEquiv_symm_coe 📋 Mathlib.Order.Hom.WithTopBot
{α : Type u_1} [LE α] (a : α) : WithTop.toDualBotEquiv.symm (OrderDual.toDual ↑a) = ↑(OrderDual.toDual a) - WithBot.subtypeOrderIso_symm_apply 📋 Mathlib.Order.Hom.WithTopBot
{α : Type u_1} [PartialOrder α] [OrderBot α] [DecidablePred fun x => x = ⊥] {a : α} (h : a ≠ ⊥) : WithBot.subtypeOrderIso.symm a = ↑⟨a, h⟩ - WithTop.subtypeOrderIso_symm_apply 📋 Mathlib.Order.Hom.WithTopBot
{α : Type u_1} [PartialOrder α] [OrderTop α] [DecidablePred fun x => x = ⊤] {a : α} (h : a ≠ ⊤) : WithTop.subtypeOrderIso.symm a = ↑⟨a, h⟩ - OrderIso.dualAntisymmetrization_symm_apply 📋 Mathlib.Order.Antisymmetrization
(α : Type u_1) [Preorder α] (a : α) : (OrderIso.dualAntisymmetrization α).symm (toAntisymmetrization (fun x1 x2 => x1 ≤ x2) (OrderDual.toDual a)) = OrderDual.toDual (toAntisymmetrization (fun x1 x2 => x1 ≤ x2) a) - Antisymmetrization.prodEquiv_symm_apply_mk 📋 Mathlib.Order.Antisymmetrization
(α : Type u_1) (β : Type u_2) [Preorder α] [Preorder β] {a : α} {b : β} : (Antisymmetrization.prodEquiv α β).symm (⟦a⟧, ⟦b⟧) = ⟦(a, b)⟧ - Submodule.orderIsoMapComap_symm_apply 📋 Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {R₂ : Type u_3} {M : Type u_5} {M₂ : Type u_7} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [RingHomSurjective σ₁₂] {F : Type u_9} [EquivLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] (f : F) (p : Submodule R₂ M₂) : (Submodule.orderIsoMapComap f).symm p = Submodule.comap f p - Submodule.orderIsoMapComap_symm_apply' 📋 Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {R₂ : Type u_3} {M : Type u_5} {M₂ : Type u_7} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {τ₁₂ : R →+* R₂} {τ₂₁ : R₂ →+* R} [RingHomInvPair τ₁₂ τ₂₁] [RingHomInvPair τ₂₁ τ₁₂] (e : M ≃ₛₗ[τ₁₂] M₂) (p : Submodule R₂ M₂) : (Submodule.orderIsoMapComap e).symm p = Submodule.map e.symm p - WithBot.orderIsoPUnitSumLex_symm_inr 📋 Mathlib.Data.Sum.Order
{α : Type u_1} [LE α] (a : α) : WithBot.orderIsoPUnitSumLex.symm (toLex (Sum.inr a)) = ↑a - WithTop.orderIsoSumLexPUnit_symm_inl 📋 Mathlib.Data.Sum.Order
{α : Type u_1} [LE α] (a : α) : WithTop.orderIsoSumLexPUnit.symm (toLex (Sum.inl a)) = ↑a - WithBot.orderIsoPUnitSumLex_symm_inl 📋 Mathlib.Data.Sum.Order
{α : Type u_1} [LE α] (x : PUnit.{u_4 + 1}) : WithBot.orderIsoPUnitSumLex.symm (toLex (Sum.inl x)) = ⊥ - WithTop.orderIsoSumLexPUnit_symm_inr 📋 Mathlib.Data.Sum.Order
{α : Type u_1} [LE α] (x : PUnit.{u_4 + 1}) : WithTop.orderIsoSumLexPUnit.symm (toLex (Sum.inr x)) = ⊤ - OrderIso.sumAssoc_symm_apply_inl 📋 Mathlib.Data.Sum.Order
{α : Type u_1} {β : Type u_2} {γ : Type u_3} [LE α] [LE β] [LE γ] (a : α) : (OrderIso.sumAssoc α β γ).symm (Sum.inl a) = Sum.inl (Sum.inl a) - OrderIso.sumAssoc_symm_apply_inr_inr 📋 Mathlib.Data.Sum.Order
{α : Type u_1} {β : Type u_2} {γ : Type u_3} [LE α] [LE β] [LE γ] (c : γ) : (OrderIso.sumAssoc α β γ).symm (Sum.inr (Sum.inr c)) = Sum.inr c - OrderIso.sumAssoc_symm_apply_inr_inl 📋 Mathlib.Data.Sum.Order
