Loogle!
Result
Found 465 declarations mentioning AddSubgroup and AddMonoidHom. Of these, only the first 200 are shown.
- AddSubgroup.subtype π Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] (H : AddSubgroup G) : β₯H β+ G - AddSubgroup.inclusion π Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H β€ K) : β₯H β+ β₯K - AddSubgroup.subtype_injective π Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] (s : AddSubgroup G) : Function.Injective βs.subtype - AddSubgroup.coe_subtype π Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] (H : AddSubgroup G) : βH.subtype = Subtype.val - AddSubgroup.subtype_apply π Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {s : AddSubgroup G} (x : β₯s) : s.subtype x = βx - AddSubgroup.subtype_comp_inclusion π Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (hH : H β€ K) : K.subtype.comp (AddSubgroup.inclusion hH) = H.subtype - AddSubgroup.subtype.eq_1 π Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] (H : AddSubgroup G) : H.subtype = { toFun := Subtype.val, map_zero' := β―, map_add' := β― } - AddSubgroup.inclusion.eq_1 π Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H β€ K) : AddSubgroup.inclusion h = AddMonoidHom.mk' (fun x => β¨βx, β―β©) β― - AddSubgroup.inclusion_injective π Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H β€ K) : Function.Injective β(AddSubgroup.inclusion h) - AddSubgroup.coe_inclusion π Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H β€ K) (a : β₯H) : β((AddSubgroup.inclusion h) a) = βa - AddSubgroup.inclusion_inj π Mathlib.Algebra.Group.Subgroup.Defs
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H β€ K) {x y : β₯H} : (AddSubgroup.inclusion h) x = (AddSubgroup.inclusion h) y β x = y - AddSubgroup.comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] (f : G β+ N) (H : AddSubgroup N) : AddSubgroup G - AddSubgroup.map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup N - AddSubgroup.comap_top π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : AddSubgroup.comap f β€ = β€ - AddSubgroup.map_bot π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : AddSubgroup.map f β₯ = β₯ - AddSubgroup.le_comap_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : H β€ AddSubgroup.comap f (AddSubgroup.map f H) - AddSubgroup.map_comap_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) β€ H - AddSubgroup.gc_map_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : GaloisConnection (AddSubgroup.map f) (AddSubgroup.comap f) - AddSubgroup.comap_iInf π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ΞΉ : Sort u_7} (f : G β+ N) (s : ΞΉ β AddSubgroup N) : AddSubgroup.comap f (iInf s) = β¨ i, AddSubgroup.comap f (s i) - AddSubgroup.comap_inf π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup N) (f : G β+ N) : AddSubgroup.comap f (H β K) = AddSubgroup.comap f H β AddSubgroup.comap f K - AddSubgroup.comap_mono π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K K' : AddSubgroup N} : K β€ K' β AddSubgroup.comap f K β€ AddSubgroup.comap f K' - AddSubgroup.map_mono π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K K' : AddSubgroup G} : K β€ K' β AddSubgroup.map f K β€ AddSubgroup.map f K' - AddSubgroup.map_le_iff_le_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K : AddSubgroup G} {H : AddSubgroup N} : AddSubgroup.map f K β€ H β K β€ AddSubgroup.comap f H - AddSubgroup.map_iSup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ΞΉ : Sort u_7} (f : G β+ N) (s : ΞΉ β AddSubgroup G) : AddSubgroup.map f (iSup s) = β¨ i, AddSubgroup.map f (s i) - AddSubgroup.map_inf_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) : AddSubgroup.map f (H β K) β€ AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.map_isAddCommutative π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G β+ G') [IsAddCommutative β₯H] : IsAddCommutative β₯(AddSubgroup.map f H) - AddSubgroup.map_zero_eq_bot π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] : AddSubgroup.map 0 K = β₯ - AddSubgroup.iSup_comap_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ΞΉ : Sort u_7} (f : G β+ N) (s : ΞΉ β AddSubgroup N) : β¨ i, AddSubgroup.comap f (s i) β€ AddSubgroup.comap f (iSup s) - AddMonoidHom.map_closure π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (s : Set G) : AddSubgroup.map f (AddSubgroup.closure s) = AddSubgroup.closure (βf '' s) - AddSubgroup.map_sup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) : AddSubgroup.map f (H β K) = AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.map_top_of_surjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (h : Function.Surjective βf) : AddSubgroup.map f β€ = β€ - AddSubgroup.coe_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (K : AddSubgroup N) (f : G β+ N) : β(AddSubgroup.comap f K) = βf β»ΒΉ' βK - AddSubgroup.coe_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (K : AddSubgroup G) : β(AddSubgroup.map f K) = βf '' βK - AddMonoidHom.closure_preimage_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (s : Set N) : AddSubgroup.closure (βf β»ΒΉ' s) β€ AddSubgroup.comap f (AddSubgroup.closure s) - AddSubgroup.comap_sup_comap_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup N) (f : G β+ N) : AddSubgroup.comap f H β AddSubgroup.comap f K β€ AddSubgroup.comap f (H β K) - AddSubgroup.comap_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {P : Type u_6} [AddGroup P] (K : AddSubgroup P) (g : N β+ P) (f : G β+ N) : AddSubgroup.comap f (AddSubgroup.comap g K) = AddSubgroup.comap (g.comp f) K - AddSubgroup.map_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] {P : Type u_6} [AddGroup P] (g : N β+ P) (f : G β+ N) : AddSubgroup.map g (AddSubgroup.map f K) = AddSubgroup.map (g.comp f) K - AddSubgroup.mem_map_of_mem π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) {K : AddSubgroup G} {x : G} (hx : x β K) : f x β AddSubgroup.map f K - AddSubgroup.mem_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {K : AddSubgroup N} {f : G β+ N} {x : G} : x β AddSubgroup.comap f K β f x β K - AddSubgroup.map_iInf π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ΞΉ : Sort u_7} [Nonempty ΞΉ] (f : G β+ N) (hf : Function.Injective βf) (s : ΞΉ β AddSubgroup G) : AddSubgroup.map f (iInf s) = β¨ i, AddSubgroup.map f (s i) - AddSubgroup.map_inf π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : AddSubgroup.map f (H β K) = AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.map_inf_eq π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : AddSubgroup.map f (H β K) = AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.mem_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K : AddSubgroup G} {y : N} : y β AddSubgroup.map f K β β x β K, f x = y - AddSubgroup.surjOn_iff_le_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H : AddSubgroup G} {K : AddSubgroup N} : Set.SurjOn βf βH βK β K β€ AddSubgroup.map f H - AddSubgroup.apply_coe_mem_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (K : AddSubgroup G) (x : β₯K) : f βx β AddSubgroup.map f K - AddSubgroup.map_toAddSubmonoid π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (K : AddSubgroup G) : (AddSubgroup.map f K).toAddSubmonoid = AddSubmonoid.map f K.toAddSubmonoid - AddSubgroup.equivMapOfInjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : β₯H β+ β₯(AddSubgroup.map f H) - AddSubgroup.comap_injective_isAddCommutative π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G' β+ G} (hf : Function.Injective βf) [IsAddCommutative β₯H] : IsAddCommutative β₯(AddSubgroup.comap f H) - AddSubgroup.comap.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] (f : G β+ N) (H : AddSubgroup N) : AddSubgroup.comap f H = { carrier := βf β»ΒΉ' βH, add_mem' := β―, zero_mem' := β―, neg_mem' := β― } - AddSubgroup.map.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup.map f H = { carrier := βf '' βH, add_mem' := β―, zero_mem' := β―, neg_mem' := β― } - AddSubgroup.codisjoint_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Surjective βf) {H K : AddSubgroup G} (h : Codisjoint H K) : Codisjoint (AddSubgroup.map f H) (AddSubgroup.map f K) - AddSubgroup.disjoint_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) {H K : AddSubgroup G} (h : Disjoint H K) : Disjoint (AddSubgroup.map f H) (AddSubgroup.map f K) - AddSubgroup.mem_map_iff_mem π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) {K : AddSubgroup G} {x : G} : f x β AddSubgroup.map f K β x β K - AddMonoidHom.addSubgroupComap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H' : AddSubgroup G') : β₯(AddSubgroup.comap f H') β+ β₯H' - AddMonoidHom.addSubgroupMap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) : β₯H β+ β₯(AddSubgroup.map f H) - AddSubgroup.map_eq_comap_of_inverse π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {g : N β+ G} (hl : Function.LeftInverse βg βf) (hr : Function.RightInverse βg βf) (H : AddSubgroup G) : AddSubgroup.map f H = AddSubgroup.comap g H - AddSubgroup.equivMapOfInjective.