Loogle!
Result
Found 143 declarations mentioning AddSubgroup.map.
- AddSubgroup.map_id π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) : AddSubgroup.map (AddMonoidHom.id G) K = K - AddSubgroup.map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup N - AddSubgroup.map_bot π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : AddSubgroup.map f β₯ = β₯ - AddSubgroup.addSubgroupOf_map_subtype π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (H K : AddSubgroup G) : AddSubgroup.map K.subtype (H.addSubgroupOf K) = H β K - AddSubgroup.le_comap_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : H β€ AddSubgroup.comap f (AddSubgroup.map f H) - AddSubgroup.map_comap_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) β€ H - AddSubgroup.map_addSubgroupOf_eq_of_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H β€ K) : AddSubgroup.map K.subtype (H.addSubgroupOf K) = H - AddSubgroup.gc_map_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : GaloisConnection (AddSubgroup.map f) (AddSubgroup.comap f) - AddSubgroup.map_iSup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ΞΉ : Sort u_7} (f : G β+ N) (s : ΞΉ β AddSubgroup G) : AddSubgroup.map f (iSup s) = β¨ i, AddSubgroup.map f (s i) - AddSubgroup.map_isAddCommutative π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G β+ G') [IsAddCommutative β₯H] : IsAddCommutative β₯(AddSubgroup.map f H) - AddSubgroup.map_isCommutative π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G β+ G') [IsAddCommutative β₯H] : IsAddCommutative β₯(AddSubgroup.map f H) - AddSubgroup.map_zero_eq_bot π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] : AddSubgroup.map 0 K = β₯ - AddSubgroup.map_inf_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) : AddSubgroup.map f (H β K) β€ AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.map_mono π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K K' : AddSubgroup G} : K β€ K' β AddSubgroup.map f K β€ AddSubgroup.map f K' - AddSubgroup.map_le_iff_le_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K : AddSubgroup G} {H : AddSubgroup N} : AddSubgroup.map f K β€ H β K β€ AddSubgroup.comap f H - AddMonoidHom.map_closure π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (s : Set G) : AddSubgroup.map f (AddSubgroup.closure s) = AddSubgroup.closure (βf '' s) - AddSubgroup.map_sup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) : AddSubgroup.map f (H β K) = AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.map_top_of_surjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (h : Function.Surjective βf) : AddSubgroup.map f β€ = β€ - AddSubgroup.coe_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (K : AddSubgroup G) : β(AddSubgroup.map f K) = βf '' βK - AddSubgroup.map_equiv_top π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {F : Type u_7} [EquivLike F G N] [AddEquivClass F G N] (f : F) : AddSubgroup.map βf β€ = β€ - AddSubgroup.map_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] {P : Type u_6} [AddGroup P] (g : N β+ P) (f : G β+ N) : AddSubgroup.map g (AddSubgroup.map f K) = AddSubgroup.map (g.comp f) K - AddSubgroup.comap_equiv_eq_map_symm' π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : N β+ G) (K : AddSubgroup G) : AddSubgroup.comap f.toAddMonoidHom K = AddSubgroup.map f.symm.toAddMonoidHom K - AddSubgroup.map_equiv_eq_comap_symm' π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (K : AddSubgroup G) : AddSubgroup.map f.toAddMonoidHom K = AddSubgroup.comap f.symm.toAddMonoidHom K - AddSubgroup.mem_map_of_mem π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) {K : AddSubgroup G} {x : G} (hx : x β K) : f x β AddSubgroup.map f K - AddSubgroup.map_iInf π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ΞΉ : Sort u_7} [Nonempty ΞΉ] (f : G β+ N) (hf : Function.Injective βf) (s : ΞΉ β AddSubgroup G) : AddSubgroup.map f (iInf s) = β¨ i, AddSubgroup.map f (s i) - AddSubgroup.map_inf π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : AddSubgroup.map f (H β K) = AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.map_inf_eq π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : AddSubgroup.map f (H β K) = AddSubgroup.map f H β AddSubgroup.map f K - AddSubgroup.mem_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K : AddSubgroup G} {y : N} : y β AddSubgroup.map f K β β x β K, f x = y - AddSubgroup.apply_coe_mem_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (K : AddSubgroup G) (x : β₯K) : f βx β AddSubgroup.map f K - AddSubgroup.map_toAddSubmonoid π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (K : AddSubgroup G) : (AddSubgroup.map f K).toAddSubmonoid = AddSubmonoid.map f K.toAddSubmonoid - AddSubgroup.equivMapOfInjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : β₯H β+ β₯(AddSubgroup.map f H) - AddSubgroup.map.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup.map f H = { carrier := βf '' βH, add_mem' := β―, zero_mem' := β―, neg_mem' := β― } - AddSubgroup.mem_map_iff_mem π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) {K : AddSubgroup G} {x : G} : f x β AddSubgroup.map f K β x β K - AddEquiv.coe_mapAddSubgroup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_5} [AddGroup H] (e : G β+ H) : βe.mapAddSubgroup = AddSubgroup.map e.toAddMonoidHom - AddSubgroup.mem_map_equiv π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {K : AddSubgroup G} {x : N} : x β AddSubgroup.map f.toAddMonoidHom K β f.symm x β K - AddMonoidHom.addSubgroupMap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) : β₯H β+ β₯(AddSubgroup.map f H) - AddSubgroup.map_eq_comap_of_inverse π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {g : N β+ G} (hl : Function.LeftInverse βg βf) (hr : Function.RightInverse βg βf) (H : AddSubgroup G) : AddSubgroup.map f H = AddSubgroup.comap g H - AddSubgroup.equivMapOfInjective.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) : H.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (βf) (βH) hf, map_add' := β― } - AddMonoidHom.addSubgroupMap.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) : f.addSubgroupMap H = f.addSubmonoidMap H.toAddSubmonoid - AddEquiv.mapAddSubgroup_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_6} [AddGroup H] (f : G β+ H) (Hβ : AddSubgroup G) : f.mapAddSubgroup Hβ = AddSubgroup.map (βf) Hβ - AddEquiv.mapAddSubgroup_symm_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_6} [AddGroup H] (f : G β+ H) (Hβ : AddSubgroup H) : (RelIso.symm f.mapAddSubgroup) Hβ = AddSubgroup.map (βf.symm) Hβ - AddEquiv.mapAddSubgroup.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {H : Type u_6} [AddGroup H] (f : G β+ H) : f.mapAddSubgroup = { toFun := AddSubgroup.map βf, invFun := AddSubgroup.map βf.symm, left_inv := β―, right_inv := β―, map_rel_iff' := β― } - AddSubgroup.comap_equiv_eq_map_symm π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : N β+ G) (K : AddSubgroup G) : AddSubgroup.comap (βf) K = AddSubgroup.map (βf.symm) K - AddSubgroup.map_equiv_eq_comap_symm π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (K : AddSubgroup G) : AddSubgroup.map (βf) K = AddSubgroup.comap (βf.symm) K - AddSubgroup.map_symm_eq_iff_map_eq π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] {H : AddSubgroup N} {e : G β+ N} : AddSubgroup.map (βe.symm) H = K β AddSubgroup.map (βe) K = H - AddEquiv.addSubgroupMap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (e : G β+ G') (H : AddSubgroup G) : β₯H β+ β₯(AddSubgroup.map (βe) H) - AddSubgroup.coe_equivMapOfInjective_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) (hf : Function.Injective βf) (h : β₯H) : β((H.equivMapOfInjective f hf) h) = f βh - AddEquiv.addSubgroupMap.