Loogle!
Result
Found 103 declarations mentioning RelIso.symm, LE.le, RelIso, RelIso.instFunLike, Eq, and DFunLike.coe. Of these, 54 match your pattern(s).
- OrderIso.ofUnique_symm_apply 📋 Mathlib.Order.Hom.Basic
(α : Type u_6) (β : Type u_7) [Unique α] [Unique β] [Preorder α] [Preorder β] (a✝ : β) : (RelIso.symm (OrderIso.ofUnique α β)) a✝ = default - OrderIso.arrowCongr_symm_apply 📋 Mathlib.Order.Hom.Basic
{α : Type u_6} {β : Type u_7} {γ : Type u_8} {δ : Type u_9} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] (f : α ≃o γ) (g : β ≃o δ) (p : γ →o δ) : (RelIso.symm (f.arrowCongr g)) p = (↑g.symm).comp (p.comp ↑f) - OrderHom.piIso_symm_apply 📋 Mathlib.Order.Hom.Basic
{α : Type u_2} [Preorder α] {ι : Type u_6} {π : ι → Type u_7} [(i : ι) → Preorder (π i)] (f : (i : ι) → α →o π i) : (RelIso.symm OrderHom.piIso) f = OrderHom.pi f - OrderHom.prodIso_symm_apply 📋 Mathlib.Order.Hom.Basic
{α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (f : (α →o β) × (α →o γ)) : (RelIso.symm OrderHom.prodIso) f = f.1.prod f.2 - OrderIso.divRight_symm_apply 📋 Mathlib.Algebra.Order.Group.OrderIso
{α : Type u} [Group α] [LE α] [MulRightMono α] (a b : α) : (RelIso.symm (OrderIso.divRight a)) b = b * a - OrderIso.subRight_symm_apply 📋 Mathlib.Algebra.Order.Group.OrderIso
{α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a b : α) : (RelIso.symm (OrderIso.subRight a)) b = b + a - OrderIso.inv_symm_apply 📋 Mathlib.Algebra.Order.Group.OrderIso
(α : Type u) [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a✝ : αᵒᵈ) : (RelIso.symm (OrderIso.inv α)) a✝ = (OrderDual.ofDual a✝)⁻¹ - OrderIso.neg_symm_apply 📋 Mathlib.Algebra.Order.Group.OrderIso
(α : Type u) [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a✝ : αᵒᵈ) : (RelIso.symm (OrderIso.neg α)) a✝ = -OrderDual.ofDual a✝ - OrderIso.divLeft_symm_apply 📋 Mathlib.Algebra.Order.Group.OrderIso
{α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a : α) (a✝ : αᵒᵈ) : (RelIso.symm (OrderIso.divLeft a)) a✝ = (OrderDual.ofDual a✝)⁻¹ * a - OrderIso.subLeft_symm_apply 📋 Mathlib.Algebra.Order.Group.OrderIso
{α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a : α) (a✝ : αᵒᵈ) : (RelIso.symm (OrderIso.subLeft a)) a✝ = -OrderDual.ofDual a✝ + a - WithZero.expOrderIso_symm_apply 📋 Mathlib.Algebra.Order.GroupWithZero.Canonical
{G : Type u_3} [Preorder G] [AddGroup G] (a✝ : (WithZero (Multiplicative G))ˣ) : (RelIso.symm WithZero.expOrderIso) a✝ = Multiplicative.toAdd (WithZero.unzero ⋯) - OrderIso.compl_symm_apply 📋 Mathlib.Order.Hom.Set
(α : Type u_1) [BooleanAlgebra α] (a✝ : αᵒᵈ) : (RelIso.symm (OrderIso.compl α)) a✝ = (OrderDual.ofDual a✝)ᶜ - OrderIso.setCongr_symm_apply 📋 Mathlib.Order.Hom.Set
{α : Type u_1} [Preorder α] (s t : Set α) (h : s = t) (b : { b // (fun x => x ∈ t) b }) : (RelIso.symm (OrderIso.setCongr s t h)) b = ⟨↑b, ⋯⟩ - OrderIso.divRight₀_symm_apply 📋 Mathlib.Algebra.Order.GroupWithZero.Unbundled.OrderIso
