Loogle!
Result
Found 439 declarations mentioning AddSubgroup and AddMonoidHom. Of these, only the first 200 are shown.
- AddSubgroup.subtype ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] (H : AddSubgroup G) : โฅH โ+ G - AddSubgroup.inclusion ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H โค K) : โฅH โ+ โฅK - AddSubgroup.subtype_injective ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] (s : AddSubgroup G) : Function.Injective โs.subtype - AddSubgroup.coeSubtype ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] (H : AddSubgroup G) : โH.subtype = Subtype.val - AddSubgroup.coe_subtype ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] (H : AddSubgroup G) : โH.subtype = Subtype.val - AddSubgroup.subtype_apply ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {s : AddSubgroup G} (x : โฅs) : s.subtype x = โx - AddSubgroup.subtype_comp_inclusion ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (hH : H โค K) : K.subtype.comp (AddSubgroup.inclusion hH) = H.subtype - AddSubgroup.subtype.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] (H : AddSubgroup G) : H.subtype = { toFun := Subtype.val, map_zero' := โฏ, map_add' := โฏ } - AddSubgroup.inclusion.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H โค K) : AddSubgroup.inclusion h = AddMonoidHom.mk' (fun x => โจโx, โฏโฉ) โฏ - AddSubgroup.inclusion_injective ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H โค K) : Function.Injective โ(AddSubgroup.inclusion h) - AddSubgroup.coe_inclusion ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} {h : H โค K} (a : โฅH) : โ((AddSubgroup.inclusion h) a) = โa - AddSubgroup.inclusion_inj ๐ Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H โค K) {x y : โฅH} : (AddSubgroup.inclusion h) x = (AddSubgroup.inclusion h) y โ x = y - AddSubgroup.comap ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] (f : G โ+ N) (H : AddSubgroup N) : AddSubgroup G - AddSubgroup.map ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (H : AddSubgroup G) : AddSubgroup N - AddSubgroup.comap_top ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : AddSubgroup.comap f โค = โค - AddSubgroup.map_bot ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : AddSubgroup.map f โฅ = โฅ - AddSubgroup.le_comap_map ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (H : AddSubgroup G) : H โค AddSubgroup.comap f (AddSubgroup.map f H) - AddSubgroup.map_comap_le ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) โค H - AddSubgroup.comap_iInf ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ฮน : Sort u_7} (f : G โ+ N) (s : ฮน โ AddSubgroup N) : AddSubgroup.comap f (iInf s) = โจ i, AddSubgroup.comap f (s i) - AddSubgroup.comap_inf ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup N) (f : G โ+ N) : AddSubgroup.comap f (H โ K) = AddSubgroup.comap f H โ AddSubgroup.comap f K - AddSubgroup.gc_map_comap ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : GaloisConnection (AddSubgroup.map f) (AddSubgroup.comap f) - AddSubgroup.map_iSup ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ฮน : Sort u_7} (f : G โ+ N) (s : ฮน โ AddSubgroup G) : AddSubgroup.map f (iSup s) = โจ i, AddSubgroup.map f (s i) - AddSubgroup.map_zero_eq_bot ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] : AddSubgroup.map 0 K = โฅ - AddSubgroup.map_isAddCommutative ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G โ+ G') [IsAddCommutative โฅH] : IsAddCommutative โฅ(AddSubgroup.map f H) - AddSubgroup.map_isCommutative ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G โ+ G') [IsAddCommutative โฅH] : IsAddCommutative โฅ(AddSubgroup.map f H) - AddMonoidHom.map_closure ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (s : Set G) : AddSubgroup.map f (AddSubgroup.closure s) = AddSubgroup.closure (โf '' s) - AddSubgroup.map_inf_le ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G โ+ N) : AddSubgroup.map f (H โ K) โค AddSubgroup.map f H โ AddSubgroup.map f K - AddSubgroup.map_top_of_surjective ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (h : Function.Surjective โf) : AddSubgroup.map f โค = โค - AddSubgroup.comap_mono ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {K K' : AddSubgroup N} : K โค K' โ AddSubgroup.comap f K โค AddSubgroup.comap f K' - AddSubgroup.map_mono ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {K K' : AddSubgroup G} : K โค K' โ AddSubgroup.map f K โค AddSubgroup.map f K' - AddSubgroup.map_le_iff_le_comap ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {K : AddSubgroup G} {H : AddSubgroup N} : AddSubgroup.map f K โค H โ K โค AddSubgroup.comap f H - AddSubgroup.map_sup ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G โ+ N) : AddSubgroup.map f (H โ K) = AddSubgroup.map f H โ AddSubgroup.map f K - AddSubgroup.coe_comap ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (K : AddSubgroup N) (f : G โ+ N) : โ(AddSubgroup.comap f K) = โf โปยน' โK - AddSubgroup.coe_map ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (K : AddSubgroup G) : โ(AddSubgroup.map f K) = โf '' โK - AddSubgroup.comap_comap ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {P : Type u_6} [AddGroup P] (K : AddSubgroup P) (g : N โ+ P) (f : G โ+ N) : AddSubgroup.comap f (AddSubgroup.comap g K) = AddSubgroup.comap (g.comp f) K - AddSubgroup.map_map ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] {P : Type u_6} [AddGroup P] (g : N โ+ P) (f : G โ+ N) : AddSubgroup.map g (AddSubgroup.map f K) = AddSubgroup.map (g.comp f) K - AddSubgroup.iSup_comap_le ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ฮน : Sort u_7} (f : G โ+ N) (s : ฮน โ AddSubgroup N) : โจ i, AddSubgroup.comap f (s i) โค AddSubgroup.comap f (iSup s) - AddSubgroup.mem_map_of_mem ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) {K : AddSubgroup G} {x : G} (hx : x โ K) : f x โ AddSubgroup.map f K - AddSubgroup.mem_comap ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {K : AddSubgroup N} {f : G โ+ N} {x : G} : x โ AddSubgroup.comap f K โ f x โ K - AddMonoidHom.closure_preimage_le ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (s : Set N) : AddSubgroup.closure (โf โปยน' s) โค AddSubgroup.comap f (AddSubgroup.closure s) - AddSubgroup.map_iInf ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ฮน : Sort u_7} [Nonempty ฮน] (f : G โ+ N) (hf : Function.Injective โf) (s : ฮน โ AddSubgroup G) : AddSubgroup.map f (iInf s) = โจ i, AddSubgroup.map f (s i) - AddSubgroup.map_inf ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G โ+ N) (hf : Function.Injective โf) : AddSubgroup.map f (H โ K) = AddSubgroup.map f H โ AddSubgroup.map f K - AddSubgroup.map_inf_eq ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G โ+ N) (hf : Function.Injective โf) : AddSubgroup.map f (H โ K) = AddSubgroup.map f H โ AddSubgroup.map f K - AddSubgroup.mem_map ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {K : AddSubgroup G} {y : N} : y โ AddSubgroup.map f K โ โ x โ K, f x = y - AddSubgroup.comap_sup_comap_le ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup N) (f : G โ+ N) : AddSubgroup.comap f H โ AddSubgroup.comap f K โค AddSubgroup.comap f (H โ K) - AddSubgroup.map_toAddSubmonoid ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G โ+ G') (K : AddSubgroup G) : (AddSubgroup.map f K).toAddSubmonoid = AddSubmonoid.map f K.toAddSubmonoid - AddSubgroup.apply_coe_mem_map ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (K : AddSubgroup G) (x : โฅK) : f โx โ AddSubgroup.map f K - AddSubgroup.equivMapOfInjective ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G โ+ N) (hf : Function.Injective โf) : โฅH โ+ โฅ(AddSubgroup.map f H) - AddSubgroup.comap_injective_isAddCommutative ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G' โ+ G} (hf : Function.Injective โf) [IsAddCommutative โฅH] : IsAddCommutative โฅ(AddSubgroup.comap f H) - AddSubgroup.comap_injective_isCommutative ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G' โ+ G} (hf : Function.Injective โf) [IsAddCommutative โฅH] : IsAddCommutative โฅ(AddSubgroup.comap f H) - AddSubgroup.comap.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] (f : G โ+ N) (H : AddSubgroup N) : AddSubgroup.comap f H = { carrier := โf โปยน' โH, add_mem' := โฏ, zero_mem' := โฏ, neg_mem' := โฏ } - AddSubgroup.map.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (H : AddSubgroup G) : AddSubgroup.map f H = { carrier := โf '' โH, add_mem' := โฏ, zero_mem' := โฏ, neg_mem' := โฏ } - AddSubgroup.mem_map_iff_mem ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} (hf : Function.Injective โf) {K : AddSubgroup G} {x : G} : f x โ AddSubgroup.map f K โ x โ K - AddMonoidHom.addSubgroupComap ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G โ+ G') (H' : AddSubgroup G') : โฅ(AddSubgroup.comap f H') โ+ โฅH' - AddMonoidHom.addSubgroupMap ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G โ+ G') (H : AddSubgroup G) : โฅH โ+ โฅ(AddSubgroup.map f H) - AddSubgroup.map_eq_comap_of_inverse ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {g : N โ+ G} (hl : Function.LeftInverse โg โf) (hr : Function.RightInverse โg โf) (H : AddSubgroup G) : AddSubgroup.map f H = AddSubgroup.comap g H - AddMonoidHom.addSubgroupComap.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G โ+ G') (H' : AddSubgroup G') : f.addSubgroupComap H' = f.addSubmonoidComap H'.toAddSubmonoid - AddMonoidHom.addSubgroupMap.