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : H.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (βf) (βH) hf, map_add' := β― } - AddMonoidHom.addSubgroupComap.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H' : AddSubgroup G') : f.addSubgroupComap H' = f.addSubmonoidComap H'.toAddSubmonoid - AddMonoidHom.addSubgroupMap.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) : f.addSubgroupMap H = f.addSubmonoidMap H.toAddSubmonoid - AddSubgroup.comap_toAddSubmonoid π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (e : G β+ N) (s : AddSubgroup N) : (AddSubgroup.comap (βe) s).toAddSubmonoid = AddSubmonoid.comap e.toAddMonoidHom s.toAddSubmonoid - AddSubgroup.coe_addSubgroupOf π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (H K : AddSubgroup G) : β(H.addSubgroupOf K) = βK.subtype β»ΒΉ' βH - AddSubgroup.coe_equivMapOfInjective_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) (h : β₯H) : β((H.equivMapOfInjective f hf) h) = f βh - AddSubgroup.toSubgroup_comap π Mathlib.Algebra.Group.Subgroup.Map
{A : Type u_7} {Aβ : Type u_8} [AddGroup A] [AddGroup Aβ] (f : A β+ Aβ) (s : AddSubgroup Aβ) : Subgroup.comap (AddMonoidHom.toMultiplicative f) (AddSubgroup.toSubgroup s) = AddSubgroup.toSubgroup (AddSubgroup.comap f s) - Subgroup.toAddSubgroup_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {Gβ : Type u_7} [Group Gβ] (f : G β* Gβ) (s : Subgroup Gβ) : AddSubgroup.comap (MonoidHom.toAdditive f) (Subgroup.toAddSubgroup s) = Subgroup.toAddSubgroup (Subgroup.comap f s) - AddMonoidHom.addSubgroupMap_surjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) : Function.Surjective β(f.addSubgroupMap H) - AddMonoidHom.addSubgroupComap_surjective_of_surjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H' : AddSubgroup G') (hf : Function.Surjective βf) : Function.Surjective β(f.addSubgroupComap H') - AddMonoidHom.addSubgroupMap_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) (x : β₯H.toAddSubmonoid) : β((f.addSubgroupMap H) x) = f βx - AddMonoidHom.addSubgroupComap_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H' : AddSubgroup G') (x : β₯(AddSubmonoid.comap f H'.toAddSubmonoid)) : β((f.addSubgroupComap H') x) = f βx - AddMonoidHom.ker π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G β+ M) : AddSubgroup G - AddMonoidHom.range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : AddSubgroup N - AddMonoidHom.eqLocus π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] (f g : G β+ M) : AddSubgroup G - AddMonoidHom.decidableMemKer π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] [DecidableEq M] (f : G β+ M) : DecidablePred fun x => x β f.ker - AddMonoidHom.eqLocus_same π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : f.eqLocus f = β€ - AddMonoidHom.ker_toHomAddUnits π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_8} [AddMonoid M] (f : G β+ M) : f.toHomAddUnits.ker = f.ker - AddMonoidHom.range_eq_map π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : f.range = AddSubgroup.map f β€ - AddMonoidHom.comap_bot π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : AddSubgroup.comap f β₯ = f.ker - AddSubgroup.map_le_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup.map f H β€ f.range - AddSubgroup.map_comap_eq π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) = f.range β H - AddSubgroup.ker_le_comap π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup N) : f.ker β€ AddSubgroup.comap f H - AddMonoidHom.range_isAddCommutative π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_7} [AddCommGroup G] {N : Type u_8} [AddGroup N] (f : G β+ N) : IsAddCommutative β₯f.range - AddMonoidHom.ker_zero π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] : AddMonoidHom.ker 0 = β€ - AddSubgroup.map_comap_eq_self π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H : AddSubgroup N} (h : H β€ f.range) : AddSubgroup.map f (AddSubgroup.comap f H) = H - AddSubgroup.comap_map_eq_self π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H : AddSubgroup G} (h : f.ker β€ H) : AddSubgroup.comap f (AddSubgroup.map f H) = H - AddMonoidHom.eqLocus.eq_1 π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] (f g : G β+ M) : f.eqLocus g = { toAddSubmonoid := f.eqLocusM g, neg_mem' := β― } - AddMonoidHom.ker_eq_bot_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G β+ M) : f.ker = β₯ β Function.Injective βf - AddSubgroup.map_eq_bot_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G β+ N} : AddSubgroup.map f H = β₯ β H β€ f.ker - AddSubgroup.comap_map_eq π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup.comap f (AddSubgroup.map f H) = H β f.ker - AddMonoidHom.range_zero π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] : AddMonoidHom.range 0 = β₯ - AddMonoidHom.ker.eq_1 π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G β+ M) : f.ker = { toAddSubmonoid := AddMonoidHom.mker f, neg_mem' := β― } - AddMonoidHom.ker_prod π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_8} {N : Type u_9} [AddZeroClass M] [AddZeroClass N] (f : G β+ M) (g : G β+ N) : (f.prod g).ker = f.ker β g.ker - AddSubgroup.comap_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (h : Function.Surjective βf) : Function.Injective (AddSubgroup.comap f) - AddSubgroup.map_eq_range_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H : AddSubgroup G} : AddSubgroup.map f H = f.range β Codisjoint H f.ker - AddSubgroup.map_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (h : Function.Injective βf) : Function.Injective (AddSubgroup.map f) - AddMonoidHom.mem_ker π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] {f : G β+ M} {x : G} : x β f.ker β f x = 0 - AddMonoidHom.coe_ker π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G β+ M) : βf.ker = βf β»ΒΉ' {0} - AddMonoidHom.comap_ker π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {P : Type u_8} [AddZeroClass P] (g : N β+ P) (f : G β+ N) : AddSubgroup.comap f g.ker = (g.comp f).ker - AddMonoidHom.coe_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : βf.range = Set.range βf - AddMonoidHom.range_eq_top_of_surjective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] (f : G β+ N) (hf : Function.Surjective βf) : f.range = β€ - AddMonoidHom.range_eq_top π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] {f : G β+ N} : f.range = β€ β Function.Surjective βf - AddSubgroup.comap_map_eq_self_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (h : Function.Injective βf) (H : AddSubgroup G) : AddSubgroup.comap f (AddSubgroup.map f H) = H - AddSubgroup.map_comap_eq_self_of_surjective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (h : Function.Surjective βf) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) = H - AddMonoidHom.ker_eq_top_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] {f : G β+ M} : f.ker = β€ β f = 0 - AddSubgroup.comap_le_comap_of_le_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K L : AddSubgroup N} (hf : K β€ f.range) : AddSubgroup.comap f K β€ AddSubgroup.comap f L β K β€ L - AddMonoidHom.mem_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {y : N} : y β f.range β β x, f x = y - AddMonoidHom.map_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} {P : Type u_6} [AddGroup N] [AddGroup P] (g : N β+ P) (f : G β+ N) : AddSubgroup.map g f.range = (g.comp f).range - AddMonoidHom.range_comp π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} {P : Type u_6} [AddGroup N] [AddGroup P] (g : N β+ P) (f : G β+ N) : (g.comp f).range = AddSubgroup.map g f.range - AddMonoidHom.restrict_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (K : AddSubgroup G) (f : G β+ N) : (f.restrict K).range = AddSubgroup.map f K - AddMonoidHom.range.eq_1 π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : f.range = (AddSubgroup.map f β€).copy (Set.range βf) β― - AddSubgroup.map_eq_bot_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G β+ N} (hf : Function.Injective βf) : AddSubgroup.map f H = β₯ β H = β₯ - AddSubgroup.map_le_map_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H K : AddSubgroup G} : AddSubgroup.map f H β€ AddSubgroup.map f K β H β€ K β f.ker - AddSubgroup.map_injective_of_ker_le π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) {H K : AddSubgroup G} (hH : f.ker β€ H) (hK : f.ker β€ K) (hf : AddSubgroup.map f H = AddSubgroup.map f K) : H = K - AddMonoidHom.ker_restrict π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) {M : Type u_7} [AddZeroClass M] (f : G β+ M) : (f.restrict K).ker = f.ker.addSubgroupOf K - AddSubgroup.map_eq_map_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H K : AddSubgroup G} : AddSubgroup.map f H = AddSubgroup.map f K β H β f.ker = K β f.ker - AddMonoidHom.ofInjective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) : G β+ β₯f.range - AddMonoidHom.sub_mem_ker_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G β+ M) {x