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (e : G β+ G') (H : AddSubgroup G) : e.addSubgroupMap H = e.addSubmonoidMap H.toAddSubmonoid - AddMonoidHom.addSubgroupMap_surjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) : Function.Surjective β(f.addSubgroupMap H) - AddSubgroup.equivMapOfInjective_coe_addEquiv π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (e : G β+ G') : H.equivMapOfInjective βe β― = e.addSubgroupMap H - AddMonoidHom.addSubgroupMap_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H : AddSubgroup G) (x : β₯H.toAddSubmonoid) : β((f.addSubgroupMap H) x) = f βx - AddEquiv.coe_addSubgroupMap_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (e : G β+ G') (H : AddSubgroup G) (g : β₯H) : β((e.addSubgroupMap H) g) = e βg - AddEquiv.addSubgroupMap_symm_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (e : G β+ G') (H : AddSubgroup G) (g : β₯(AddSubgroup.map (βe) H)) : (e.addSubgroupMap H).symm g = β¨e.symm βg, β―β© - AddMonoidHom.range_eq_map π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : f.range = AddSubgroup.map f β€ - AddSubgroup.map_comap_eq π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) = f.range β H - AddSubgroup.map_le_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup.map f H β€ f.range - AddSubgroup.map_comap_eq_self π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H : AddSubgroup N} (h : H β€ f.range) : AddSubgroup.map f (AddSubgroup.comap f H) = H - AddSubgroup.comap_map_eq π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) (H : AddSubgroup G) : AddSubgroup.comap f (AddSubgroup.map f H) = H β f.ker - AddSubgroup.map_subtype_le π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} (K : AddSubgroup β₯H) : AddSubgroup.map H.subtype K β€ H - AddSubgroup.comap_map_eq_self π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H : AddSubgroup G} (h : f.ker β€ H) : AddSubgroup.comap f (AddSubgroup.map f H) = H - AddSubgroup.map_eq_bot_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G β+ N} : AddSubgroup.map f H = β₯ β H β€ f.ker - AddSubgroup.map_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (h : Function.Injective βf) : Function.Injective (AddSubgroup.map f) - AddSubgroup.comap_map_eq_self_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (h : Function.Injective βf) (H : AddSubgroup G) : AddSubgroup.comap f (AddSubgroup.map f H) = H - AddSubgroup.map_comap_eq_self_of_surjective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (h : Function.Surjective βf) (H : AddSubgroup N) : AddSubgroup.map f (AddSubgroup.comap f H) = H - AddMonoidHom.map_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} {P : Type u_6} [AddGroup N] [AddGroup P] (g : N β+ P) (f : G β+ N) : AddSubgroup.map g f.range = (g.comp f).range - AddMonoidHom.range_comp π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} {P : Type u_6} [AddGroup N] [AddGroup P] (g : N β+ P) (f : G β+ N) : (g.comp f).range = AddSubgroup.map g f.range - AddMonoidHom.restrict_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (K : AddSubgroup G) (f : G β+ N) : (f.restrict K).range = AddSubgroup.map f K - AddSubgroup.map_eq_range_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H : AddSubgroup G} : AddSubgroup.map