{G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [MulPosReflectLT G₀] (a : G₀) (ha : 0 < a) (x✝ : G₀) : (RelIso.symm (OrderIso.divRight₀ a ha)) x✝ = x✝ * a - OrderIso.mulLeft₀_symm_apply 📋 Mathlib.Algebra.Order.GroupWithZero.Unbundled.OrderIso
{G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [PosMulReflectLT G₀] (a : G₀) (ha : 0 < a) (x : G₀) : (RelIso.symm (OrderIso.mulLeft₀ a ha)) x = a⁻¹ * x - OrderIso.mulRight₀_symm_apply 📋 Mathlib.Algebra.Order.GroupWithZero.Unbundled.OrderIso
{G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [MulPosReflectLT G₀] (a : G₀) (ha : 0 < a) (x : G₀) : (RelIso.symm (OrderIso.mulRight₀ a ha)) x = x * a⁻¹ - Fin.castOrderIso_symm_apply 📋 Mathlib.Order.Fin.Basic
{m n : ℕ} (eq : n = m) (i : Fin m) : (RelIso.symm (Fin.castOrderIso eq)) i = Fin.cast ⋯ i - Fin.orderIsoSubtype_symm_apply 📋 Mathlib.Order.Fin.Basic
{n : ℕ} (a : { i // i < n }) : (RelIso.symm Fin.orderIsoSubtype) a = ⟨↑a, ⋯⟩ - OrderIso.finsetSetFinite_symm_apply 📋 Mathlib.Data.Set.Finite.Basic
{α : Type u} (s : { s // s.Finite }) : (RelIso.symm OrderIso.finsetSetFinite) s = ⋯.toFinset - AddEquiv.comapAddSubgroup_symm_apply 📋 Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_5} [AddGroup H] (f : G ≃+ H) (H✝ : AddSubgroup G) : (RelIso.symm f.comapAddSubgroup) H✝ = AddSubgroup.comap (↑f.symm) H✝ - AddEquiv.mapAddSubgroup_symm_apply 📋 Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_6} [AddGroup H] (f : G ≃+ H) (H✝ : AddSubgroup H) : (RelIso.symm f.mapAddSubgroup) H✝ = AddSubgroup.map (↑f.symm) H✝ - MulEquiv.comapSubgroup_symm_apply 📋 Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {H : Type u_5} [Group H] (f : G ≃* H) (H✝ : Subgroup G) : (RelIso.symm f.comapSubgroup) H✝ = Subgroup.comap (↑f.symm) H✝ - MulEquiv.mapSubgroup_symm_apply 📋 Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {H : Type u_6} [Group H] (f : G ≃* H) (H✝ : Subgroup H) : (RelIso.symm f.mapSubgroup) H✝ = Subgroup.map (↑f.symm) H✝ - AddSubsemigroup.opEquiv_symm_apply 📋 Mathlib.Algebra.Group.Subsemigroup.MulOpposite
{M : Type u_2} [Add M] (x : AddSubsemigroup Mᵃᵒᵖ) : (RelIso.symm AddSubsemigroup.opEquiv) x = x.unop - Subsemigroup.opEquiv_symm_apply 📋 Mathlib.Algebra.Group.Subsemigroup.MulOpposite
{M : Type u_2} [Mul M] (x : Subsemigroup Mᵐᵒᵖ) : (RelIso.symm Subsemigroup.opEquiv) x = x.unop - AddSubmonoid.opEquiv_symm_apply 📋 Mathlib.Algebra.Group.Submonoid.MulOpposite
{M : Type u_2} [AddZeroClass M] (x : AddSubmonoid Mᵃᵒᵖ) : (RelIso.symm AddSubmonoid.opEquiv) x = x.unop - Submonoid.opEquiv_symm_apply 📋 Mathlib.Algebra.Group.Submonoid.MulOpposite
{M : Type u_2} [MulOneClass M] (x : Submonoid Mᵐᵒᵖ) : (RelIso.symm Submonoid.opEquiv) x = x.unop - AddSubgroup.opEquiv_symm_apply 📋 Mathlib.Algebra.Group.Subgroup.MulOpposite
{G : Type u_2} [AddGroup G] (H : AddSubgroup Gᵃᵒᵖ) : (RelIso.symm AddSubgroup.opEquiv) H = H.unop - Subgroup.opEquiv_symm_apply 📋 Mathlib.Algebra.Group.Subgroup.MulOpposite