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G โ+ G') (H : AddSubgroup G) : f.addSubgroupMap H = f.addSubmonoidMap H.toAddSubmonoid - AddSubgroup.equivMapOfInjective.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G โ+ N) (hf : Function.Injective โf) : H.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (โf) (โH) hf, map_add' := โฏ } - AddSubgroup.comap_toAddSubmonoid ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (e : G โ+ N) (s : AddSubgroup N) : (AddSubgroup.comap (โe) s).toAddSubmonoid = AddSubmonoid.comap e.toAddMonoidHom s.toAddSubmonoid - AddSubgroup.coe_addSubgroupOf ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (H K : AddSubgroup G) : โ(H.addSubgroupOf K) = โK.subtype โปยน' โH - AddSubgroup.coe_equivMapOfInjective_apply ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G โ+ N) (hf : Function.Injective โf) (h : โฅH) : โ((H.equivMapOfInjective f hf) h) = f โh - AddMonoidHom.addSubgroupMap_surjective ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G โ+ G') (H : AddSubgroup G) : Function.Surjective โ(f.addSubgroupMap H) - AddSubgroup.toSubgroup_comap ๐ Mathlib.Algebra.Group.Subgroup.Map
{A : Type u_7} {Aโ : Type u_8} [AddGroup A] [AddGroup Aโ] (f : A โ+ Aโ) (s : AddSubgroup Aโ) : Subgroup.comap (AddMonoidHom.toMultiplicative f) (AddSubgroup.toSubgroup s) = AddSubgroup.toSubgroup (AddSubgroup.comap f s) - Subgroup.toAddSubgroup_comap ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {Gโ : Type u_7} [Group Gโ] (f : G โ* Gโ) (s : Subgroup Gโ) : AddSubgroup.comap (MonoidHom.toAdditive f) (Subgroup.toAddSubgroup s) = Subgroup.toAddSubgroup (Subgroup.comap f s) - AddMonoidHom.addSubgroupComap_surjective_of_surjective ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G โ+ G') (H' : AddSubgroup G') (hf : Function.Surjective โf) : Function.Surjective โ(f.addSubgroupComap H') - AddMonoidHom.addSubgroupMap_apply_coe ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G โ+ G') (H : AddSubgroup G) (x : โฅH.toAddSubmonoid) : โ((f.addSubgroupMap H) x) = f โx - AddMonoidHom.addSubgroupComap_apply_coe ๐ Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G โ+ G') (H' : AddSubgroup G') (x : โฅ(AddSubmonoid.comap f H'.toAddSubmonoid)) : โ((f.addSubgroupComap H') x) = f โx - AddMonoidHom.ker ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G โ+ M) : AddSubgroup G - AddMonoidHom.range ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : AddSubgroup N - AddMonoidHom.eqLocus ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] (f g : G โ+ M) : AddSubgroup G - AddMonoidHom.decidableMemKer ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] [DecidableEq M] (f : G โ+ M) : DecidablePred fun x => x โ f.ker - AddMonoidHom.eqLocus_same ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : f.eqLocus f = โค - AddMonoidHom.ker_toHomAddUnits ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_8} [AddMonoid M] (f : G โ+ M) : f.toHomAddUnits.ker = f.ker - AddMonoidHom.range_eq_map ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : f.range = AddSubgroup.map f โค - AddMonoidHom.comap_bot ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : AddSubgroup.comap f โฅ = f.ker - AddSubgroup.map_comap_eq ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) = f.range โ H - AddMonoidHom.ker_zero ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] : AddMonoidHom.ker 0 = โค - AddMonoidHom.range_isAddCommutative ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_7} [AddCommGroup G] {N : Type u_8} [AddGroup N] (f : G โ+ N) : IsAddCommutative โฅf.range - AddMonoidHom.range_isCommutative ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_7} [AddCommGroup G] {N : Type u_8} [AddGroup N] (f : G โ+ N) : IsAddCommutative โฅf.range - AddSubgroup.map_le_range ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (H : AddSubgroup G) : AddSubgroup.map f H โค f.range - AddMonoidHom.ker_eq_bot_iff ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G โ+ M) : f.ker = โฅ โ Function.Injective โf - AddSubgroup.ker_le_comap ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (H : AddSubgroup N) : f.ker โค AddSubgroup.comap f H - AddMonoidHom.eqLocus.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] (f g : G โ+ M) : f.eqLocus g = { toAddSubmonoid := f.eqLocusM g, neg_mem' := โฏ } - AddSubgroup.map_comap_eq_self ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {H : AddSubgroup N} (h : H โค f.range) : AddSubgroup.map f (AddSubgroup.comap f H) = H - AddSubgroup.comap_map_eq ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (H : AddSubgroup G) : AddSubgroup.comap f (AddSubgroup.map f H) = H โ f.ker - AddMonoidHom.ker.