Loogle!
Result
Found 197 declarations mentioning RingHomClass. Of these, 12 match your pattern(s).
- RingHomClass.toRingHom 📋 Mathlib.Algebra.Ring.Hom.Defs
{F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} [RingHomClass F α β] (f : F) : α →+* β - instCoeTCRingHom 📋 Mathlib.Algebra.Ring.Hom.Defs
{F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} [RingHomClass F α β] : CoeTC F (α →+* β) - OrderRingHomClass.toOrderRingHom 📋 Mathlib.Algebra.Order.Hom.Ring
{F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] [OrderHomClass F α β] [RingHomClass F α β] (f : F) : α →+*o β - instCoeTCOrderRingHomOfOrderHomClassOfRingHomClass 📋 Mathlib.Algebra.Order.Hom.Ring
{F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] [OrderHomClass F α β] [RingHomClass F α β] : CoeTC F (α →+*o β) - RingHom.ker 📋 Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [Semiring R] [Semiring S] [FunLike F R S] [rcf : RingHomClass F R S] (f : F) : Ideal R - Ideal.comap 📋 Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [Semiring R] [Semiring S] [FunLike F R S] (f : F) [RingHomClass F R S] (I : Ideal S) : Ideal R - Ideal.mapHom 📋 Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [CommSemiring R] [CommSemiring S] [FunLike F R S] [rc : RingHomClass F R S] (f : F) : Ideal R →+* Ideal S - Ideal.orderEmbeddingOfSurjective 📋 Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [Semiring R] [Semiring S] [FunLike F R S] (f : F) [RingHomClass F R S] (hf : Function.Surjective ⇑f) : Ideal S ↪o Ideal R - Ideal.relIsoOfBijective 📋 Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [Semiring R] [Semiring S] [FunLike F R S] (f : F) [RingHomClass F R S] (hf : Function.Bijective ⇑f) : Ideal S ≃o Ideal R - Ideal.giMapComap 📋 Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [Semiring R] [Semiring S] [FunLike F R S] (f : F) [RingHomClass F R S] (hf : Function.Surjective ⇑f) : GaloisInsertion (Ideal.map f) (Ideal.comap f) - Ideal.relIsoOfSurjective 📋 Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [Ring R] [Ring S] [FunLike F R S] [RingHomClass F R S] (f : F) (hf : Function.Surjective ⇑f) : Ideal S ≃o { p // Ideal.comap f ⊥ ≤ p } - RatFunc.mapRingHom 📋 Mathlib.FieldTheory.RatFunc.Basic
{R : Type u_3} {S : Type u_4} {F : Type u_5} [CommRing R] [CommRing S] [FunLike F (Polynomial R) (Polynomial S)] [RingHomClass F (Polynomial R) (Polynomial S)] (φ : F) (hφ : nonZeroDivisors (Polynomial R) ≤ Submonoid.comap φ (nonZeroDivisors (Polynomial S))) : RatFunc R →+* RatFunc S
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454