y : G} : x - y β f.ker β f x = f y - AddSubgroup.comap_le_comap_of_surjective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K L : AddSubgroup N} (hf : Function.Surjective βf) : AddSubgroup.comap f K β€ AddSubgroup.comap f L β K β€ L - AddSubgroup.comap_lt_comap_of_surjective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K L : AddSubgroup N} (hf : Function.Surjective βf) : AddSubgroup.comap f K < AddSubgroup.comap f L β K < L - AddSubgroup.map_le_map_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) {H K : AddSubgroup G} : AddSubgroup.map f H β€ AddSubgroup.map f K β H β€ K - AddSubgroup.map_lt_map_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) {H K : AddSubgroup G} : AddSubgroup.map f H < AddSubgroup.map f K β H < K - AddMonoidHom.range_eq_bot_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] {f : G β+ G'} : f.range = β₯ β f = 0 - AddSubgroup.comap_sup_eq_of_le_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) {H K : AddSubgroup N} (hH : H β€ f.range) (hK : K β€ f.range) : AddSubgroup.comap f H β AddSubgroup.comap f K = AddSubgroup.comap f (H β K) - AddSubgroup.map_le_map_iff' π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H K : AddSubgroup G} : AddSubgroup.map f H β€ AddSubgroup.map f K β H β f.ker β€ K β f.ker - AddMonoidHom.eq_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] (f : G β+ M) {x y : G} : f x = f y β -y + x β f.ker - AddSubgroup.comap_sup_eq π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H K : AddSubgroup N) (hf : Function.Surjective βf) : AddSubgroup.comap f H β AddSubgroup.comap f K = AddSubgroup.comap f (H β K) - AddMonoidHom.eq_of_eqOn_top π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] {f g : G β+ M} (h : Set.EqOn βf βg ββ€) : f = g - AddMonoidHom.ker_rangeRestrict π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : f.rangeRestrict.ker = f.ker - AddMonoidHom.eq_of_eqOn_dense π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] {s : Set G} (hs : AddSubgroup.closure s = β€) {f g : G β+ M} (h : Set.EqOn (βf) (βg) s) : f = g - AddMonoidHom.range_le_ker_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] {M : Type u_7} [AddZeroClass M] (f : G β+ G') (g : G' β+ M) : f.range β€ g.ker β g.comp f = 0 - AddMonoidHom.rangeRestrict π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : G β+ β₯f.range - AddMonoidHom.ker_codRestrict π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {S : Type u_8} [SetLike S N] [AddSubmonoidClass S N] (f : G β+ N) (s : S) (h : β (x : G), f x β s) : (f.codRestrict s h).ker = f.ker - AddMonoidHom.decidableMemKer.eq_1 π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddZeroClass M] [DecidableEq M] (f : G β+ M) (x : G) : f.decidableMemKer x = decidable_of_iff (f x = 0) β― - AddMonoidHom.ofLeftInverse π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {g : N β+ G} (h : Function.LeftInverse βg βf) : G β+ β₯f.range - AddSubgroup.ker_addSubgroupMap π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) : (f.addSubgroupMap H).ker = f.ker.addSubgroupOf H - AddMonoidHom.rangeRestrict.eq_1 π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : f.rangeRestrict = f.codRestrict f.range β― - AddMonoidHom.subtype_comp_rangeRestrict π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : f.range.subtype.comp f.rangeRestrict = f - AddMonoidHom.eqOn_closure π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {M : Type u_7} [AddMonoid M] {f g : G β+ M} {s : Set G} (h : Set.EqOn (βf) (βg) s) : Set.EqOn βf βg β(AddSubgroup.closure s) - AddMonoidHom.ofInjective_apply π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) {x : G} : β((AddMonoidHom.ofInjective hf) x) = f x - AddMonoidHom.addSubgroupOf_range_eq_of_le π Mathlib.Algebra.Group.Subgroup.Ker
{Gβ : Type u_7} {Gβ : Type u_8} [AddGroup Gβ] [AddGroup Gβ] {K : AddSubgroup Gβ} (f : Gβ β+ Gβ) (h : f.range β€ K) : f.range.addSubgroupOf K = (f.codRestrict K β―).range - AddMonoidHom.rangeRestrict_surjective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : Function.Surjective βf.rangeRestrict - MonoidHom.coe_toMultiplicative_ker π Mathlib.Algebra.Group.Subgroup.Ker
