Loogle!
Result
Found 132 declarations mentioning AddSubgroup.map.
- AddSubgroup.map_id π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) : AddSubgroup.map (AddMonoidHom.id G) K = K - AddSubgroup.map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup N - AddSubgroup.map_bot π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : AddSubgroup.map f β₯ = β₯ - AddSubgroup.addSubgroupOf_map_subtype π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (H K : AddSubgroup G) : AddSubgroup.map K.subtype (H.addSubgroupOf K) = H β K - AddSubgroup.le_comap_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : H β€ AddSubgroup.comap f (AddSubgroup.map f H) - AddSubgroup.map_comap_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) β€ H - AddSubgroup.gc_map_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : GaloisConnection (AddSubgroup.map f) (AddSubgroup.comap f) - AddSubgroup.map_addSubgroupOf_eq_of_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H β€ K) : AddSubgroup.map K.subtype (H.addSubgroupOf K) = H - AddSubgroup.map_iSup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ΞΉ : Sort u_7} (f : G β+ N) (s : ΞΉ β AddSubgroup G) : AddSubgroup.map f (iSup s) = β¨ i, AddSubgroup.map f (s i) - AddSubgroup.map_zero_eq_bot π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] : AddSubgroup.map 0 K = β₯ - AddSubgroup.map_isAddCommutative π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G β+ G') [IsAddCommutative β₯H] : IsAddCommutative β₯(AddSubgroup.map f H) - AddSubgroup.map_isCommutative π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G β+ G') [IsAddCommutative β₯H] : IsAddCommutative β₯(AddSubgroup.map f H) - AddMonoidHom.map_closure π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (s : Set G) : AddSubgroup.map f (AddSubgroup.closure s) = AddSubgroup.closure (βf '' s) - AddSubgroup.map_inf_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) : AddSubgroup.map f (H β K) β€ AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.map_top_of_surjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (h : Function.Surjective βf) : AddSubgroup.map f β€ = β€ - AddSubgroup.map_mono π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K K' : AddSubgroup G} : K β€ K' β AddSubgroup.map f K β€ AddSubgroup.map f K' - AddSubgroup.map_le_iff_le_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K : AddSubgroup G} {H : AddSubgroup N} : AddSubgroup.map f K β€ H β K β€ AddSubgroup.comap f H - AddSubgroup.map_sup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) : AddSubgroup.map f (H β K) = AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.coe_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (K : AddSubgroup G) : β(AddSubgroup.map f K) = βf '' βK - AddSubgroup.map_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] {P : Type u_6} [AddGroup P] (g : N β+ P) (f : G β+ N) : AddSubgroup.map g (AddSubgroup.map f K) = AddSubgroup.map (g.comp f) K - AddSubgroup.mem_map_of_mem π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) {K : AddSubgroup G} {x : G} (hx : x β K) : f x β AddSubgroup.map f K - AddSubgroup.comap_equiv_eq_map_symm' π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : N β+ G) (K : AddSubgroup G) : AddSubgroup.comap f.toAddMonoidHom K = AddSubgroup.map f.symm.toAddMonoidHom K - AddSubgroup.map_equiv_eq_comap_symm' π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (K : AddSubgroup G) : AddSubgroup.map f.toAddMonoidHom K = AddSubgroup.comap f.symm.toAddMonoidHom K - AddSubgroup.map_iInf π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ΞΉ : Sort u_7} [Nonempty ΞΉ] (f : G β+ N) (hf : Function.Injective βf) (s : ΞΉ β AddSubgroup G) : AddSubgroup.map f (iInf s) = β¨ i, AddSubgroup.map f (s i) - AddSubgroup.map_inf π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : AddSubgroup.map f (H β K) = AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.map_inf_eq π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : AddSubgroup.map f (H β K) = AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.mem_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K : AddSubgroup G} {y : N} : y β AddSubgroup.map f K β β x β K, f x = y - AddSubgroup.map_toAddSubmonoid π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (K : AddSubgroup G) : (AddSubgroup.map f K).toAddSubmonoid = AddSubmonoid.map f K.toAddSubmonoid - AddSubgroup.apply_coe_mem_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (K : AddSubgroup G) (x : β₯K) : f βx β AddSubgroup.map f K - AddSubgroup.equivMapOfInjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : β₯H β+ β₯(AddSubgroup.map f H) - AddSubgroup.map.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup.map f H = { carrier := βf '' βH, add_mem' := β―, zero_mem' := β―, neg_mem' := β― } - AddSubgroup.mem_map_iff_mem π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) {K : AddSubgroup G} {x : G} : f x β AddSubgroup.map f K β x β K - AddSubgroup.mem_map_equiv π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K : AddSubgroup G} {x : N} : x β AddSubgroup.map f.toAddMonoidHom K β f.symm x β K - AddEquiv.coe_mapAddSubgroup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_5} [AddGroup H] (e : G β+ H) : βe.mapAddSubgroup = AddSubgroup.map e.toAddMonoidHom - AddMonoidHom.addSubgroupMap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) : β₯H β+ β₯(AddSubgroup.map f H) - AddSubgroup.map_eq_comap_of_inverse π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {g : N β+ G} (hl : Function.LeftInverse βg βf) (hr : Function.RightInverse βg βf) (H : AddSubgroup G) : AddSubgroup.map f H = AddSubgroup.comap g H - AddMonoidHom.addSubgroupMap.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) : f.addSubgroupMap H = f.addSubmonoidMap H.toAddSubmonoid - AddSubgroup.equivMapOfInjective.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : H.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (βf) (βH) hf, map_add' := β― } - AddEquiv.mapAddSubgroup_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_6} [AddGroup H] (f : G β+ H) (Hβ : AddSubgroup G) : f.mapAddSubgroup Hβ = AddSubgroup.map (βf) Hβ - AddEquiv.mapAddSubgroup_symm_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_6} [AddGroup H] (f : G β+ H) (Hβ : AddSubgroup H) : (RelIso.symm f.mapAddSubgroup) Hβ = AddSubgroup.map (βf.symm) Hβ - AddEquiv.mapAddSubgroup.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_6} [AddGroup H] (f : G β+ H) : f.mapAddSubgroup = { toFun := AddSubgroup.map βf, invFun := AddSubgroup.map βf.symm, left_inv := β―, right_inv := β―, map_rel_iff' := β― } - AddSubgroup.comap_equiv_eq_map_symm π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : N β+ G) (K : AddSubgroup G) : AddSubgroup.comap (βf) K = AddSubgroup.map (βf.symm) K - AddSubgroup.map_equiv_eq_comap_symm π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (K : AddSubgroup G) : AddSubgroup.map (βf) K = AddSubgroup.comap (βf.symm) K - AddSubgroup.map_symm_eq_iff_map_eq π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] {H : AddSubgroup N} {e : G β+ N} : AddSubgroup.map (βe.symm) H = K β AddSubgroup.map (βe) K = H - AddEquiv.addSubgroupMap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (e : G β+ G') (H : AddSubgroup G) : β₯H β+ β₯(AddSubgroup.map (βe) H) - AddEquiv.addSubgroupMap.