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G โ+ M) : f.ker = { toAddSubmonoid := AddMonoidHom.mker f, neg_mem' := โฏ } - AddMonoidHom.range_zero ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] : AddMonoidHom.range 0 = โฅ - AddMonoidHom.mem_ker ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] {f : G โ+ M} {x : G} : x โ f.ker โ f x = 0 - AddMonoidHom.coe_ker ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G โ+ M) : โf.ker = โf โปยน' {0} - AddSubgroup.comap_injective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} (h : Function.Surjective โf) : Function.Injective (AddSubgroup.comap f) - AddSubgroup.map_injective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} (h : Function.Injective โf) : Function.Injective (AddSubgroup.map f) - AddMonoidHom.comap_ker ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {P : Type u_8} [AddZeroClass P] (g : N โ+ P) (f : G โ+ N) : AddSubgroup.comap f g.ker = (g.comp f).ker - AddMonoidHom.ker_prod ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_8} {N : Type u_9} [AddZeroClass M] [AddZeroClass N] (f : G โ+ M) (g : G โ+ N) : (f.prod g).ker = f.ker โ g.ker - AddMonoidHom.ker_sum ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_8} {N : Type u_9} [AddZeroClass M] [AddZeroClass N] (f : G โ+ M) (g : G โ+ N) : (f.prod g).ker = f.ker โ g.ker - AddSubgroup.comap_map_eq_self ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {H : AddSubgroup G} (h : f.ker โค H) : AddSubgroup.comap f (AddSubgroup.map f H) = H - AddSubgroup.map_eq_bot_iff ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G โ+ N} : AddSubgroup.map f H = โฅ โ H โค f.ker - AddMonoidHom.coe_range ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : โf.range = Set.range โf - AddMonoidHom.range_eq_top_of_surjective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] (f : G โ+ N) (hf : Function.Surjective โf) : f.range = โค - AddMonoidHom.range_eq_top ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] {f : G โ+ N} : f.range = โค โ Function.Surjective โf - AddSubgroup.comap_map_eq_self_of_injective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} (h : Function.Injective โf) (H : AddSubgroup G) : AddSubgroup.comap f (AddSubgroup.map f H) = H - AddSubgroup.map_comap_eq_self_of_surjective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} (h : Function.Surjective โf) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) = H - AddMonoidHom.map_range ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} {P : Type u_6} [AddGroup N] [AddGroup P] (g : N โ+ P) (f : G โ+ N) : AddSubgroup.map g f.range = (g.comp f).range - AddMonoidHom.mem_range ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {y : N} : y โ f.range โ โ x, f x = y - AddMonoidHom.range_comp ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} {P : Type u_6} [AddGroup N] [AddGroup P] (g : N โ+ P) (f : G โ+ N) : (g.comp f).range = AddSubgroup.map g f.range - AddMonoidHom.range.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : f.range = (AddSubgroup.map f โค).copy (Set.range โf) โฏ - AddSubgroup.map_eq_bot_iff_of_injective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G โ+ N} (hf : Function.Injective โf) : AddSubgroup.map f H = โฅ โ H = โฅ - AddMonoidHom.restrict_range ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (K : AddSubgroup G) (f : G โ+ N) : (f.restrict K).range = AddSubgroup.map f K - AddSubgroup.map_eq_range_iff ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {H : AddSubgroup G} : AddSubgroup.map f H = f.range โ Codisjoint H f.ker - AddMonoidHom.ofInjective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} (hf : Function.Injective โf) : G โ+ โฅf.range - AddSubgroup.map_eq_map_iff ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {H K : AddSubgroup G} : AddSubgroup.map f H = AddSubgroup.map f K โ H โ f.ker = K โ f.ker - AddSubgroup.comap_le_comap_of_le_range ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {K L : AddSubgroup N} (hf : K โค f.range) : AddSubgroup.comap f K โค AddSubgroup.comap f L โ K โค L - AddSubgroup.map_le_map_iff ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {H K : AddSubgroup G} : AddSubgroup.map f H โค AddSubgroup.map f K โ H โค K โ f.ker - AddMonoidHom.eq_iff ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G โ+ M) {x y : G} : f x = f y โ -y + x โ f.ker - AddSubgroup.map_injective_of_ker_le ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) {H K : AddSubgroup G} (hH : f.ker โค H) (hK : f.ker โค K) (hf : AddSubgroup.map f H = AddSubgroup.map f K) : H = K - AddMonoidHom.eq_of_eqOn_top ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] {f g : G โ+ M} (h : Set.EqOn โf โg โโค) : f = g - AddMonoidHom.eq_of_eqOn_dense ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] {s : Set G} (hs : AddSubgroup.closure s = โค) {f g : G โ+ M} (h : Set.EqOn (โf) (โg) s) : f = g - AddSubgroup.comap_le_comap_of_surjective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {K L : AddSubgroup N} (hf : Function.Surjective โf) : AddSubgroup.comap f K โค AddSubgroup.comap f L โ K โค L - AddSubgroup.comap_lt_comap_of_surjective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {K L : AddSubgroup N} (hf : Function.Surjective โf) : AddSubgroup.comap f K < AddSubgroup.comap f L โ K < L - AddSubgroup.map_le_map_iff_of_injective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} (hf : Function.Injective โf) {H K : AddSubgroup G} : AddSubgroup.map f H โค AddSubgroup.map f K โ H โค K - AddSubgroup.map_lt_map_iff_of_injective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} (hf : Function.Injective โf) {H K : AddSubgroup G} : AddSubgroup.map f H < AddSubgroup.map f K โ H < K - AddSubgroup.comap_sup_eq ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (H K : AddSubgroup N) (hf : Function.Surjective โf) : AddSubgroup.comap f H โ AddSubgroup.comap f K = AddSubgroup.comap f (H โ K) - AddMonoidHom.ker_restrict ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (K : AddSubgroup G) (f : G โ+ N) : (f.restrict K).ker = f.ker.addSubgroupOf K - AddMonoidHom.rangeRestrict ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : G โ+ โฅf.range - AddMonoidHom.sub_mem_ker_iff ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) {x y : G} : x - y โ f.ker โ f x = f y - AddMonoidHom.ker_rangeRestrict ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : f.rangeRestrict.ker = f.ker - AddSubgroup.comap_sup_eq_of_le_range ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) {H K : AddSubgroup N} (hH : H โค f.range) (hK : K โค f.range) : AddSubgroup.comap f H โ AddSubgroup.comap f K = AddSubgroup.comap f (H โ K) - AddSubgroup.map_le_map_iff' ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {H K : AddSubgroup G} : AddSubgroup.map f H โค AddSubgroup.map f K โ H โ f.ker โค K โ f.ker - AddMonoidHom.ker_codRestrict ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {S : Type u_8} [SetLike S N] [AddSubmonoidClass S N] (f : G โ+ N) (s : S) (h : โ (x : G), f x โ s) : (f.codRestrict s h).ker = f.ker - AddMonoidHom.decidableMemKer.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] [DecidableEq M] (f : G โ+ M) (x : G) : f.decidableMemKer x = decidable_of_iff (f x = 0) โฏ - AddMonoidHom.ofLeftInverse ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {g : N โ+ G} (h : Function.LeftInverse โg โf) : G โ+ โฅf.range - AddMonoidHom.eqOn_closure ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] {f g : G โ+ M} {s : Set G} (h : Set.EqOn (โf) (โg) s) : Set.EqOn โf โg โ(AddSubgroup.closure s) - AddMonoidHom.subtype_comp_rangeRestrict ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : f.range.subtype.comp f.rangeRestrict = f - AddMonoidHom.rangeRestrict.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : f.rangeRestrict = f.codRestrict f.range โฏ - AddMonoidHom.range_le_ker_iff ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} {G' : Type u_2} {G'' : Type u_3} [AddGroup G] [AddGroup G'] [AddGroup G''] (f : G โ+ G') (g : G' โ+ G'') : f.range โค g.ker โ g.comp f = 0 - AddSubgroup.ker_addSubgroupMap ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G โ+ N) : (f.addSubgroupMap H).ker = f.ker.addSubgroupOf H - AddMonoidHom.rangeRestrict_surjective ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : Function.Surjective โf.rangeRestrict - MonoidHom.coe_toMultiplicative_ker ๐ Mathlib.Algebra.Group.Subgroup.Ker
{A : Type u_8} {A' : Type u_9} [AddGroup A] [AddZeroClass A'] (f : A โ+ A') : (AddMonoidHom.toMultiplicative f).ker = AddSubgroup.toSubgroup f.ker - AddMonoidHom.ofInjective_apply ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} (hf : Function.Injective โf) {x : G} : โ((AddMonoidHom.ofInjective hf) x) = f x - AddMonoidHom.ofInjective.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} (hf : Function.Injective โf) : AddMonoidHom.ofInjective hf = AddEquiv.ofBijective (f.codRestrict f.range โฏ) โฏ - AddMonoidHom.addSubgroupOf_range_eq_of_le ๐ Mathlib.Algebra.Group.Subgroup.Ker
{Gโ : Type u_7} {Gโ : Type u_8} [AddGroup Gโ] [AddGroup Gโ] {K : AddSubgroup Gโ} (f : Gโ โ+ Gโ) (h : f.range โค K) : f.range.addSubgroupOf K = (f.codRestrict K โฏ).range - AddMonoidHom.coe_rangeRestrict ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) (g : G) : โ(f.rangeRestrict g) = f g - AddMonoidHom.rangeRestrict_injective_iff ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} : Function.Injective โf.rangeRestrict โ Function.Injective โf - MonoidHom.coe_toAdditive_range ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G โ* G') : (MonoidHom.toAdditive f).range = Subgroup.toAddSubgroup f.range - MonoidHom.coe_toMultiplicative_range ๐ Mathlib.Algebra.Group.Subgroup.Ker