{A : Type u_8} {A' : Type u_9} [AddGroup A] [AddZeroClass A'] (f : A β+ A') : (AddMonoidHom.toMultiplicative f).ker = AddSubgroup.toSubgroup f.ker - AddMonoidHom.ofInjective.eq_1 π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) : AddMonoidHom.ofInjective hf = AddEquiv.ofBijective (f.codRestrict f.range β―) β― - AddMonoidHom.coe_rangeRestrict π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (g : G) : β(f.rangeRestrict g) = f g - AddMonoidHom.rangeRestrict_injective_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} : Function.Injective βf.rangeRestrict β Function.Injective βf - AddMonoidHom.ofLeftInverse_apply π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {g : N β+ G} (h : Function.LeftInverse βg βf) (x : G) : β((AddMonoidHom.ofLeftInverse h) x) = f x - AddMonoidHom.apply_ofInjective_symm π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) (x : β₯f.range) : f ((AddMonoidHom.ofInjective hf).symm x) = βx - AddMonoidHom.coe_comp_rangeRestrict π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : Subtype.val β βf.rangeRestrict = βf - MonoidHom.coe_toAdditive_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') : (MonoidHom.toAdditive f).range = Subgroup.toAddSubgroup f.range - MonoidHom.coe_toMultiplicative_range π Mathlib.Algebra.Group.Subgroup.Ker
{A : Type u_7} {A' : Type u_8} [AddGroup A] [AddGroup A'] (f : A β+ A') : (AddMonoidHom.toMultiplicative f).range = AddSubgroup.toSubgroup f.range - AddSubgroup.closure_preimage_eq_top π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] (s : Set G) : AddSubgroup.closure (β(AddSubgroup.closure s).subtype β»ΒΉ' s) = β€ - MonoidHom.coe_toAdditive_ker π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') : (MonoidHom.toAdditive f).ker = Subgroup.toAddSubgroup f.ker - AddMonoidHom.ofLeftInverse_symm_apply π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {g : N β+ G} (h : Function.LeftInverse βg βf) (x : β₯f.range) : (AddMonoidHom.ofLeftInverse h).symm x = g βx - AddMonoidHom.ker_comp_addEquiv π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {P : Type u_8} [AddZeroClass P] (g : N β+ P) (iso : G β+ N) : (g.comp βiso).ker = AddSubgroup.map (βiso.symm) g.ker - AddMonoidHom.ofLeftInverse.eq_1 π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {g : N β+ G} (h : Function.LeftInverse βg βf) : AddMonoidHom.ofLeftInverse h = { toFun := βf.rangeRestrict, invFun := βg β βf.range.subtype, left_inv := h, right_inv := β―, map_add' := β― } - AddSubgroup.normal_comap π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup N} [nH : H.Normal] (f : G β+ N) : (AddSubgroup.comap f H).Normal - AddSubgroup.Normal.comap π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup N} (hH : H.Normal) (f : G β+ N) : (AddSubgroup.comap f H).Normal - AddSubgroup.le_normalizer_comap π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} {N : Type u_5} [AddGroup N] (f : N β+ G) : AddSubgroup.comap f H.normalizer β€ (AddSubgroup.comap f H).normalizer - AddSubgroup.le_normalizer_map π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} {N : Type u_5} [AddGroup N] (f : G β+ N) : AddSubgroup.map f H.normalizer β€ (AddSubgroup.map f H).normalizer - AddSubgroup.comap_normalizer_eq_of_le_range π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} {N : Type u_5} [AddGroup N] {f : N β+ G} (h : H β€ f.range) : AddSubgroup.comap f H.normalizer = (AddSubgroup.comap f H).normalizer - AddSubgroup.Normal.map π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup G} (h : H.Normal) (f : G β+ N) (hf : Function.Surjective βf) : (AddSubgroup.map f H).Normal - AddSubgroup.comap_normalizer_eq_of_surjective π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : N β+ G} (hf : Function.Surjective βf) : AddSubgroup.comap f H.normalizer = (AddSubgroup.comap f H).normalizer - AddSubgroup.map_normalizer_eq_of_bijective π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G β+ N} (hf : Function.Bijective βf) : AddSubgroup.map f H.normalizer = (AddSubgroup.map f H).normalizer - AddMonoidHom.prodMap_comap_prod π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {G' : Type u_8} {N' : Type u_9} [AddGroup G'] [AddGroup N'] (f : G β+ N) (g : G' β+ N') (S : AddSubgroup N) (S' : AddSubgroup N') : AddSubgroup.comap (f.prodMap g) (S.prod S') = (AddSubgroup.comap f S).prod (AddSubgroup.comap g S') - AddMonoidHom.ker_prodMap π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {G' : Type u_8} {N' : Type u_9} [AddGroup G'] [AddGroup N'] (f : G β+ N) (g : G' β+ N') : (f.prodMap g).ker = f.ker.prod g.ker - AddMonoidHom.liftOfRightInverseAux π Mathlib.Algebra.Group.Subgroup.Basic
{Gβ : Type u_5} {Gβ : Type u_6} {Gβ : Type u_7} [AddGroup Gβ] [AddGroup Gβ] [AddGroup Gβ] (f : Gβ β+ Gβ) (f_neg : Gβ β Gβ) (hf : Function.RightInverse f_neg βf) (g : Gβ β+ Gβ) (hg : f.ker β€ g.ker) : Gβ β+ Gβ - AddMonoidHom.liftOfSurjective π Mathlib.Algebra.Group.Subgroup.Basic