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (e : G β+ G') (H : AddSubgroup G) : e.addSubgroupMap H = e.addSubmonoidMap H.toAddSubmonoid - AddSubgroup.coe_equivMapOfInjective_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) (h : β₯H) : β((H.equivMapOfInjective f hf) h) = f βh - AddMonoidHom.addSubgroupMap_surjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) : Function.Surjective β(f.addSubgroupMap H) - AddSubgroup.equivMapOfInjective_coe_addEquiv π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (e : G β+ G') : H.equivMapOfInjective βe β― = e.addSubgroupMap H - AddMonoidHom.addSubgroupMap_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) (x : β₯H.toAddSubmonoid) : β((f.addSubgroupMap H) x) = f βx - AddEquiv.coe_addSubgroupMap_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (e : G β+ G') (H : AddSubgroup G) (g : β₯H) : β((e.addSubgroupMap H) g) = e βg - AddEquiv.addSubgroupMap_symm_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (e : G β+ G') (H : AddSubgroup G) (g : β₯(AddSubgroup.map (βe) H)) : (e.addSubgroupMap H).symm g = β¨e.symm βg, β―β© - AddMonoidHom.range_eq_map π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : f.range = AddSubgroup.map f β€ - AddSubgroup.map_comap_eq π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) = f.range β H - AddSubgroup.map_le_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup.map f H β€ f.range - AddSubgroup.map_comap_eq_self π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H : AddSubgroup N} (h : H β€ f.range) : AddSubgroup.map f (AddSubgroup.comap f H) = H - AddSubgroup.comap_map_eq π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup.comap f (AddSubgroup.map f H) = H β f.ker - AddSubgroup.map_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (h : Function.Injective βf) : Function.Injective (AddSubgroup.map f) - AddSubgroup.comap_map_eq_self π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H : AddSubgroup G} (h : f.ker β€ H) : AddSubgroup.comap f (AddSubgroup.map f H) = H - AddSubgroup.map_eq_bot_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G β+ N} : AddSubgroup.map f H = β₯ β H β€ f.ker - AddSubgroup.map_subtype_le π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} (K : AddSubgroup β₯H) : AddSubgroup.map H.subtype K β€ H - AddSubgroup.comap_map_eq_self_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (h : Function.Injective βf) (H : AddSubgroup G) : AddSubgroup.comap f (AddSubgroup.map f H) = H - AddSubgroup.map_comap_eq_self_of_surjective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (h : Function.Surjective βf) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) = H - AddMonoidHom.map_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} {P : Type u_6} [AddGroup N] [AddGroup P] (g : N β+ P) (f : G β+ N) : AddSubgroup.map g f.range = (g.comp f).range - AddMonoidHom.range_comp π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} {P : Type u_6} [AddGroup N] [AddGroup P] (g : N β+ P) (f : G β+ N) : (g.comp f).range = AddSubgroup.map g f.range - AddMonoidHom.range.eq_1 π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : f.range = (AddSubgroup.map f β€).copy (Set.range βf) β― - AddSubgroup.map_eq_bot_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G β+ N} (hf : Function.Injective βf) : AddSubgroup.map f H = β₯ β H = β₯ - AddMonoidHom.restrict_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (K : AddSubgroup G) (f : G β+ N) : (f.restrict K).range = AddSubgroup.map f K - AddSubgroup.map_eq_range_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H : AddSubgroup G} : AddSubgroup.map f H = f.range β Codisjoint H