f H = f.range β Codisjoint H f.ker - AddMonoidHom.range.eq_1 π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) : f.range = (AddSubgroup.map f β€).copy (Set.range βf) β― - AddSubgroup.map_eq_bot_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G β+ N} (hf : Function.Injective βf) : AddSubgroup.map f H = β₯ β H = β₯ - AddSubgroup.map_eq_map_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H K : AddSubgroup G} : AddSubgroup.map f H = AddSubgroup.map f K β H β f.ker = K β f.ker - AddSubgroup.map_le_map_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H K : AddSubgroup G} : AddSubgroup.map f H β€ AddSubgroup.map f K β H β€ K β f.ker - AddSubgroup.map_injective_of_ker_le π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G β+ N) {H K : AddSubgroup G} (hH : f.ker β€ H) (hK : f.ker β€ K) (hf : AddSubgroup.map f H = AddSubgroup.map f K) : H = K - AddSubgroup.map_le_map_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) {H K : AddSubgroup G} : AddSubgroup.map f H β€ AddSubgroup.map f K β H β€ K - AddSubgroup.map_lt_map_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} (hf : Function.Injective βf) {H K : AddSubgroup G} : AddSubgroup.map f H < AddSubgroup.map f K β H < K - AddSubgroup.map_le_map_iff' π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G β+ N} {H K : AddSubgroup G} : AddSubgroup.map f H β€ AddSubgroup.map f K β H β f.ker β€ K β f.ker - AddSubgroup.ker_addSubgroupMap π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) : (f.addSubgroupMap H).ker = f.ker.addSubgroupOf H - AddSubgroup.map_subtype_le_map_subtype π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {G' : AddSubgroup G} {H K : AddSubgroup β₯G'} : AddSubgroup.map G'.subtype H β€ AddSubgroup.map G'.subtype K β H β€ K - AddSubgroup.map_subtype_lt_map_subtype π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] {G' : AddSubgroup G} {H K : AddSubgroup β₯G'} : AddSubgroup.map G'.subtype H < AddSubgroup.map G'.subtype K β H < K - AddSubgroup.MapSubtype.orderIso.eq_1 π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] (H : AddSubgroup G) : AddSubgroup.MapSubtype.orderIso H = { toFun := fun H' => β¨AddSubgroup.map H.subtype H', β―β©, invFun := fun sH' => (βsH').addSubgroupOf H, left_inv := β―, right_inv := β―, map_rel_iff' := β― } - AddSubgroup.MapSubtype.orderIso_apply_coe π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [AddGroup G] (H : AddSubgroup G) (H' : AddSubgroup β₯H) : β((AddSubgroup.MapSubtype.orderIso H) H') = AddSubgroup.map H.subtype H' - Submodule.map_toAddSubgroup π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} {Mβ : Type u_7} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup Mβ] [Module R Mβ] (f : M ββ[R] Mβ) (p : Submodule R M) : (Submodule.map f p).toAddSubgroup = AddSubgroup.map (βf) p.toAddSubgroup - AddMonoidHom.coe_toMultiplicative_map π Mathlib.Algebra.Module.Submodule.Map
{G : Type u_10} {Gβ : Type u_11} [AddGroup G] [AddGroup Gβ] (f : G β+ Gβ) (s : AddSubgroup G) : Subgroup.map (AddMonoidHom.toMultiplicative f) (AddSubgroup.toSubgroup s) = AddSubgroup.toSubgroup (AddSubgroup.map f s) - MonoidHom.coe_toAdditive_map π Mathlib.Algebra.Module.Submodule.Map
{G : Type u_10} {Gβ : Type u_11} [Group G] [Group Gβ] (f : G β* Gβ) (s : Subgroup G) : AddSubgroup.map (MonoidHom.toAdditive f) (Subgroup.toAddSubgroup s) = Subgroup.toAddSubgroup (Subgroup.map f s) - AddMonoidHom.coe_toIntLinearMap_map π Mathlib.Algebra.Module.Submodule.Map