{Gβ : Type u_5} {Gβ : Type u_6} {Gβ : Type u_7} [AddGroup Gβ] [AddGroup Gβ] [AddGroup Gβ] (f : Gβ β+ Gβ) (hf : Function.Surjective βf) : { g // f.ker β€ g.ker } β (Gβ β+ Gβ) - AddMonoidHom.liftOfRightInverse π Mathlib.Algebra.Group.Subgroup.Basic
{Gβ : Type u_5} {Gβ : Type u_6} {Gβ : Type u_7} [AddGroup Gβ] [AddGroup Gβ] [AddGroup Gβ] (f : Gβ β+ Gβ) (f_neg : Gβ β Gβ) (hf : Function.RightInverse f_neg βf) : { g // f.ker β€ g.ker } β (Gβ β+ Gβ) - AddMonoidHom.liftOfSurjective.eq_1 π Mathlib.Algebra.Group.Subgroup.Basic
{Gβ : Type u_5} {Gβ : Type u_6} {Gβ : Type u_7} [AddGroup Gβ] [AddGroup Gβ] [AddGroup Gβ] (f : Gβ β+ Gβ) (hf : Function.Surjective βf) : f.liftOfSurjective hf = f.liftOfRightInverse (Function.surjInv hf) β― - AddMonoidHom.liftOfRightInverseAux.eq_1 π Mathlib.Algebra.Group.Subgroup.Basic
{Gβ : Type u_5} {Gβ : Type u_6} {Gβ : Type u_7} [AddGroup Gβ] [AddGroup Gβ] [AddGroup Gβ] (f : Gβ β+ Gβ) (f_inv : Gβ β Gβ) (hf : Function.RightInverse f_inv βf) (g : Gβ β+ Gβ) (hg : f.ker β€ g.ker) : f.liftOfRightInverseAux f_inv hf g hg = { toFun := fun b => g (f_inv b), map_zero' := β―, map_add' := β― } - AddMonoidHom.liftOfRightInverseAux_comp_apply π Mathlib.Algebra.Group.Subgroup.Basic
{Gβ : Type u_5} {Gβ : Type u_6} {Gβ : Type u_7} [AddGroup Gβ] [AddGroup Gβ] [AddGroup Gβ] (f : Gβ β+ Gβ) (f_neg : Gβ β Gβ) (hf : Function.RightInverse f_neg βf) (g : Gβ β+ Gβ) (hg : f.ker β€ g.ker) (x : Gβ) : (f.liftOfRightInverseAux f_neg hf g hg) (f x) = g x - AddMonoidHom.liftOfRightInverse.eq_1 π Mathlib.Algebra.Group.Subgroup.Basic
{Gβ : Type u_5} {Gβ : Type u_6} {Gβ : Type u_7} [AddGroup Gβ] [AddGroup Gβ] [AddGroup Gβ] (f : Gβ β+ Gβ) (f_inv : Gβ β Gβ) (hf : Function.RightInverse f_inv βf) : f.liftOfRightInverse f_inv hf = { toFun := fun g => f.liftOfRightInverseAux f_inv hf βg β―, invFun := fun Ο => β¨Ο.comp f, β―β©, left_inv := β―, right_inv := β― } - AddMonoidHom.liftOfRightInverse_comp π Mathlib.Algebra.Group.Subgroup.Basic
{Gβ : Type u_5} {Gβ : Type u_6} {Gβ : Type u_7} [AddGroup Gβ] [AddGroup Gβ] [AddGroup Gβ] (f : Gβ β+ Gβ) (f_neg : Gβ β Gβ) (hf : Function.RightInverse f_neg βf) (g : { g // f.ker β€ g.ker }) : ((f.liftOfRightInverse f_neg hf) g).comp f = βg - AddMonoidHom.eq_liftOfRightInverse π Mathlib.Algebra.Group.Subgroup.Basic
{Gβ : Type u_5} {Gβ : Type u_6} {Gβ : Type u_7} [AddGroup Gβ] [AddGroup Gβ] [AddGroup Gβ] (f : Gβ β+ Gβ) (f_neg : Gβ β Gβ) (hf : Function.RightInverse f_neg βf) (g : Gβ β+ Gβ) (hg : f.ker β€ g.ker) (h : Gβ β+ Gβ) (hh : h.comp f = g) : h = (f.liftOfRightInverse f_neg hf) β¨g, hgβ© - AddMonoidHom.liftOfRightInverse_comp_apply π Mathlib.Algebra.Group.Subgroup.Basic
{Gβ : Type u_5} {Gβ : Type u_6} {Gβ : Type u_7} [AddGroup Gβ] [AddGroup Gβ] [AddGroup Gβ] (f : Gβ β+ Gβ) (f_neg : Gβ β Gβ) (hf : Function.RightInverse f_neg βf) (g : { g // f.ker β€ g.ker }) (x : Gβ) : ((f.liftOfRightInverse f_neg hf) g) (f x) = βg x - AddMonoidHom.map_zmultiples π Mathlib.Algebra.Group.Subgroup.ZPowers.Basic
{G : Type u_1} [AddGroup G] {N : Type u_3} [AddGroup N] (f : G β+ N) (x : G) : AddSubgroup.map f (AddSubgroup.zmultiples x) = AddSubgroup.zmultiples (f x) - AddSubgroup.map_centralizer_le_centralizer_image π Mathlib.GroupTheory.Subgroup.Centralizer
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (s : Set G) (f : G β+ G') : AddSubgroup.map f (AddSubgroup.centralizer s) β€ AddSubgroup.centralizer (βf '' s) - FreeAddGroup.range_lift_eq_closure π Mathlib.GroupTheory.FreeGroup.Basic
{Ξ± : Type u} {Ξ² : Type v} [AddGroup Ξ²] {f : Ξ± β Ξ²} : (FreeAddGroup.lift f).range = AddSubgroup.closure (Set.range f) - FreeAddGroup.range_lift_le π Mathlib.GroupTheory.FreeGroup.Basic
{Ξ± : Type u} {Ξ² : Type v} [AddGroup Ξ²] {f : Ξ± β Ξ²} {s : AddSubgroup Ξ²} (H : Set.range f β βs) : (FreeAddGroup.lift f).range β€ s - FreeAddGroup.closure_eq_range π Mathlib.GroupTheory.FreeGroup.Basic