{A : Type u_7} {A' : Type u_8} [AddGroup A] [AddGroup A'] (f : A โ+ A') : (AddMonoidHom.toMultiplicative f).range = AddSubgroup.toSubgroup f.range - AddMonoidHom.coe_comp_rangeRestrict ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G โ+ N) : Subtype.val โ โf.rangeRestrict = โf - AddMonoidHom.ofLeftInverse_apply ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {g : N โ+ G} (h : Function.LeftInverse โg โf) (x : G) : โ((AddMonoidHom.ofLeftInverse h) x) = f x - MonoidHom.coe_toAdditive_ker ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G โ* G') : (MonoidHom.toAdditive f).ker = Subgroup.toAddSubgroup f.ker - AddSubgroup.closure_preimage_eq_top ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] (s : Set G) : AddSubgroup.closure (โ(AddSubgroup.closure s).subtype โปยน' s) = โค - AddMonoidHom.apply_ofInjective_symm ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} (hf : Function.Injective โf) (x : โฅf.range) : f ((AddMonoidHom.ofInjective hf).symm x) = โx - AddMonoidHom.ofLeftInverse_symm_apply ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {g : N โ+ G} (h : Function.LeftInverse โg โf) (x : โฅf.range) : (AddMonoidHom.ofLeftInverse h).symm x = g โx - AddMonoidHom.ofLeftInverse.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G โ+ N} {g : N โ+ G} (h : Function.LeftInverse โg โf) : AddMonoidHom.ofLeftInverse h = { toFun := โf.rangeRestrict, invFun := โg โ โf.range.subtype, left_inv := h, right_inv := โฏ, map_add' := โฏ } - AddMonoidHom.coe_toMultiplicative_map ๐ Mathlib.Algebra.Module.Submodule.Map
{G : Type u_10} {Gโ : Type u_11} [AddGroup G] [AddGroup Gโ] (f : G โ+ Gโ) (s : AddSubgroup G) : Subgroup.map (AddMonoidHom.toMultiplicative f) (AddSubgroup.toSubgroup s) = AddSubgroup.toSubgroup (AddSubgroup.map f s) - MonoidHom.coe_toAdditive_map ๐ Mathlib.Algebra.Module.Submodule.Map
{G : Type u_10} {Gโ : Type u_11} [Group G] [Group Gโ] (f : G โ* Gโ) (s : Subgroup G) : AddSubgroup.map (MonoidHom.toAdditive f) (Subgroup.toAddSubgroup s) = Subgroup.toAddSubgroup (Subgroup.map f s) - Submodule.AddMonoidHom.coe_toIntLinearMap_comap ๐ Mathlib.Algebra.Module.Submodule.Map
{A : Type u_10} {Aโ : Type u_11} [AddCommGroup A] [AddCommGroup Aโ] (f : A โ+ Aโ) (s : AddSubgroup Aโ) : Submodule.comap f.toIntLinearMap (AddSubgroup.toIntSubmodule s) = AddSubgroup.toIntSubmodule (AddSubgroup.comap f s) - AddMonoidHom.coe_toIntLinearMap_map ๐ Mathlib.Algebra.Module.Submodule.Map
{A : Type u_10} {Aโ : Type u_11} [AddCommGroup A] [AddCommGroup Aโ] (f : A โ+ Aโ) (s : AddSubgroup A) : Submodule.map f.toIntLinearMap (AddSubgroup.toIntSubmodule s) = AddSubgroup.toIntSubmodule (AddSubgroup.map f s) - AddMonoidHom.coe_toIntLinearMap_ker ๐ Mathlib.Algebra.Module.Submodule.Ker
{M : Type u_12} {Mโ : Type u_13} [AddCommGroup M] [AddCommGroup Mโ] (f : M โ+ Mโ) : LinearMap.ker f.toIntLinearMap = AddSubgroup.toIntSubmodule f.ker - AddSubgroup.normal_comap ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup N} [nH : H.Normal] (f : G โ+ N) : (AddSubgroup.comap f H).Normal - AddSubgroup.Normal.comap ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup N} (hH : H.Normal) (f : G โ+ N) : (AddSubgroup.comap f H).Normal - AddSubgroup.le_normalizer_comap ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} {N : Type u_5} [AddGroup N] (f : N โ+ G) : AddSubgroup.comap f H.normalizer โค (AddSubgroup.comap f H).normalizer - AddSubgroup.le_normalizer_map ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} {N : Type u_5} [AddGroup N] (f : G โ+ N) : AddSubgroup.map f H.normalizer โค (AddSubgroup.map f H).normalizer - AddSubgroup.comap_normalizer_eq_of_injective_of_le_range ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} {N : Type u_5} [AddGroup N] {f : N โ+ G} (h : H โค f.range) : AddSubgroup.comap f H.normalizer = (AddSubgroup.comap f H).normalizer - AddSubgroup.comap_normalizer_eq_of_le_range ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} {N : Type u_5} [AddGroup N] {f : N โ+ G} (h : H โค f.range) : AddSubgroup.comap f H.normalizer = (AddSubgroup.comap f H).normalizer - AddSubgroup.Normal.map ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup G} (h : H.Normal) (f : G โ+ N) (hf : Function.Surjective โf) : (AddSubgroup.map f H).Normal - AddSubgroup.comap_normalizer_eq_of_surjective ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : N โ+ G} (hf : Function.Surjective โf) : AddSubgroup.comap f H.normalizer = (AddSubgroup.comap f H).normalizer - AddSubgroup.map_normalizer_eq_of_bijective ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G โ+ N} (hf : Function.Bijective โf) : AddSubgroup.map