f.ker - AddSubgroup.map_eq_map_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H K : AddSubgroup G} : AddSubgroup.map f H = AddSubgroup.map f K β H β f.ker = K β f.ker - AddSubgroup.map_le_map_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H K : AddSubgroup G} : AddSubgroup.map f H β€ AddSubgroup.map f K β H β€ K β f.ker - AddSubgroup.map_injective_of_ker_le π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) {H K : AddSubgroup G} (hH : f.ker β€ H) (hK : f.ker β€ K) (hf : AddSubgroup.map f H = AddSubgroup.map f K) : H = K - AddSubgroup.map_le_map_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) {H K : AddSubgroup G} : AddSubgroup.map f H β€ AddSubgroup.map f K β H β€ K - AddSubgroup.map_lt_map_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) {H K : AddSubgroup G} : AddSubgroup.map f H < AddSubgroup.map f K β H < K - AddSubgroup.map_le_map_iff' π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H K : AddSubgroup G} : AddSubgroup.map f H β€ AddSubgroup.map f K β H β f.ker β€ K β f.ker - AddSubgroup.ker_addSubgroupMap π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) : (f.addSubgroupMap H).ker = f.ker.addSubgroupOf H - AddSubgroup.map_subtype_le_map_subtype π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {G' : AddSubgroup G} {H K : AddSubgroup β₯G'} : AddSubgroup.map G'.subtype H β€ AddSubgroup.map G'.subtype K β H β€ K - AddSubgroup.map_subtype_lt_map_subtype π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {G' : AddSubgroup G} {H K : AddSubgroup β₯G'} : AddSubgroup.map G'.subtype H < AddSubgroup.map G'.subtype K β H < K - Submodule.map_toAddSubgroup π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} {Mβ : Type u_7} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup Mβ] [Module R Mβ] (f : M ββ[R] Mβ) (p : Submodule R M) : (Submodule.map f p).toAddSubgroup = AddSubgroup.map (βf) p.toAddSubgroup - AddMonoidHom.coe_toMultiplicative_map π Mathlib.Algebra.Module.Submodule.Map
{G : Type u_10} {Gβ : Type u_11} [AddGroup G] [AddGroup Gβ] (f : G β+ Gβ) (s : AddSubgroup G) : Subgroup.map (AddMonoidHom.toMultiplicative f) (AddSubgroup.toSubgroup s) = AddSubgroup.toSubgroup (AddSubgroup.map f s) - MonoidHom.coe_toAdditive_map π Mathlib.Algebra.Module.Submodule.Map
{G : Type u_10} {Gβ : Type u_11} [Group G] [Group Gβ] (f : G β* Gβ) (s : Subgroup G) : AddSubgroup.map (MonoidHom.toAdditive f) (Subgroup.toAddSubgroup s) = Subgroup.toAddSubgroup (Subgroup.map f s) - AddMonoidHom.coe_toIntLinearMap_map π Mathlib.Algebra.Module.Submodule.Map
{A : Type u_10} {Aβ : Type u_11} [AddCommGroup A] [AddCommGroup Aβ] (f : A β+ Aβ) (s : AddSubgroup A) : Submodule.map f.toIntLinearMap (AddSubgroup.toIntSubmodule s) = AddSubgroup.toIntSubmodule (AddSubgroup.map f s) - AddSubgroup.characteristic_iff_map_eq π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} : H.Characteristic β β (Ο : G β+ G), AddSubgroup.map Ο.toAddMonoidHom H = H - AddSubgroup.le_normalizer_map π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} {N : Type u_5} [AddGroup N] (f : G β+ N) : AddSubgroup.map f H.normalizer β€ (AddSubgroup.map f H).normalizer - AddSubgroup.characteristic_iff_le_map π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} : H.Characteristic β β (Ο : G β+ G), H β€ AddSubgroup.map Ο.toAddMonoidHom H - AddSubgroup.characteristic_iff_map_le π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} : H.Characteristic β β (Ο : G β+ G), AddSubgroup.map Ο.toAddMonoidHom H β€ H - AddSubgroup.Normal.map π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup G} (h : H.Normal) (f : G β+ N) (hf : Function.Surjective βf) : (AddSubgroup.map f H).Normal - AddSubgroup.map_equiv_normalizer_eq π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) : AddSubgroup.map f.toAddMonoidHom H.normalizer = (AddSubgroup.map f.toAddMonoidHom H).normalizer - AddSubgroup.map_normalizer_eq_of_bijective π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G β+ N} (hf : Function.Bijective βf) : AddSubgroup.map f H.normalizer = (AddSubgroup.map f H).normalizer - AddSubgroup.le_pi_iff π Mathlib.Algebra.Group.Subgroup.Basic