{A : Type u_10} {Aβ : Type u_11} [AddCommGroup A] [AddCommGroup Aβ] (f : A β+ Aβ) (s : AddSubgroup A) : Submodule.map f.toIntLinearMap (AddSubgroup.toIntSubmodule s) = AddSubgroup.toIntSubmodule (AddSubgroup.map f s) - AddSubgroup.characteristic_iff_map_eq π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} : H.Characteristic β β (Ο : G β+ G), AddSubgroup.map Ο.toAddMonoidHom H = H - AddSubgroup.le_normalizer_map π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} {N : Type u_5} [AddGroup N] (f : G β+ N) : AddSubgroup.map f H.normalizer β€ (AddSubgroup.map f H).normalizer - AddSubgroup.characteristic_iff_le_map π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} : H.Characteristic β β (Ο : G β+ G), H β€ AddSubgroup.map Ο.toAddMonoidHom H - AddSubgroup.characteristic_iff_map_le π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} : H.Characteristic β β (Ο : G β+ G), AddSubgroup.map Ο.toAddMonoidHom H β€ H - AddSubgroup.map_equiv_normalizer_eq π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G β+ N) : AddSubgroup.map f.toAddMonoidHom H.normalizer = (AddSubgroup.map f.toAddMonoidHom H).normalizer - AddSubgroup.Normal.map π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup G} (h : H.Normal) (f : G β+ N) (hf : Function.Surjective βf) : (AddSubgroup.map f H).Normal - AddSubgroup.map_normalizer_eq_of_bijective π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) {f : G β+ N} (hf : Function.Bijective βf) : AddSubgroup.map f H.normalizer = (AddSubgroup.map f H).normalizer - AddSubgroup.le_prod_iff π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup G} {K : AddSubgroup N} {J : AddSubgroup (G Γ N)} : J β€ H.prod K β AddSubgroup.map (AddMonoidHom.fst G N) J β€ H β§ AddSubgroup.map (AddMonoidHom.snd G N) J β€ K - AddSubgroup.prod_le_iff π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {H : AddSubgroup G} {K : AddSubgroup N} {J : AddSubgroup (G Γ N)} : H.prod K β€ J β AddSubgroup.map (AddMonoidHom.inl G N) H β€ J β§ AddSubgroup.map (AddMonoidHom.inr G N) K β€ J - AddMonoidHom.map_zmultiples π Mathlib.Algebra.Group.Subgroup.ZPowers.Basic
{G : Type u_1} [AddGroup G] {N : Type u_3} [AddGroup N] (f : G β+ N) (x : G) : AddSubgroup.map f (AddSubgroup.zmultiples x) = AddSubgroup.zmultiples (f x) - AddSubgroup.map_centralizer_le_centralizer_image π Mathlib.GroupTheory.Subgroup.Centralizer
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (s : Set G) (f : G β+ G') : AddSubgroup.map f (AddSubgroup.centralizer s) β€ AddSubgroup.centralizer (βf '' s) - AddSubgroup.pointwise_smul_def π Mathlib.Algebra.GroupWithZero.Subgroup
{M : Type u_3} {A : Type u_4} [Monoid M] [AddGroup A] [DistribMulAction M A] {a : M} (S : AddSubgroup A) : a β’ S = AddSubgroup.map ((DistribMulAction.toAddMonoidEnd M A) a) S - QuotientAddGroup.map_mk'_self π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] : AddSubgroup.map (QuotientAddGroup.mk' N) N = β₯ - QuotientAddGroup.ker_lift π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] (Ο : G β+ M) (HN : N β€ Ο.ker) : (QuotientAddGroup.lift N Ο HN).ker = AddSubgroup.map (QuotientAddGroup.mk' N) Ο.ker - QuotientAddGroup.ker_map π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G β+ H) (h : N β€ AddSubgroup.comap f M) : (QuotientAddGroup.map N M f h).ker = AddSubgroup.map (QuotientAddGroup.mk' N) (AddSubgroup.comap f M) - QuotientAddGroup.congr π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [AddGroup G] {H : Type v} [AddGroup H] (G' : AddSubgroup G) (H' : AddSubgroup H) [G'.Normal] [H'.Normal] (e : G β+ H) (he : AddSubgroup.map (βe) G' = H') : G β§Έ G' β+ H β§Έ H' - QuotientAddGroup.congr.eq_1 π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [AddGroup G] {H : Type v} [AddGroup H] (G' : AddSubgroup G) (H' : AddSubgroup H) [G'.Normal] [H'.Normal] (e : G β+ H) (he : AddSubgroup.map (βe) G' = H') : QuotientAddGroup.congr G' H' e he = { toFun := β(QuotientAddGroup.map G' H' βe β―), invFun := β(QuotientAddGroup.map H' G' βe.symm β―), left_inv := β―, right_inv := β―, map_add' := β― } - AddSubgroup.card_map_of_injective π Mathlib.Algebra.Group.Subgroup.Finite