{G : Type u_2} [Group G] (H : Subgroup Gᵐᵒᵖ) : (RelIso.symm Subgroup.opEquiv) H = H.unop - Submodule.orderIsoMapComapOfBijective_symm_apply 📋 Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {R₂ : Type u_3} {M : Type u_5} {M₂ : Type u_7} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [RingHomSurjective σ₁₂] {F : Type u_9} [FunLike F M M₂] [SemilinearMapClass F σ₁₂ M M₂] (f : F) (hf : Function.Bijective ⇑f) (p : Submodule R₂ M₂) : (RelIso.symm (Submodule.orderIsoMapComapOfBijective f hf)) p = Submodule.comap f p - OrderIso.smulRight_symm_apply 📋 Mathlib.Algebra.Order.Module.Defs
{α : Type u_1} {β : Type u_2} [GroupWithZero α] [Preorder α] [Preorder β] [MulAction α β] [PosSMulMono α β] [PosSMulReflectLE α β] {a : α} (ha : 0 < a) (b : β) : (RelIso.symm (OrderIso.smulRight ha)) b = a⁻¹ • b - AddCon.orderIsoOp_symm_apply 📋 Mathlib.GroupTheory.Congruence.Opposite
{M : Type u_1} [Add M] (c : AddCon Mᵃᵒᵖ) : (RelIso.symm AddCon.orderIsoOp) c = c.unop - Con.orderIsoOp_symm_apply 📋 Mathlib.GroupTheory.Congruence.Opposite
{M : Type u_1} [Mul M] (c : Con Mᵐᵒᵖ) : (RelIso.symm Con.orderIsoOp) c = c.unop - RingCon.opOrderIso_symm_apply 📋 Mathlib.RingTheory.Congruence.Opposite
{R : Type u_1} [Add R] [Mul R] (c : RingCon Rᵐᵒᵖ) : (RelIso.symm RingCon.opOrderIso) c = c.unop - TwoSidedIdeal.opOrderIso_symm_apply 📋 Mathlib.RingTheory.TwoSidedIdeal.Basic
{R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal Rᵐᵒᵖ) : (RelIso.symm TwoSidedIdeal.opOrderIso) I = I.unop - TwoSidedIdeal.orderIsoRingCon_symm_apply 📋 Mathlib.RingTheory.TwoSidedIdeal.Basic
{R : Type u_1} [NonUnitalNonAssocRing R] (ringCon : RingCon R) : (RelIso.symm TwoSidedIdeal.orderIsoRingCon) ringCon = { ringCon := ringCon } - Subsemiring.opEquiv_symm_apply 📋 Mathlib.Algebra.Ring.Subsemiring.MulOpposite
{R : Type u_2} [NonAssocSemiring R] (S : Subsemiring Rᵐᵒᵖ) : (RelIso.symm Subsemiring.opEquiv) S = S.unop - Subring.opEquiv_symm_apply 📋 Mathlib.Algebra.Ring.Subring.MulOpposite
{R : Type u_2} [Ring R] (S : Subring Rᵐᵒᵖ) : (RelIso.symm Subring.opEquiv) S = S.unop - Subalgebra.opEquiv_symm_apply 📋 Mathlib.Algebra.Algebra.Subalgebra.MulOpposite
{R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R Aᵐᵒᵖ) : (RelIso.symm Subalgebra.opEquiv) S = S.unop - upperSetIsoLowerSet_symm_apply 📋 Mathlib.Order.UpperLower.CompleteLattice
{α : Type u_1} [LE α] (s : LowerSet α) : (RelIso.symm upperSetIsoLowerSet) s = s.compl - OrderIso.smulRightDual_symm_apply 📋 Mathlib.Algebra.Order.Module.Field
{𝕜 : Type u_1} (G : Type u_2) [Field 𝕜] [LinearOrder 𝕜] [IsStrictOrderedRing 𝕜] [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] [Module 𝕜 G] {a : 𝕜} [PosSMulMono 𝕜 G] (ha : a < 0) (a✝ : Gᵒᵈ) : (RelIso.symm (OrderIso.smulRightDual G ha)) a✝ = a⁻¹ • OrderDual.ofDual a✝ - Fin.castLEOrderIso_symm_apply 📋 Mathlib.Order.Fin.Tuple
{n m : ℕ} (h : n ≤ m) (i : { i // ↑i < n }) : (RelIso.symm (Fin.castLEOrderIso h)) i = ⟨↑↑i, ⋯⟩ - Fin.snocOrderIso_symm_apply 📋 Mathlib.Order.Fin.Tuple
{n : ℕ} (α : Fin (n + 1) → Type u_2) [(i : Fin (n + 1)) → LE (α i)] (f : (i : Fin (n + 1)) → α i) : (RelIso.symm (Fin.snocOrderIso α)) f = (f (Fin.last n), Fin.init f) - Fin.insertNthOrderIso_symm_apply 📋 Mathlib.Order.Fin.Tuple