{α : Type u_1} {β : Type u_2} {γ : Type u_3} [LE α] [LE β] [LE γ] (b : β) : (OrderIso.sumAssoc α β γ).symm (Sum.inr (Sum.inl b)) = Sum.inl (Sum.inr b) - OrderIso.sumLexAssoc_symm_apply_inl 📋 Mathlib.Data.Sum.Order
{α : Type u_1} {β : Type u_2} {γ : Type u_3} [LE α] [LE β] [LE γ] (a : α) : (OrderIso.sumLexAssoc α β γ).symm (Sum.inl a) = Sum.inl (Sum.inl a) - OrderIso.sumLexAssoc_symm_apply_inr_inr 📋 Mathlib.Data.Sum.Order
{α : Type u_1} {β : Type u_2} {γ : Type u_3} [LE α] [LE β] [LE γ] (c : γ) : (OrderIso.sumLexAssoc α β γ).symm (Sum.inr (Sum.inr c)) = Sum.inr c - OrderIso.sumLexAssoc_symm_apply_inr_inl 📋 Mathlib.Data.Sum.Order
{α : Type u_1} {β : Type u_2} {γ : Type u_3} [LE α] [LE β] [LE γ] (b : β) : (OrderIso.sumLexAssoc α β γ).symm (Sum.inr (Sum.inl b)) = Sum.inl (Sum.inr b) - OrderIso.sumDualDistrib_symm_inl 📋 Mathlib.Data.Sum.Order
{α : Type u_1} {β : Type u_2} [LE α] [LE β] (a : α) : (OrderIso.sumDualDistrib α β).symm (Sum.inl (OrderDual.toDual a)) = OrderDual.toDual (Sum.inl a) - OrderIso.sumDualDistrib_symm_inr 📋 Mathlib.Data.Sum.Order
{α : Type u_1} {β : Type u_2} [LE α] [LE β] (b : β) : (OrderIso.sumDualDistrib α β).symm (Sum.inr (OrderDual.toDual b)) = OrderDual.toDual (Sum.inr b) - OrderIso.sumLexDualAntidistrib_symm_inl 📋 Mathlib.Data.Sum.Order
{α : Type u_1} {β : Type u_2} [LE α] [LE β] (b : β) : (OrderIso.sumLexDualAntidistrib α β).symm (Sum.inl (OrderDual.toDual b)) = OrderDual.toDual (Sum.inr b) - OrderIso.sumLexDualAntidistrib_symm_inr 📋 Mathlib.Data.Sum.Order
{α : Type u_1} {β : Type u_2} [LE α] [LE β] (a : α) : (OrderIso.sumLexDualAntidistrib α β).symm (Sum.inr (OrderDual.toDual a)) = OrderDual.toDual (Sum.inl a) - OrderIso.sumLexIicIoi_symm_apply_Iic 📋 Mathlib.Order.Hom.Lex
{α : Type u_1} [LinearOrder α] {x : α} (a : ↑(Set.Iic x)) : (OrderIso.sumLexIicIoi x).symm ↑a = Sum.inl a - OrderIso.sumLexIicIoi_symm_apply_Ioi 📋 Mathlib.Order.Hom.Lex
{α : Type u_1} [LinearOrder α] {x : α} (a : ↑(Set.Ioi x)) : (OrderIso.sumLexIicIoi x).symm ↑a = Sum.inr a - OrderIso.sumLexIioIci_symm_apply_Ici 📋 Mathlib.Order.Hom.Lex
{α : Type u_1} [LinearOrder α] {x : α} (a : ↑(Set.Ici x)) : (OrderIso.sumLexIioIci x).symm ↑a = toLex (Sum.inr a) - OrderIso.sumLexIioIci_symm_apply_Iio 📋 Mathlib.Order.Hom.Lex
{α : Type u_1} [LinearOrder α] {x : α} (a : ↑(Set.Iio x)) : (OrderIso.sumLexIioIci x).symm ↑a = toLex (Sum.inl a) - OrderIso.sumLexIicIoi_symm_apply_of_le 📋 Mathlib.Order.Hom.Lex
{α : Type u_1} [LinearOrder α] {x y : α} (h : y ≤ x) : (OrderIso.sumLexIicIoi x).symm y = toLex (Sum.inl ⟨y, h⟩) - OrderIso.sumLexIicIoi_symm_apply_of_lt 📋 Mathlib.Order.Hom.Lex
{α : Type u_1} [LinearOrder α] {x y : α} (h : x < y) : (OrderIso.sumLexIicIoi x).symm y = toLex (Sum.inr ⟨y, h⟩) - OrderIso.sumLexIioIci_symm_apply_of_ge 📋 Mathlib.Order.Hom.Lex
{α : Type u_1} [LinearOrder α] {x y : α} (h : x ≤ y) : (OrderIso.sumLexIioIci x).symm y = toLex (Sum.inr ⟨y, h⟩) - OrderIso.sumLexIioIci_symm_apply_of_lt 📋 Mathlib.Order.Hom.Lex
