Loogle!
Result
Found 6 declarations mentioning AddCommute.map.
- AddCommute.map 📋 Mathlib.Algebra.Group.Commute.Hom
{F : Type u_1} {M : Type u_2} {N : Type u_3} [Add M] [Add N] {x y : M} [FunLike F M N] [AddHomClass F M N] (h : AddCommute x y) (f : F) : AddCommute (f x) (f y) - Finset.map_noncommSum 📋 Mathlib.Data.Finset.NoncommProd
{F : Type u_1} {α : Type u_3} {β : Type u_4} {γ : Type u_5} [AddMonoid β] [AddMonoid γ] [FunLike F β γ] [AddMonoidHomClass F β γ] (s : Finset α) (f : α → β) (comm : (↑s).Pairwise (Function.onFun AddCommute f)) (g : F) : g (s.noncommSum f comm) = s.noncommSum (fun i => g (f i)) ⋯ - AddMonoidHom.comp_noncommPiCoprod 📋 Mathlib.GroupTheory.NoncommPiCoprod
{M : Type u_1} [AddMonoid M] {ι : Type u_2} [Fintype ι] {N : ι → Type u_3} [(i : ι) → AddMonoid (N i)] (ϕ : (i : ι) → N i →+ M) {hcomm : Pairwise fun i j => ∀ (x : N i) (y : N j), AddCommute ((ϕ i) x) ((ϕ j) y)} {P : Type u_4} [AddMonoid P] {f : M →+ P} (hcomm' : Pairwise fun i j => ∀ (x : N i) (y : N j), AddCommute ((f.comp (ϕ i)) x) ((f.comp (ϕ j)) y) := ⋯) : f.comp (AddMonoidHom.noncommPiCoprod ϕ hcomm) = AddMonoidHom.noncommPiCoprod (fun i => f.comp (ϕ i)) hcomm' - AddHom.comp_noncommCoprod 📋 Mathlib.GroupTheory.NoncommCoprod
{M : Type u_1} {N : Type u_2} {P : Type u_3} [Add M] [Add N] [AddSemigroup P] (f : M →ₙ+ P) (g : N →ₙ+ P) {Q : Type u_4} [AddSemigroup Q] (h : P →ₙ+ Q) (comm : ∀ (m : M) (n : N), AddCommute (f m) (g n)) : h.comp (f.noncommCoprod g comm) = (h.comp f).noncommCoprod (h.comp g) ⋯ - AddMonoidHom.noncommCoprod_unique 📋 Mathlib.GroupTheory.NoncommCoprod
{M : Type u_1} {N : Type u_2} {P : Type u_3} [AddZeroClass M] [AddZeroClass N] [AddMonoid P] (f : M × N →+ P) : (f.comp (AddMonoidHom.inl M N)).noncommCoprod (f.comp (AddMonoidHom.inr M N)) ⋯ = f - AddMonoidHom.comp_noncommCoprod 📋 Mathlib.GroupTheory.NoncommCoprod
{M : Type u_1} {N : Type u_2} {P : Type u_3} [AddZeroClass M] [AddZeroClass N] [AddMonoid P] (f : M →+ P) (g : N →+ P) (comm : ∀ (m : M) (n : N), AddCommute (f m) (g n)) {Q : Type u_4} [AddMonoid Q] (h : P →+ Q) : h.comp (f.noncommCoprod g comm) = (h.comp f).noncommCoprod (h.comp g) ⋯
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65