{Ξ· : Type u_7} {f : Ξ· β Type u_8} [(i : Ξ·) β AddGroup (f i)] {I : Set Ξ·} {H : (i : Ξ·) β AddSubgroup (f i)} {J : AddSubgroup ((i : Ξ·) β f i)} : J β€ AddSubgroup.pi I H β β i β I, AddSubgroup.map (Pi.evalAddMonoidHom f i) J β€ H i - AddSubgroup.le_prod_iff π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup G} {K : AddSubgroup N} {J : AddSubgroup (G Γ N)} : J β€ H.prod K β AddSubgroup.map (AddMonoidHom.fst G N) J β€ H β§ AddSubgroup.map (AddMonoidHom.snd G N) J β€ K - AddSubgroup.prod_le_iff π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup G} {K : AddSubgroup N} {J : AddSubgroup (G Γ N)} : H.prod K β€ J β AddSubgroup.map (AddMonoidHom.inl G N) H β€ J β§ AddSubgroup.map (AddMonoidHom.inr G N) K β€ J - AddMonoidHom.map_zmultiples π Mathlib.Algebra.Group.Subgroup.ZPowers.Basic
{G : Type u_1} [AddGroup G] {N : Type u_3} [AddGroup N] (f : G β+ N) (x : G) : AddSubgroup.map f (AddSubgroup.zmultiples x) = AddSubgroup.zmultiples (f x) - AddSubgroup.map_centralizer_le_centralizer_image π Mathlib.GroupTheory.Subgroup.Centralizer
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (s : Set G) (f : G β+ G') : AddSubgroup.map f (AddSubgroup.centralizer s) β€ AddSubgroup.centralizer (βf '' s) - AddSubgroup.pointwise_smul_def π Mathlib.Algebra.GroupWithZero.Subgroup
{M : Type u_3} {A : Type u_4} [Monoid M] [AddGroup A] [DistribMulAction M A] {a : M} (S : AddSubgroup A) : a β’ S = AddSubgroup.map ((DistribMulAction.toAddMonoidEnd M A) a) S - AddSubgroup.card_map_of_injective π Mathlib.Algebra.Group.Subgroup.Finite
{G : Type u_1} [AddGroup G] {H : Type u_3} [AddGroup H] {K : AddSubgroup G} {f : G β+ H} (hf : Function.Injective βf) : Nat.card β₯(AddSubgroup.map f K) = Nat.card β₯K - AddSubgroup.pi_le_iff π Mathlib.Algebra.Group.Subgroup.Finite
{Ξ· : Type u_3} {f : Ξ· β Type u_4} [(i : Ξ·) β AddGroup (f i)] [DecidableEq Ξ·] [Finite Ξ·] {H : (i : Ξ·) β AddSubgroup (f i)} {J : AddSubgroup ((i : Ξ·) β f i)} : AddSubgroup.pi Set.univ H β€ J β β (i : Ξ·), AddSubgroup.map (AddMonoidHom.single f i) (H i) β€ J - AddSubgroup.card_subtype π Mathlib.Algebra.Group.Subgroup.Finite
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) (L : AddSubgroup β₯K) : Nat.card β₯(AddSubgroup.map K.subtype L) = Nat.card β₯L - QuotientAddGroup.map_mk'_self π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] : AddSubgroup.map (QuotientAddGroup.mk' N) N = β₯ - QuotientAddGroup.ker_lift π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] (Ο : G β+ M) (HN : N β€ Ο.ker) : (QuotientAddGroup.lift N Ο HN).ker = AddSubgroup.map (QuotientAddGroup.mk' N) Ο.ker - QuotientAddGroup.ker_map π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G β+ H) (h : N β€ AddSubgroup.comap f M) : (QuotientAddGroup.map N M f h).ker = AddSubgroup.map (QuotientAddGroup.mk' N) (AddSubgroup.comap f M) - QuotientAddGroup.congr π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [AddGroup G] {H : Type v} [AddGroup H] (G' : AddSubgroup G) (H' : AddSubgroup H) [G'.Normal] [H'.Normal] (e : G β+ H) (he : AddSubgroup.map (βe) G' = H') : G β§Έ G' β+ H β§Έ H' - QuotientAddGroup.congr.eq_1 π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [AddGroup