{G : Type u_1} [AddGroup G] {H : Type u_3} [AddGroup H] {K : AddSubgroup G} {f : G β+ H} (hf : Function.Injective βf) : Nat.card β₯(AddSubgroup.map f K) = Nat.card β₯K - AddSubgroup.pi_le_iff π Mathlib.Algebra.Group.Subgroup.Finite
{Ξ· : Type u_3} {f : Ξ· β Type u_4} [(i : Ξ·) β AddGroup (f i)] [DecidableEq Ξ·] [Finite Ξ·] {H : (i : Ξ·) β AddSubgroup (f i)} {J : AddSubgroup ((i : Ξ·) β f i)} : AddSubgroup.pi Set.univ H β€ J β β (i : Ξ·), AddSubgroup.map (AddMonoidHom.single f i) (H i) β€ J - AddSubgroup.card_subtype π Mathlib.Algebra.Group.Subgroup.Finite
{G : Type u_1} [AddGroup G] (K : AddSubgroup G) (L : AddSubgroup β₯K) : Nat.card β₯(AddSubgroup.map K.subtype L) = Nat.card β₯L - QuotientAddGroup.map_normal π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] : (AddSubgroup.map (QuotientAddGroup.mk' N) M).Normal - QuotientAddGroup.comap_map_mk' π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N H : AddSubgroup G) [N.Normal] : AddSubgroup.comap (QuotientAddGroup.mk' N) (AddSubgroup.map (QuotientAddGroup.mk' N) H) = N β H - QuotientAddGroup.strictMono_comap_prod_map π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] : StrictMono fun H => (AddSubgroup.comap N.subtype H, AddSubgroup.map (QuotientAddGroup.mk' N) H) - QuotientAddGroup.quotientQuotientEquivQuotientAux π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) : (G β§Έ N) β§Έ AddSubgroup.map (QuotientAddGroup.mk' N) M β+ G β§Έ M - QuotientAddGroup.quotientQuotientEquivQuotient π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) : (G β§Έ N) β§Έ AddSubgroup.map (QuotientAddGroup.mk' N) M β+ G β§Έ M - QuotientAddGroup.quotientQuotientEquivQuotientAux.eq_1 π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) : QuotientAddGroup.quotientQuotientEquivQuotientAux N M h = QuotientAddGroup.lift (AddSubgroup.map (QuotientAddGroup.mk' N) M) (QuotientAddGroup.map N M (AddMonoidHom.id G) h) β― - QuotientAddGroup.comapMk'OrderIso.eq_1 π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [hn : N.Normal] : QuotientAddGroup.comapMk'OrderIso N = { toFun := fun H' => β¨AddSubgroup.comap (QuotientAddGroup.mk' N) H', β―β©, invFun := fun H => AddSubgroup.map (QuotientAddGroup.mk' N) βH, left_inv := β―, right_inv := β―, map_rel_iff' := β― } - QuotientAddGroup.quotientQuotientEquivQuotient.eq_1 π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) : QuotientAddGroup.quotientQuotientEquivQuotient N M h = (QuotientAddGroup.quotientQuotientEquivQuotientAux N M h).toAddEquiv (QuotientAddGroup.map M (AddSubgroup.map (QuotientAddGroup.mk' N) M) (QuotientAddGroup.mk' N) β―) β― β― - QuotientAddGroup.quotientQuotientEquivQuotientAux_mk_mk π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) (x : G) : (QuotientAddGroup.quotientQuotientEquivQuotientAux N M h) ββx = βx - QuotientAddGroup.quotientQuotientEquivQuotientAux_mk π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (M : AddSubgroup G) [nM : M.Normal] (h : N β€ M) (x : G β§Έ N) : (QuotientAddGroup.quotientQuotientEquivQuotientAux N M h) βx = (QuotientAddGroup.map N M (AddMonoidHom.id G) h) x - AddAction.stabilizer_vadd_eq_stabilizer_map_conj π Mathlib.GroupTheory.GroupAction.Basic
