Loogle!
Result
Found 16 declarations mentioning AddMonoid.Coprod.map.
- AddMonoid.Coprod.map 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (f : M →+ M') (g : N →+ N') : AddMonoid.Coprod M N →+ AddMonoid.Coprod M' N' - AddMonoid.Coprod.map_id_id 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] : AddMonoid.Coprod.map (AddMonoidHom.id M) (AddMonoidHom.id N) = AddMonoidHom.id (AddMonoid.Coprod M N) - AddMonoid.Coprod.map_comp_inl 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (f : M →+ M') (g : N →+ N') : (AddMonoid.Coprod.map f g).comp AddMonoid.Coprod.inl = AddMonoid.Coprod.inl.comp f - AddMonoid.Coprod.map_comp_inr 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (f : M →+ M') (g : N →+ N') : (AddMonoid.Coprod.map f g).comp AddMonoid.Coprod.inr = AddMonoid.Coprod.inr.comp g - AddMonoid.Coprod.swap_comp_map 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (f : M →+ M') (g : N →+ N') : (AddMonoid.Coprod.swap M' N').comp (AddMonoid.Coprod.map f g) = (AddMonoid.Coprod.map g f).comp (AddMonoid.Coprod.swap M N) - AddMonoid.Coprod.map_comp_map 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] {M'' : Type u_6} {N'' : Type u_7} [AddZeroClass M''] [AddZeroClass N''] (f' : M' →+ M'') (g' : N' →+ N'') (f : M →+ M') (g : N →+ N') : (AddMonoid.Coprod.map f' g').comp (AddMonoid.Coprod.map f g) = AddMonoid.Coprod.map (f'.comp f) (g'.comp g) - AddMonoid.Coprod.map_apply_inl 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (f : M →+ M') (g : N →+ N') (x : M) : (AddMonoid.Coprod.map f g) (AddMonoid.Coprod.inl x) = AddMonoid.Coprod.inl (f x) - AddMonoid.Coprod.map_apply_inr 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (f : M →+ M') (g : N →+ N') (x : N) : (AddMonoid.Coprod.map f g) (AddMonoid.Coprod.inr x) = AddMonoid.Coprod.inr (g x) - AddMonoid.Coprod.map.eq_1 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (f : M →+ M') (g : N →+ N') : AddMonoid.Coprod.map f g = AddMonoid.Coprod.clift (AddMonoid.Coprod.mk.comp (FreeAddMonoid.map (Sum.map ⇑f ⇑g))) ⋯ ⋯ ⋯ ⋯ - AddMonoid.Coprod.map_map 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] {M'' : Type u_6} {N'' : Type u_7} [AddZeroClass M''] [AddZeroClass N''] (f' : M' →+ M'') (g' : N' →+ N'') (f : M →+ M') (g : N →+ N') (x : AddMonoid.Coprod M N) : (AddMonoid.Coprod.map f' g') ((AddMonoid.Coprod.map f g) x) = (AddMonoid.Coprod.map (f'.comp f) (g'.comp g)) x - AddMonoid.Coprod.swap_map 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (f : M →+ M') (g : N →+ N') (x : AddMonoid.Coprod M N) : (AddMonoid.Coprod.swap M' N') ((AddMonoid.Coprod.map f g) x) = (AddMonoid.Coprod.map g f) ((AddMonoid.Coprod.swap M N) x) - AddMonoid.MulEquiv.coprodCongr.eq_1 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (e : M ≃+ N) (e' : M' ≃+ N') : AddMonoid.MulEquiv.coprodCongr e e' = (AddMonoid.Coprod.map ↑e ↑e').toAddEquiv (AddMonoid.Coprod.map ↑e.symm ↑e'.symm) ⋯ ⋯ - AddMonoid.MulEquiv.coprodCongr_apply 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (e : M ≃+ N) (e' : M' ≃+ N') : ⇑(AddMonoid.MulEquiv.coprodCongr e e') = ⇑(AddMonoid.Coprod.map ↑e ↑e') - AddMonoid.MulEquiv.coprodCongr_symm_apply 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (e : M ≃+ N) (e' : M' ≃+ N') : ⇑(AddMonoid.MulEquiv.coprodCongr e e').symm = ⇑(AddMonoid.Coprod.map ↑e.symm ↑e'.symm) - AddMonoid.Coprod.map_mk_ofList 📋 Mathlib.GroupTheory.Coprod.Basic
{M : Type u_1} {N : Type u_2} {M' : Type u_3} {N' : Type u_4} [AddZeroClass M] [AddZeroClass N] [AddZeroClass M'] [AddZeroClass N'] (f : M →+ M') (g : N →+ N') (l : List (M ⊕ N)) : (AddMonoid.Coprod.map f g) (AddMonoid.Coprod.mk (FreeAddMonoid.ofList l)) = AddMonoid.Coprod.mk (FreeAddMonoid.ofList (List.map (Sum.map ⇑f ⇑g) l)) - AddMonoid.MulEquiv.coprodAssoc.eq_1 📋 Mathlib.GroupTheory.Coprod.Basic
(M : Type u_1) (N : Type u_2) (P : Type u_3) [AddMonoid M] [AddMonoid N] [AddMonoid P] : AddMonoid.MulEquiv.coprodAssoc M N P = (AddMonoid.Coprod.lift (AddMonoid.Coprod.map (AddMonoidHom.id M) AddMonoid.Coprod.inl) (AddMonoid.Coprod.inr.comp AddMonoid.Coprod.inr)).toAddEquiv (AddMonoid.Coprod.lift (AddMonoid.Coprod.inl.comp AddMonoid.Coprod.inl) (AddMonoid.Coprod.map AddMonoid.Coprod.inr (AddMonoidHom.id P))) ⋯ ⋯
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65