G] {H : Type v} [AddGroup H] (G' : AddSubgroup G) (H' : AddSubgroup H) [G'.Normal] [H'.Normal] (e : G β+ H) (he : AddSubgroup.map (βe) G' = H') : QuotientAddGroup.congr G' H' e he = { toFun := β(QuotientAddGroup.map G' H' βe β―), invFun := β(QuotientAddGroup.map H' G' βe.symm β―), left_inv := β―, right_inv := β―, map_add' := β― } - QuotientAddGroup.map_normal π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] : (AddSubgroup.map (QuotientAddGroup.mk' N) M).Normal - QuotientAddGroup.comap_map_mk' π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N H : AddSubgroup G) [N.Normal] : AddSubgroup.comap (QuotientAddGroup.mk' N) (AddSubgroup.map (QuotientAddGroup.mk' N) H) = N β H - QuotientAddGroup.strictMono_comap_prod_map π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] : StrictMono fun H => (AddSubgroup.comap N.subtype H, AddSubgroup.map (QuotientAddGroup.mk' N) H) - QuotientAddGroup.quotientQuotientEquivQuotientAux π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) : (G β§Έ N) β§Έ AddSubgroup.map (QuotientAddGroup.mk' N) M β+ G β§Έ M - QuotientAddGroup.quotientQuotientEquivQuotient π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) : (G β§Έ N) β§Έ AddSubgroup.map (QuotientAddGroup.mk' N) M β+ G β§Έ M - QuotientAddGroup.quotientQuotientEquivQuotientAux.eq_1 π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) : QuotientAddGroup.quotientQuotientEquivQuotientAux N M h = QuotientAddGroup.lift (AddSubgroup.map (QuotientAddGroup.mk' N) M) (QuotientAddGroup.map N M (AddMonoidHom.id G) h) β― - QuotientAddGroup.comapMk'OrderIso.eq_1 π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [hn : N.Normal] : QuotientAddGroup.comapMk'OrderIso N = { toFun := fun H' => β¨AddSubgroup.comap (QuotientAddGroup.mk' N) H', β―β©, invFun := fun H => AddSubgroup.map (QuotientAddGroup.mk' N) βH, left_inv := β―, right_inv := β―, map_rel_iff' := β― } - QuotientAddGroup.quotientQuotientEquivQuotient.eq_1 π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) : QuotientAddGroup.quotientQuotientEquivQuotient N M h = (QuotientAddGroup.quotientQuotientEquivQuotientAux N M h).toAddEquiv (QuotientAddGroup.map M (AddSubgroup.map (QuotientAddGroup.mk' N) M) (QuotientAddGroup.mk' N) β―) β― β― - QuotientAddGroup.quotientQuotientEquivQuotientAux_mk_mk π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) (x : G) : (QuotientAddGroup.quotientQuotientEquivQuotientAux N M h) ββx = βx - QuotientAddGroup.quotientQuotientEquivQuotientAux_mk π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) (x : G β§Έ N) : (QuotientAddGroup.quotientQuotientEquivQuotientAux N M h) βx = (QuotientAddGroup.map N M (AddMonoidHom.id G) h) x - AddAction.stabilizer_vadd_eq_stabilizer_map_conj π Mathlib.GroupTheory.GroupAction.Basic
{G : Type u_1} {Ξ± : Type u_2} [AddGroup G] [AddAction G Ξ±] (g : G) (a : Ξ±) : AddAction.stabilizer G (g +α΅₯ a) = AddSubgroup.map (AddEquiv.toAddMonoidHom (Additive.toMul (AddAut.conj g))) (AddAction.stabilizer G a) - AddAction.stabilizerEquivStabilizerOfOrbitRel.eq_1 π Mathlib.GroupTheory.GroupAction.Basic
{G : Type u_1} {Ξ± : Type u_2} [AddGroup G] [AddAction G Ξ±] {a b : Ξ±} (h : (AddAction.orbitRel G Ξ±) a b) : AddAction.stabilizerEquivStabilizerOfOrbitRel h = (AddEquiv.addSubgroupCongr β―).trans (AddEquiv.addSubgroupMap (AddAut.conj (Classical.choose h)) (AddAction.stabilizer G b)).symm - AddSubgroup.relindex_comap π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G' β+ G) (K : AddSubgroup G') : (AddSubgroup.comap f H).relindex K = H.relindex (AddSubgroup.map f K) - AddSubgroup.relindex_ker π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (K : AddSubgroup