f H.normalizer = (AddSubgroup.map f H).normalizer - AddMonoidHom.prodMap_comap_prod ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {G' : Type u_8} {N' : Type u_9} [AddGroup G'] [AddGroup N'] (f : G โ+ N) (g : G' โ+ N') (S : AddSubgroup N) (S' : AddSubgroup N') : AddSubgroup.comap (f.prodMap g) (S.prod S') = (AddSubgroup.comap f S).prod (AddSubgroup.comap g S') - AddMonoidHom.sumMap_comap_sum ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {G' : Type u_8} {N' : Type u_9} [AddGroup G'] [AddGroup N'] (f : G โ+ N) (g : G' โ+ N') (S : AddSubgroup N) (S' : AddSubgroup N') : AddSubgroup.comap (f.prodMap g) (S.prod S') = (AddSubgroup.comap f S).prod (AddSubgroup.comap g S') - AddMonoidHom.ker_prodMap ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {G' : Type u_8} {N' : Type u_9} [AddGroup G'] [AddGroup N'] (f : G โ+ N) (g : G' โ+ N') : (f.prodMap g).ker = f.ker.prod g.ker - AddMonoidHom.ker_sumMap ๐ Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {G' : Type u_8} {N' : Type u_9} [AddGroup G'] [AddGroup N'] (f : G โ+ N) (g : G' โ+ N') : (f.prodMap g).ker = f.ker.prod g.ker - AddMonoidHom.liftOfRightInverseAux ๐ Mathlib.Algebra.Group.Subgroup.Basic
{Gโ : Type u_5} {Gโ : Type u_6} {Gโ : Type u_7} [AddGroup Gโ] [AddGroup Gโ] [AddGroup Gโ] (f : Gโ โ+ Gโ) (f_inv : Gโ โ Gโ) (hf : Function.RightInverse f_inv โf) (g : Gโ โ+ Gโ) (hg : f.ker โค g.ker) : Gโ โ+ Gโ - AddMonoidHom.liftOfSurjective ๐ Mathlib.Algebra.Group.Subgroup.Basic
{Gโ : Type u_5} {Gโ : Type u_6} {Gโ : Type u_7} [AddGroup Gโ] [AddGroup Gโ] [AddGroup Gโ] (f : Gโ โ+ Gโ) (hf : Function.Surjective โf) : { g // f.ker โค g.ker } โ (Gโ โ+ Gโ) - AddMonoidHom.liftOfRightInverse ๐ Mathlib.Algebra.Group.Subgroup.Basic
{Gโ : Type u_5} {Gโ : Type u_6} {Gโ : Type u_7} [AddGroup Gโ] [AddGroup Gโ] [AddGroup Gโ] (f : Gโ โ+ Gโ) (f_inv : Gโ โ Gโ) (hf : Function.RightInverse f_inv โf) : { g // f.ker โค g.ker } โ (Gโ โ+ Gโ) - AddMonoidHom.liftOfSurjective.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Basic
{Gโ : Type u_5} {Gโ : Type u_6} {Gโ : Type u_7} [AddGroup Gโ] [AddGroup Gโ] [AddGroup Gโ] (f : Gโ โ+ Gโ) (hf : Function.Surjective โf) : f.liftOfSurjective hf = f.liftOfRightInverse (Function.surjInv hf) โฏ - AddMonoidHom.liftOfRightInverseAux_comp_apply ๐ Mathlib.Algebra.Group.Subgroup.Basic
{Gโ : Type u_5} {Gโ : Type u_6} {Gโ : Type u_7} [AddGroup Gโ] [AddGroup Gโ] [AddGroup Gโ] (f : Gโ โ+ Gโ) (f_inv : Gโ โ Gโ) (hf : Function.RightInverse f_inv โf) (g : Gโ โ+ Gโ) (hg : f.ker โค g.ker) (x : Gโ) : (f.liftOfRightInverseAux f_inv hf g hg) (f x) = g x - AddMonoidHom.liftOfRightInverseAux.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Basic
{Gโ : Type u_5} {Gโ : Type u_6} {Gโ : Type u_7} [AddGroup Gโ] [AddGroup Gโ] [AddGroup Gโ] (f : Gโ โ+ Gโ) (f_inv : Gโ โ Gโ) (hf : Function.RightInverse f_inv โf) (g : Gโ โ+ Gโ) (hg : f.ker โค g.ker) : f.liftOfRightInverseAux f_inv hf g hg = { toFun := fun b => g (f_inv b), map_zero' := โฏ, map_add' := โฏ } - AddMonoidHom.liftOfRightInverse.eq_1 ๐ Mathlib.Algebra.Group.Subgroup.Basic
{Gโ : Type u_5} {Gโ : Type u_6} {Gโ : Type u_7} [AddGroup Gโ] [AddGroup Gโ] [AddGroup Gโ] (f : Gโ โ+ Gโ) (f_inv : Gโ โ Gโ) (hf : Function.RightInverse f_inv โf) : f.liftOfRightInverse f_inv hf = { toFun := fun g => f.liftOfRightInverseAux f_inv hf โg โฏ, invFun := fun ฯ => โจฯ.comp f, โฏโฉ, left_inv := โฏ, right_inv := โฏ } - AddMonoidHom.liftOfRightInverse_comp ๐ Mathlib.Algebra.Group.Subgroup.Basic
{Gโ : Type u_5} {Gโ : Type u_6} {Gโ : Type u_7} [AddGroup Gโ] [AddGroup Gโ] [AddGroup Gโ] (f : Gโ โ+ Gโ) (f_inv : Gโ โ Gโ) (hf : Function.RightInverse f_inv โf) (g : { g // f.ker โค g.ker }) : ((f.liftOfRightInverse f_inv hf) g).comp f = โg - AddMonoidHom.eq_liftOfRightInverse ๐ Mathlib.Algebra.Group.Subgroup.Basic
{Gโ : Type u_5} {Gโ : Type u_6} {Gโ : Type u_7} [AddGroup Gโ] [AddGroup Gโ] [AddGroup Gโ] (f : Gโ โ+ Gโ) (f_inv : Gโ โ Gโ) (hf : Function.RightInverse f_inv โf) (g : Gโ โ+ Gโ) (hg : f.ker โค g.ker) (h : Gโ โ+ Gโ) (hh : h.comp f = g) : h = (f.liftOfRightInverse f_inv hf) โจg, hgโฉ - AddMonoidHom.liftOfRightInverse_comp_apply ๐ Mathlib.Algebra.Group.Subgroup.Basic
{Gโ : Type u_5} {Gโ : Type u_6} {Gโ : Type u_7} [AddGroup Gโ] [AddGroup Gโ] [AddGroup Gโ] (f : Gโ โ+ Gโ) (f_inv : Gโ โ Gโ) (hf : Function.RightInverse f_inv โf) (g : { g // f.ker โค g.ker }) (x : Gโ) : ((f.liftOfRightInverse f_inv hf) g) (f x) = โg x - AddMonoidHom.coe_toIntLinearMap_range ๐ Mathlib.Algebra.Module.Submodule.Range
{M : Type u_11} {Mโ : Type u_12} [AddCommGroup M] [AddCommGroup Mโ] (f : M โ+ Mโ) : LinearMap.range f.toIntLinearMap = AddSubgroup.toIntSubmodule f.range - AddMonoidHom.map_zmultiples ๐ Mathlib.Algebra.Group.Subgroup.ZPowers.Basic