{G : Type u_1} {Ξ± : Type u_2} [AddGroup G] [AddAction G Ξ±] (g : G) (a : Ξ±) : AddAction.stabilizer G (g +α΅₯ a) = AddSubgroup.map (AddEquiv.toAddMonoidHom (Additive.toMul (AddAut.conj g))) (AddAction.stabilizer G a) - AddAction.stabilizerEquivStabilizer.eq_1 π Mathlib.GroupTheory.GroupAction.Basic
{G : Type u_1} {Ξ± : Type u_2} [AddGroup G] [AddAction G Ξ±] {g : G} {a b : Ξ±} (hg : b = g +α΅₯ a) : AddAction.stabilizerEquivStabilizer hg = (AddEquiv.addSubgroupMap (Additive.toMul (AddAut.conj g)) (AddAction.stabilizer G a)).trans (AddEquiv.addSubgroupCongr β―) - AddSubgroup.relIndex_comap π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G' β+ G) (K : AddSubgroup G') : (AddSubgroup.comap f H).relIndex K = H.relIndex (AddSubgroup.map f K) - AddSubgroup.relIndex_ker π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (K : AddSubgroup G) (f : G β+ G') : f.ker.relIndex K = Nat.card β₯(AddSubgroup.map f K) - AddSubgroup.card_map_dvd π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G β+ G') : Nat.card β₯(AddSubgroup.map f H) β£ Nat.card β₯H - AddSubgroup.dvd_index_map π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G β+ G'} (hf : f.ker β€ H) : H.index β£ (AddSubgroup.map f H).index - AddSubgroup.index_map_of_bijective π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] {f : G β+ G'} (hf : Function.Bijective βf) (H : AddSubgroup G) : (AddSubgroup.map f H).index = H.index - AddSubgroup.index_map π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G β+ G') : (AddSubgroup.map f H).index = (H β f.ker).index * f.range.index - AddSubgroup.index_map_dvd π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G β+ G'} (hf : Function.Surjective βf) : (AddSubgroup.map f H).index β£ H.index - AddSubgroup.index_map_subtype π Mathlib.GroupTheory.Index
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} (K : AddSubgroup β₯H) : (AddSubgroup.map H.subtype K).index = K.index * H.index - AddSubgroup.relIndex_map_map_of_injective π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] {f : G β+ G'} (H K : AddSubgroup G) (hf : Function.Injective βf) : (AddSubgroup.map f H).relIndex (AddSubgroup.map f K) = H.relIndex K - AddSubgroup.index_map_of_injective π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G β+ G'} (hf : Function.Injective βf) : (AddSubgroup.map f H).index = H.index * f.range.index - AddSubgroup.relIndex_map_map π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G β+ G') (H K : AddSubgroup G) : (AddSubgroup.map f H).relIndex (AddSubgroup.map f K) = (H β f.ker).relIndex (K β f.ker) - AddSubgroup.index_map_eq π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G β+ G'} (hf1 : Function.Surjective βf) (hf2 : f.ker β€ H) : (AddSubgroup.map f H).index = H.index - AddSubgroup.index_map_equiv π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (e : G β+ G') : (AddSubgroup.map (βe) H).index = H.index - DenseRange.topologicalClosure_map_addSubgroup π Mathlib.Topology.Algebra.Group.Basic
{G : Type w} {H : Type x} [TopologicalSpace G] [AddGroup G] [IsTopologicalAddGroup G] [AddGroup H] [TopologicalSpace H] [IsTopologicalAddGroup H] {f : G β+ H} (hf : Continuous βf) (hf' : DenseRange βf) {s : AddSubgroup G} (hs : s.topologicalClosure = β€) : (AddSubgroup.map f s).topologicalClosure = β€ - NormedAddGroupHom.comp_range π Mathlib.Analysis.Normed.Group.Hom
{Vβ : Type u_3} {Vβ : Type u_4} {Vβ : Type u_5} [SeminormedAddCommGroup Vβ] [SeminormedAddCommGroup Vβ] [SeminormedAddCommGroup Vβ] (f : NormedAddGroupHom Vβ Vβ) (g : NormedAddGroupHom Vβ Vβ) : (g.comp f).range = AddSubgroup.map g.toAddMonoidHom f.range - AddAction.map_stabilizer_le π Mathlib.Algebra.Pointwise.Stabilizer