G) (f : G β+ G') : f.ker.relindex K = Nat.card β₯(AddSubgroup.map f K) - AddSubgroup.card_map_dvd π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G β+ G') : Nat.card β₯(AddSubgroup.map f H) β£ Nat.card β₯H - AddSubgroup.dvd_index_map π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G β+ G'} (hf : f.ker β€ H) : H.index β£ (AddSubgroup.map f H).index - AddSubgroup.index_map_of_bijective π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] {f : G β+ G'} (hf : Function.Bijective βf) (H : AddSubgroup G) : (AddSubgroup.map f H).index = H.index - AddSubgroup.index_map_dvd π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G β+ G'} (hf : Function.Surjective βf) : (AddSubgroup.map f H).index β£ H.index - AddSubgroup.index_map π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G β+ G') : (AddSubgroup.map f H).index = (H β f.ker).index * f.range.index - AddSubgroup.index_map_subtype π Mathlib.GroupTheory.Index
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} (K : AddSubgroup β₯H) : (AddSubgroup.map H.subtype K).index = K.index * H.index - AddSubgroup.index_map_of_injective π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G β+ G'} (hf : Function.Injective βf) : (AddSubgroup.map f H).index = H.index * f.range.index - AddSubgroup.index_map_eq π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G β+ G'} (hf1 : Function.Surjective βf) (hf2 : f.ker β€ H) : (AddSubgroup.map f H).index = H.index - DenseRange.topologicalClosure_map_addSubgroup π Mathlib.Topology.Algebra.Group.Basic
{G : Type w} {H : Type x} [TopologicalSpace G] [AddGroup G] [IsTopologicalAddGroup G] [AddGroup H] [TopologicalSpace H] [IsTopologicalAddGroup H] {f : G β+ H} (hf : Continuous βf) (hf' : DenseRange βf) {s : AddSubgroup G} (hs : s.topologicalClosure = β€) : (AddSubgroup.map f s).topologicalClosure = β€ - NormedAddGroupHom.comp_range π Mathlib.Analysis.Normed.Group.Hom
{Vβ : Type u_3} {Vβ : Type u_4} {Vβ : Type u_5} [SeminormedAddCommGroup Vβ] [SeminormedAddCommGroup Vβ] [SeminormedAddCommGroup Vβ] (f : NormedAddGroupHom Vβ Vβ) (g : NormedAddGroupHom Vβ Vβ) : (g.comp f).range = AddSubgroup.map g.toAddMonoidHom f.range - AddAction.map_stabilizer_le π Mathlib.Algebra.Pointwise.Stabilizer
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (f : G β+ H) (s : Set G) : AddSubgroup.map f (AddAction.stabilizer G s) β€ AddAction.stabilizer H (βf '' s) - AddSubgroup.goursatFst.eq_1 π Mathlib.GroupTheory.Goursat
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (I : AddSubgroup (G Γ H)) : I.goursatFst = AddSubgroup.map ((AddMonoidHom.fst G H).comp I.subtype) ((AddMonoidHom.snd G H).comp I.subtype).ker - AddSubgroup.goursatSnd.eq_1 π Mathlib.GroupTheory.Goursat
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (I : AddSubgroup (G Γ H)) : I.goursatSnd = AddSubgroup.map ((AddMonoidHom.snd G H).comp I.subtype) ((AddMonoidHom.fst G H).comp I.subtype).ker - AddSubgroup.goursat π Mathlib.GroupTheory.Goursat
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] {I : AddSubgroup (G Γ H)} : β G' H' M N, β (x : M.Normal) (x_1 : N.Normal), β e, I = AddSubgroup.map (G'.subtype.prodMap H'.subtype) (AddSubgroup.comap ((QuotientAddGroup.mk' M).prodMap (QuotientAddGroup.mk' N)) e.toAddMonoidHom.graph) - AddAction.IsBlock.of_addSubgroup_of_conjugate π Mathlib.GroupTheory.GroupAction.Blocks
{G : Type u_3} [AddGroup G] {X : Type u_4} [AddAction G X] {B : Set X} {H : AddSubgroup G} (hB : AddAction.IsBlock (β₯H) B) (g : G) : AddAction.IsBlock (β₯(AddSubgroup.map (AddEquiv.toAddMonoidHom (Additive.toMul (AddAut.conj g))) H)) (g +α΅₯ B)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65