{α : Type u_1} [LinearOrder α] {x y : α} (h : y < x) : (OrderIso.sumLexIioIci x).symm y = toLex (Sum.inl ⟨y, h⟩) - RingEquiv.idealComapOrderIso_symm_apply 📋 Mathlib.RingTheory.Ideal.Maps
{R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] (e : R ≃+* S) (I : Ideal R) : e.idealComapOrderIso.symm I = Ideal.map e I - Ideal.idealProdEquiv_symm_apply 📋 Mathlib.RingTheory.Ideal.Prod
{R : Type u} {S : Type v} [Semiring R] [Semiring S] (I : Ideal R) (J : Ideal S) : Ideal.idealProdEquiv.symm (I, J) = I.prod J - OrderIso.invENNReal_symm_apply 📋 Mathlib.Data.ENNReal.Inv
(a : ENNRealᵒᵈ) : OrderIso.invENNReal.symm a = (OrderDual.ofDual a)⁻¹ - ENNReal.orderIsoIicOneBirational_symm_apply 📋 Mathlib.Data.ENNReal.Inv
(x : ↑(Set.Iic 1)) : ENNReal.orderIsoIicOneBirational.symm x = ((↑x)⁻¹ - 1)⁻¹ - CategoryTheory.Equivalence.toOrderIso_symm_apply 📋 Mathlib.CategoryTheory.Category.Preorder
{X : Type u} {Y : Type v} [PartialOrder X] [PartialOrder Y] (e : X ≌ Y) (y : Y) : e.toOrderIso.symm y = e.inverse.obj y - finSuccAboveOrderIso_symm_apply_last 📋 Mathlib.Order.Fin.Tuple
{n : ℕ} (x : { x // x ≠ Fin.last n }) : (finSuccAboveOrderIso (Fin.last n)).symm x = (↑x).castLT ⋯ - Module.mapEvalEquiv_symm_apply 📋 Mathlib.LinearAlgebra.Dual.Defs
(R : Type u_3) (M : Type u_4) [CommSemiring R] [AddCommMonoid M] [Module R M] [Module.IsReflexive R M] (W'' : Submodule R (Module.Dual R (Module.Dual R M))) : (Module.mapEvalEquiv R M).symm W'' = Submodule.comap (Module.Dual.eval R M) W'' - PrimeSpectrum.isIdempotentElemEquivClopens_symm_top 📋 Mathlib.RingTheory.Spectrum.Prime.Topology
{R : Type u} [CommRing R] : PrimeSpectrum.isIdempotentElemEquivClopens.symm ⊤ = ⟨1, ⋯⟩ - PrimeSpectrum.isIdempotentElemEquivClopens_symm_bot 📋 Mathlib.RingTheory.Spectrum.Prime.Topology
{R : Type u} [CommRing R] : PrimeSpectrum.isIdempotentElemEquivClopens.symm ⊥ = ⟨0, ⋯⟩ - PrimeSpectrum.isIdempotentElemEquivClopens_symm_compl 📋 Mathlib.RingTheory.Spectrum.Prime.Topology
{R : Type u} [CommRing R] (s : TopologicalSpace.Clopens (PrimeSpectrum R)) : PrimeSpectrum.isIdempotentElemEquivClopens.symm sᶜ = ⟨1 - ↑(PrimeSpectrum.isIdempotentElemEquivClopens.symm s), ⋯⟩ - PrimeSpectrum.isIdempotentElemEquivClopens_symm_inf 📋 Mathlib.RingTheory.Spectrum.Prime.Topology
{R : Type u} [CommRing R] (s₁ s₂ : TopologicalSpace.Clopens (PrimeSpectrum R)) : PrimeSpectrum.isIdempotentElemEquivClopens.symm (s₁ ⊓ s₂) = ⟨↑(PrimeSpectrum.isIdempotentElemEquivClopens.symm s₁) * ↑(PrimeSpectrum.isIdempotentElemEquivClopens.symm s₂), ⋯⟩ - PrimeSpectrum.isIdempotentElemEquivClopens_symm_sup 📋 Mathlib.RingTheory.Spectrum.Prime.Topology
{R : Type u} [CommRing R] (s₁ s₂ : TopologicalSpace.Clopens (PrimeSpectrum R)) : PrimeSpectrum.isIdempotentElemEquivClopens.symm (s₁ ⊔ s₂) = ⟨↑(PrimeSpectrum.isIdempotentElemEquivClopens.symm s₁) + ↑(PrimeSpectrum.isIdempotentElemEquivClopens.symm s₂) - ↑(PrimeSpectrum.isIdempotentElemEquivClopens.symm s₁) * ↑(PrimeSpectrum.isIdempotentElemEquivClopens.symm s₂), ⋯⟩ - FiniteArchimedeanClass.withTopOrderIso_symm_apply 📋 Mathlib.Algebra.Order.Archimedean.Class