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (f : G β+ H) (s : Set G) : AddSubgroup.map f (AddAction.stabilizer G s) β€ AddAction.stabilizer H (βf '' s) - AddSubgroup.goursatFst.eq_1 π Mathlib.GroupTheory.Goursat
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (I : AddSubgroup (G Γ H)) : I.goursatFst = AddSubgroup.map ((AddMonoidHom.fst G H).comp I.subtype) ((AddMonoidHom.snd G H).comp I.subtype).ker - AddSubgroup.goursatSnd.eq_1 π Mathlib.GroupTheory.Goursat
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (I : AddSubgroup (G Γ H)) : I.goursatSnd = AddSubgroup.map ((AddMonoidHom.snd G H).comp I.subtype) ((AddMonoidHom.fst G H).comp I.subtype).ker - AddSubgroup.goursat π Mathlib.GroupTheory.Goursat
{G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] {I : AddSubgroup (G Γ H)} : β G' H' M N, β (x : M.Normal) (x_1 : N.Normal), β e, I = AddSubgroup.map (G'.subtype.prodMap H'.subtype) (AddSubgroup.comap ((QuotientAddGroup.mk' M).prodMap (QuotientAddGroup.mk' N)) e.toAddMonoidHom.graph) - AddAction.IsBlock.of_addSubgroup_of_conjugate π Mathlib.GroupTheory.GroupAction.Blocks
{G : Type u_3} [AddGroup G] {X : Type u_4} [AddAction G X] {B : Set X} {H : AddSubgroup G} (hB : AddAction.IsBlock (β₯H) B) (g : G) : AddAction.IsBlock (β₯(AddSubgroup.map (AddEquiv.toAddMonoidHom (Additive.toMul (AddAut.conj g))) H)) (g +α΅₯ B) - SubAddAction.fixingAddSubgroup_vadd_eq_fixingAddSubgroup_map_conj π Mathlib.GroupTheory.GroupAction.SubMulAction.OfFixingSubgroup
{M : Type u_1} {Ξ± : Type u_2} [AddGroup M] [AddAction M Ξ±] (s : Set Ξ±) (g : M) : fixingAddSubgroup M (g +α΅₯ s) = AddSubgroup.map (AddEquiv.toAddMonoidHom (AddAut.conj g)) (fixingAddSubgroup M s) - SubAddAction.fixingAddSubgroup_map_conj_eq π Mathlib.GroupTheory.GroupAction.SubMulAction.OfFixingSubgroup
{M : Type u_1} {Ξ± : Type u_2} [AddGroup M] [AddAction M Ξ±] {s t : Set Ξ±} {g : M} (hg : g +α΅₯ t = s) : AddSubgroup.map (AddEquiv.toAddMonoidHom (AddAut.conj g)) (fixingAddSubgroup M t) = fixingAddSubgroup M s - SubAddAction.fixingAddSubgroupEquivFixingAddSubgroup.eq_1 π Mathlib.GroupTheory.GroupAction.SubMulAction.OfFixingSubgroup
{M : Type u_1} {Ξ± : Type u_2} [AddGroup M] [AddAction M Ξ±] {s t : Set Ξ±} {g : M} (hg : g +α΅₯ t = s) : SubAddAction.fixingAddSubgroupEquivFixingAddSubgroup hg = (AddEquiv.addSubgroupMap (AddAut.conj g) (fixingAddSubgroup M t)).trans (AddEquiv.addSubgroupCongr β―) - SubAddAction.fixingAddSubgroup_of_insert π Mathlib.GroupTheory.GroupAction.SubMulAction.OfFixingSubgroup
{M : Type u_1} {Ξ± : Type u_2} [AddGroup M] [AddAction M Ξ±] (a : Ξ±) (s : Set β₯(SubAddAction.ofStabilizer M a)) : fixingAddSubgroup M (insert a ((fun x => βx) '' s)) = AddSubgroup.map (AddAction.stabilizer M a).subtype (fixingAddSubgroup (β₯(AddAction.stabilizer M a)) s) - NumberField.Units.dirichletUnitTheorem.map_logEmbedding_sup_torsion π Mathlib.NumberTheory.NumberField.Units.DirichletTheorem
{K : Type u_1} [Field K] [NumberField K] (s : AddSubgroup (Additive (NumberField.RingOfIntegers K)Λ£)) : AddSubgroup.map (NumberField.Units.logEmbedding K) (s β Subgroup.toAddSubgroup (NumberField.Units.torsion K)) = AddSubgroup.map (NumberField.Units.logEmbedding K) s - NumberField.Units.span_basisOfIsMaxRank π Mathlib.NumberTheory.NumberField.Units.Regulator
{K : Type u_1} [Field K] [NumberField K] {u : Fin (NumberField.Units.rank K) β (NumberField.RingOfIntegers K)Λ£} (hu : NumberField.Units.IsMaxRank u) : (Submodule.span β€ (Set.range β(NumberField.Units.basisOfIsMaxRank hu))).toAddSubgroup = AddSubgroup.map (NumberField.Units.logEmbedding K) (Subgroup.toAddSubgroup (Subgroup.closure (Set.range u)))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ee8c038
serving mathlib revision 7a9e177