{G : Type u_1} [AddGroup G] {N : Type u_3} [AddGroup N] (f : G โ+ N) (x : G) : AddSubgroup.map f (AddSubgroup.zmultiples x) = AddSubgroup.zmultiples (f x) - AddSubgroup.map_centralizer_le_centralizer_image ๐ Mathlib.GroupTheory.Subgroup.Centralizer
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (s : Set G) (f : G โ+ G') : AddSubgroup.map f (AddSubgroup.centralizer s) โค AddSubgroup.centralizer (โf '' s) - AddMonoidHom.graph ๐ Mathlib.Algebra.Group.Graph
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (f : G โ+ H) : AddSubgroup (G ร H) - AddMonoidHom.graph.eq_1 ๐ Mathlib.Algebra.Group.Graph
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (f : G โ+ H) : f.graph = { toAddSubmonoid := f.mgraph, neg_mem' := โฏ } - AddMonoidHom.graph_eq_range_prod ๐ Mathlib.Algebra.Group.Graph
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (f : G โ+ H) : f.graph = ((AddMonoidHom.id G).prod f).range - AddMonoidHom.coe_graph ๐ Mathlib.Algebra.Group.Graph
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (f : G โ+ H) : โf.graph = {x | f x.1 = x.2} - AddMonoidHom.mem_graph ๐ Mathlib.Algebra.Group.Graph
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] {f : G โ+ H} {x : G ร H} : x โ f.graph โ f x.1 = x.2 - AddMonoidHom.exists_range_eq_graph ๐ Mathlib.Algebra.Group.Graph
{G : Type u_1} {H : Type u_2} {I : Type u_3} [AddGroup G] [AddGroup H] [AddGroup I] {f : G โ+ H ร I} (hfโ : Function.Surjective (Prod.fst โ โf)) (hf : โ (gโ gโ : G), (f gโ).1 = (f gโ).1 โ (f gโ).2 = (f gโ).2) : โ f', f.range = f'.graph - AddMonoidHom.exists_addEquiv_range_eq_graph ๐ Mathlib.Algebra.Group.Graph
{G : Type u_1} {H : Type u_2} {I : Type u_3} [AddGroup G] [AddGroup H] [AddGroup I] {f : G โ+ H ร I} (hfโ : Function.Surjective (Prod.fst โ โf)) (hfโ : Function.Surjective (Prod.snd โ โf)) (hf : โ (gโ gโ : G), (f gโ).1 = (f gโ).1 โ (f gโ).2 = (f gโ).2) : โ e, f.range = e.toAddMonoidHom.graph - AddSubgroup.exists_eq_graph ๐ Mathlib.Algebra.Group.Graph
{H : Type u_2} {I : Type u_3} [AddGroup H] [AddGroup I] {G : AddSubgroup (H ร I)} (hGโ : Function.Bijective (Prod.fst โ โG.subtype)) : โ f, G = f.graph - AddSubgroup.exists_addEquiv_eq_graph ๐ Mathlib.Algebra.Group.Graph
{H : Type u_2} {I : Type u_3} [AddGroup H] [AddGroup I] {G : AddSubgroup (H ร I)} (hGโ : Function.Bijective (Prod.fst โ โG.subtype)) (hGโ : Function.Bijective (Prod.snd โ โG.subtype)) : โ e, G = e.toAddMonoidHom.graph - DFinsupp.ker_mapRangeAddMonoidHom ๐ Mathlib.LinearAlgebra.DFinsupp
{ฮน : Type u_1} {ฮฒโ : ฮน โ Type u_7} {ฮฒโ : ฮน โ Type u_8} [(i : ฮน) โ AddCommGroup (ฮฒโ i)] [(i : ฮน) โ AddCommMonoid (ฮฒโ i)] (f : (i : ฮน) โ ฮฒโ i โ+ ฮฒโ i) : (DFinsupp.mapRange.addMonoidHom f).ker = AddSubgroup.comap DFinsupp.coeFnAddMonoidHom (AddSubgroup.pi Set.univ fun x => (f x).ker) - DFinsupp.range_mapRangeAddMonoidHom ๐ Mathlib.LinearAlgebra.DFinsupp
{ฮน : Type u_1} {ฮฒโ : ฮน โ Type u_7} {ฮฒโ : ฮน โ Type u_8} [(i : ฮน) โ AddCommGroup (ฮฒโ i)] [(i : ฮน) โ AddCommGroup (ฮฒโ i)] (f : (i : ฮน) โ ฮฒโ i โ+ ฮฒโ i) : (DFinsupp.mapRange.addMonoidHom f).range = AddSubgroup.comap DFinsupp.coeFnAddMonoidHom (AddSubgroup.pi Set.univ fun x => (f x).range) - iSupIndep_of_dfinsuppSumAddHom_injective' ๐ Mathlib.LinearAlgebra.DFinsupp
{ฮน : Type u_1} {N : Type u_5} [DecidableEq ฮน] [AddCommGroup N] (p : ฮน โ AddSubgroup N) (h : Function.Injective โ(DFinsupp.sumAddHom fun i => (p i).subtype)) : iSupIndep p - iSupIndep_of_dfinsupp_sumAddHom_injective' ๐ Mathlib.LinearAlgebra.DFinsupp
{ฮน : Type u_1} {N : Type u_5} [DecidableEq ฮน] [AddCommGroup N] (p : ฮน โ AddSubgroup N) (h : Function.Injective โ(DFinsupp.sumAddHom fun i => (p i).subtype)) : iSupIndep p - independent_of_dfinsupp_sumAddHom_injective' ๐ Mathlib.LinearAlgebra.DFinsupp
{ฮน : Type u_1} {N : Type u_5} [DecidableEq ฮน] [AddCommGroup N] (p : ฮน โ AddSubgroup N) (h : Function.Injective โ(DFinsupp.sumAddHom fun i => (p i).subtype)) : iSupIndep p - Independent.dfinsupp_sumAddHom_injective ๐ Mathlib.LinearAlgebra.DFinsupp
{ฮน : Type u_1} {N : Type u_5} [DecidableEq ฮน] [AddCommGroup N] {p : ฮน โ AddSubgroup N} (h : iSupIndep p) : Function.Injective โ(DFinsupp.sumAddHom fun i => (p i).subtype) - iSupIndep.dfinsuppSumAddHom_injective ๐ Mathlib.LinearAlgebra.DFinsupp
{ฮน : Type u_1} {N : Type u_5} [DecidableEq ฮน] [AddCommGroup N] {p : ฮน โ AddSubgroup N} (h : iSupIndep p) : Function.Injective โ(DFinsupp.sumAddHom fun i => (p i).subtype) - iSupIndep.dfinsupp_sumAddHom_injective ๐ Mathlib.LinearAlgebra.DFinsupp
{ฮน : Type u_1} {N : Type u_5} [DecidableEq ฮน] [AddCommGroup N] {p : ฮน โ AddSubgroup N} (h : iSupIndep p) : Function.Injective โ(DFinsupp.sumAddHom fun i => (p i).subtype)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65