{M : Type u_1} [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] {a : M} (h : a ≠ 0) : (FiniteArchimedeanClass.withTopOrderIso M).symm (ArchimedeanClass.mk a) = ↑(FiniteArchimedeanClass.mk a h) - FiniteMulArchimedeanClass.withTopOrderIso_symm_apply 📋 Mathlib.Algebra.Order.Archimedean.Class
{M : Type u_1} [CommGroup M] [LinearOrder M] [IsOrderedMonoid M] {a : M} (h : a ≠ 1) : (FiniteMulArchimedeanClass.withTopOrderIso M).symm (MulArchimedeanClass.mk a) = ↑(FiniteMulArchimedeanClass.mk a h) - IsGalois.intermediateFieldEquivSubgroup_symm_apply_toDual 📋 Mathlib.FieldTheory.Galois.Basic
{F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] [FiniteDimensional F E] [IsGalois F E] (H : Subgroup Gal(E/F)) : IsGalois.intermediateFieldEquivSubgroup.symm (OrderDual.toDual H) = IntermediateField.fixedField H - IsGalois.intermediateFieldEquivSubgroup_symm_apply 📋 Mathlib.FieldTheory.Galois.Basic
{F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] [FiniteDimensional F E] [IsGalois F E] (H : (Subgroup Gal(E/F))ᵒᵈ) : IsGalois.intermediateFieldEquivSubgroup.symm H = IntermediateField.fixedField (OrderDual.ofDual H) - orderIsoShrink_symm_apply 📋 Mathlib.Order.Shrink
{α : Type v} [Small.{u, v} α] [Preorder α] (a : Shrink.{u, v} α) : (orderIsoShrink α).symm a = (equivShrink α).symm a - OrderIso.infIrredUpperSet_symm_apply 📋 Mathlib.Order.Birkhoff
{α : Type u_1} [SemilatticeInf α] [OrderTop α] [Finite α] (s : { s // InfIrred s }) [Fintype ↥↑s] : OrderIso.infIrredUpperSet.symm s = (↑↑s).toFinset.inf id - OrderIso.supIrredLowerSet_symm_apply 📋 Mathlib.Order.Birkhoff
{α : Type u_1} [SemilatticeSup α] [OrderBot α] [Finite α] (s : { s // SupIrred s }) [Fintype ↥↑s] : OrderIso.supIrredLowerSet.symm s = (↑↑s).toFinset.sup id - IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply_toDual 📋 Mathlib.FieldTheory.Galois.IsGaloisGroup
(G : Type u_1) (K : Type u_3) (L : Type u_4) [Group G] [Field K] [Field L] [Algebra K L] [MulSemiringAction G L] [hGKL : IsGaloisGroup G K L] [Finite G] {H : Subgroup G} : (IsGaloisGroup.intermediateFieldEquivSubgroup G K L).symm (OrderDual.toDual H) = FixedPoints.intermediateField ↥H - IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply 📋 Mathlib.FieldTheory.Galois.IsGaloisGroup
(G : Type u_1) (K : Type u_3) (L : Type u_4) [Group G] [Field K] [Field L] [Algebra K L] [MulSemiringAction G L] [hGKL : IsGaloisGroup G K L] [Finite G] {H : (Subgroup G)ᵒᵈ} : (IsGaloisGroup.intermediateFieldEquivSubgroup G K L).symm H = FixedPoints.intermediateField ↥(OrderDual.ofDual H) - DivisibleHull.archimedeanClassOrderIso_symm_apply 📋 Mathlib.GroupTheory.DivisibleHull
{M : Type u_2} [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] (m : M) (s : ℕ+) : (DivisibleHull.archimedeanClassOrderIso M).symm (ArchimedeanClass.mk (DivisibleHull.mk m s)) = ArchimedeanClass.mk m
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 94e04f1