{n : ℕ} (α : Fin (n + 1) → Type u_2) [(i : Fin (n + 1)) → LE (α i)] (p : Fin (n + 1)) (f : (i : Fin (n + 1)) → α i) : (RelIso.symm (Fin.insertNthOrderIso α p)) f = (f p, p.removeNth f) - Fin.consOrderIso_symm_apply 📋 Mathlib.Order.Fin.Tuple
{n : ℕ} (α : Fin (n + 1) → Type u_2) [(i : Fin (n + 1)) → LE (α i)] (f : (i : Fin (n + 1)) → α i) : (RelIso.symm (Fin.consOrderIso α)) f = (f 0, Fin.tail f) - TwoSidedIdeal.orderIsoIsTwoSided_symm_apply 📋 Mathlib.RingTheory.TwoSidedIdeal.Operations
{R : Type u_1} [Ring R] (I : { I // I.IsTwoSided }) : (RelIso.symm TwoSidedIdeal.orderIsoIsTwoSided) I = have this := ⋯; (↑I).toTwoSided - PrimeSpectrum.comapEquiv_symm_apply 📋 Mathlib.RingTheory.Spectrum.Prime.RingHom
{R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (e : R ≃+* S) (p : PrimeSpectrum S) : (RelIso.symm (PrimeSpectrum.comapEquiv e)) p = PrimeSpectrum.comap e.toRingHom p - TopologicalSpace.Closeds.complOrderIso_symm_apply 📋 Mathlib.Topology.Sets.Closeds
(α : Type u_2) [TopologicalSpace α] (a✝ : (TopologicalSpace.Opens α)ᵒᵈ) : (RelIso.symm (TopologicalSpace.Closeds.complOrderIso α)) a✝ = (TopologicalSpace.Opens.compl ∘ ⇑OrderDual.ofDual) a✝ - TopologicalSpace.Opens.complOrderIso_symm_apply 📋 Mathlib.Topology.Sets.Closeds
(α : Type u_2) [TopologicalSpace α] (a✝ : (TopologicalSpace.Closeds α)ᵒᵈ) : (RelIso.symm (TopologicalSpace.Opens.complOrderIso α)) a✝ = (TopologicalSpace.Closeds.compl ∘ ⇑OrderDual.ofDual) a✝ - LieSubmodule.orderIsoMapComap_symm_apply 📋 Mathlib.Algebra.Lie.Submodule
{R : Type u} {L : Type v} {M : Type w} {M' : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] [AddCommGroup M'] [Module R M'] [LieRingModule L M'] (e : M ≃ₗ⁅R,L⁆ M') (N' : LieSubmodule R L M') : (RelIso.symm (LieSubmodule.orderIsoMapComap e)) N' = LieSubmodule.comap e.toLieModuleHom N' - AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_symm_apply 📋 Mathlib.AlgebraicGeometry.IdealSheaf.Basic
{X : AlgebraicGeometry.Scheme} [AlgebraicGeometry.IsAffine X] (I : Ideal ↑(X.presheaf.obj (Opposite.op ⊤))) : (RelIso.symm AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine) I = AlgebraicGeometry.Scheme.IdealSheafData.ofIdealTop I - CategoryTheory.Subpresheaf.orderIsoSubobject_symm_apply 📋 Mathlib.CategoryTheory.Subpresheaf.Subobject
{C : Type u} [CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Functor Cᵒᵖ (Type w)) (X : CategoryTheory.Subobject F) : (RelIso.symm (CategoryTheory.Subpresheaf.orderIsoSubobject F)) X = CategoryTheory.Subpresheaf.range X.arrow - Finset.orderIsoColex_symm_apply 📋 Mathlib.Combinatorics.Colex
(s : Colex (Finset ℕ)) : (RelIso.symm Finset.orderIsoColex) s = Finset.equivBitIndices.symm (ofColex s) - YoungDiagram.transposeOrderIso_symm_apply 📋 Mathlib.Combinatorics.Young.YoungDiagram
(μ : YoungDiagram) : (RelIso.symm YoungDiagram.transposeOrderIso) μ = μ.transpose
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 94e04f1