{Ξ² : Type v} [AddGroup Ξ²] (s : Set Ξ²) : AddSubgroup.closure s = (FreeAddGroup.lift Subtype.val).range - QuotientAddGroup.mk' π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] : G β+ G β§Έ N - QuotientAddGroup.mk'.eq_1 π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] : QuotientAddGroup.mk' N = AddMonoidHom.mk' QuotientAddGroup.mk β― - QuotientAddGroup.lift π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {M : Type u_4} [AddGroup G] [AddMonoid M] (N : AddSubgroup G) [nN : N.Normal] (Ο : G β+ M) (HN : N β€ Ο.ker) : G β§Έ N β+ M - QuotientAddGroup.ker_lift π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {M : Type u_4} [AddGroup G] [AddMonoid M] (N : AddSubgroup G) [nN : N.Normal] (Ο : G β+ M) (HN : N β€ Ο.ker) : (QuotientAddGroup.lift N Ο HN).ker = AddSubgroup.map (QuotientAddGroup.mk' N) Ο.ker - QuotientAddGroup.lift.eq_1 π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {M : Type u_4} [AddGroup G] [AddMonoid M] (N : AddSubgroup G) [nN : N.Normal] (Ο : G β+ M) (HN : N β€ Ο.ker) : QuotientAddGroup.lift N Ο HN = (QuotientAddGroup.con N).lift Ο β― - QuotientAddGroup.lift_comp_mk' π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {M : Type u_4} [AddGroup G] [AddMonoid M] (N : AddSubgroup G) [nN : N.Normal] (Ο : G β+ M) (HN : N β€ Ο.ker) : (QuotientAddGroup.lift N Ο HN).comp (QuotientAddGroup.mk' N) = Ο - QuotientAddGroup.mk'_surjective π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] : Function.Surjective β(QuotientAddGroup.mk' N) - QuotientAddGroup.coe_mk' π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] : β(QuotientAddGroup.mk' N) = QuotientAddGroup.mk - QuotientAddGroup.map π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup H) [M.Normal] (f : G β+ H) (h : N β€ AddSubgroup.comap f M) : G β§Έ N β+ H β§Έ M - QuotientAddGroup.mk'_apply π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (x : G) : (QuotientAddGroup.mk' N) x = βx - QuotientAddGroup.liftEquiv π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (N : AddSubgroup G) [nN : N.Normal] {Ο : G β+ H} (hΟ : Function.Surjective βΟ) (HN : N = Ο.ker) : G β§Έ N β+ H - QuotientAddGroup.ker_map π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup H) [M.Normal] (f : G β+ H) (h : N β€ AddSubgroup.comap f M) : (QuotientAddGroup.map N M f h).ker = AddSubgroup.map (QuotientAddGroup.mk' N) (AddSubgroup.comap f M) - QuotientAddGroup.lift_mk π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {M : Type u_4} [AddGroup G] [AddMonoid M] (N : AddSubgroup G) [nN : N.Normal] {Ο : G β+ M} (HN : N β€ Ο.ker) (g : G) : (QuotientAddGroup.lift N Ο HN) βg = Ο g - QuotientAddGroup.lift_mk' π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {M : Type u_4} [AddGroup G] [AddMonoid M] (N : AddSubgroup G) [nN : N.Normal] {Ο : G β+ M} (HN : N β€ Ο.ker) (g : G) : (QuotientAddGroup.lift N Ο HN) βg = Ο g - QuotientAddGroup.lift_quot_mk π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {M : Type u_4} [AddGroup G] [AddMonoid M] (N : AddSubgroup G) [nN : N.Normal] {Ο : G β+ M} (HN : N β€ Ο.ker) (g : G) : (QuotientAddGroup.lift N Ο HN) (Quot.mk (β(QuotientAddGroup.leftRel N)) g) = Ο g - QuotientAddGroup.lift_surjective_of_surjective π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {M : Type u_4} [AddGroup G] [AddMonoid M] (N : AddSubgroup G) [nN : N.Normal] (Ο : G β+ M) (hΟ : Function.Surjective βΟ) (HN : N β€ Ο.ker) : Function.Surjective β(QuotientAddGroup.lift N Ο HN) - QuotientAddGroup.map_id π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (h : N β€ AddSubgroup.comap (AddMonoidHom.id G) N := β―) : QuotientAddGroup.map N N (AddMonoidHom.id G) h = AddMonoidHom.id (G β§Έ N) - QuotientAddGroup.map.congr_simp π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup H) [M.Normal] (f fβ : G β+ H) (e_f : f = fβ) (h : N β€ AddSubgroup.comap f M) : QuotientAddGroup.map N M f h = QuotientAddGroup.map N M fβ β― - QuotientAddGroup.map.eq_1 π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup H) [M.Normal] (f : G β+ H) (h : N β€ AddSubgroup.comap f M) : QuotientAddGroup.map N M f h = QuotientAddGroup.lift N ((QuotientAddGroup.mk' M).comp f) β― - QuotientAddGroup.mk'_eq_mk' π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {x y : G} : (QuotientAddGroup.mk' N) x = (QuotientAddGroup.mk' N) y β β z β N, x + z = y - QuotientAddGroup.map_id_apply π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (h : N β€ AddSubgroup.comap (AddMonoidHom.id G) N := β―) (x : G β§Έ N) : (QuotientAddGroup.map N N (AddMonoidHom.id G) h) x = x - QuotientAddGroup.addMonoidHom_ext π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} {M : Type u_4} [AddGroup G] [AddMonoid M] (N : AddSubgroup G) [nN : N.Normal] β¦f g : G β§Έ N β+ Mβ¦ (h : f.comp (QuotientAddGroup.mk' N) = g.comp (QuotientAddGroup.mk' N)) : f = g
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 36960b0 serving mathlib revision 9a4cf1d