Loogle!
Result
Found 96 declarations mentioning AddSubmonoid.map.
- AddSubmonoid.map 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid M) : AddSubmonoid N - AddSubmonoid.map_id 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} [AddZeroClass M] (S : AddSubmonoid M) : AddSubmonoid.map (AddMonoidHom.id M) S = S - AddSubmonoid.map_injective_of_injective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective ⇑f) : Function.Injective (AddSubmonoid.map f) - AddSubmonoid.map_surjective_of_surjective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Surjective ⇑f) : Function.Surjective (AddSubmonoid.map f) - AddSubmonoid.map_bot 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) : AddSubmonoid.map f ⊥ = ⊥ - AddMonoidHom.mrange_eq_map 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) : AddMonoidHom.mrange f = AddSubmonoid.map f ⊤ - AddMonoidHom.map_mclosure 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (s : Set M) : AddSubmonoid.map f (AddSubmonoid.closure s) = AddSubmonoid.closure (⇑f '' s) - AddSubmonoid.comap_map_eq_of_injective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective ⇑f) (S : AddSubmonoid M) : AddSubmonoid.comap f (AddSubmonoid.map f S) = S - AddSubmonoid.map_comap_eq_of_surjective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Surjective ⇑f) (S : AddSubmonoid N) : AddSubmonoid.map f (AddSubmonoid.comap f S) = S - AddSubmonoid.map_comap_eq_self_of_surjective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (h : Function.Surjective ⇑f) {S : AddSubmonoid N} : AddSubmonoid.map f (AddSubmonoid.comap f S) = S - AddSubmonoid.coe_map 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid M) : ↑(AddSubmonoid.map f S) = ⇑f '' ↑S - AddSubmonoid.map_comap_eq 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid N) : AddSubmonoid.map f (AddSubmonoid.comap f S) = S ⊓ AddMonoidHom.mrange f - AddSubmonoid.comap_map_comap 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {S : AddSubmonoid N} {f : F} : AddSubmonoid.comap f (AddSubmonoid.map f (AddSubmonoid.comap f S)) = AddSubmonoid.comap f S - AddSubmonoid.map_comap_map 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} : AddSubmonoid.map f (AddSubmonoid.comap f (AddSubmonoid.map f S)) = AddSubmonoid.map f S - AddSubmonoid.le_comap_map 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} : S ≤ AddSubmonoid.comap f (AddSubmonoid.map f S) - AddSubmonoid.map_comap_le 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {S : AddSubmonoid N} {f : F} : AddSubmonoid.map f (AddSubmonoid.comap f S) ≤ S - AddSubmonoid.monotone_map 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} : Monotone (AddSubmonoid.map f) - AddSubmonoid.map_coe_toAddMonoidHom 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid M) : AddSubmonoid.map (↑f) S = AddSubmonoid.map f S - AddMonoidHom.mrange.eq_1 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) : AddMonoidHom.mrange f = (AddSubmonoid.map f ⊤).copy (Set.range ⇑f) ⋯ - AddSubmonoid.mem_map_of_mem 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) {S : AddSubmonoid M} {x : M} (hx : x ∈ S) : f x ∈ AddSubmonoid.map f S - AddSubmonoid.gc_map_comap 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) : GaloisConnection (AddSubmonoid.map f) (AddSubmonoid.comap f) - AddSubmonoid.map_strictMono_of_injective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective ⇑f) : StrictMono (AddSubmonoid.map f) - AddSubmonoid.comap_iInf_map_of_injective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Injective ⇑f) (S : ι → AddSubmonoid M) : AddSubmonoid.comap f (⨅ i, AddSubmonoid.map f (S i)) = iInf S - AddSubmonoid.map_iInf_comap_of_surjective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Surjective ⇑f) (S : ι → AddSubmonoid N) : AddSubmonoid.map f (⨅ i, AddSubmonoid.comap f (S i)) = iInf S - AddSubmonoid.map_iInf 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Sort u_5} [Nonempty ι] (f : F) (hf : Function.Injective ⇑f) (s : ι → AddSubmonoid M) : AddSubmonoid.map f (iInf s) = ⨅ i, AddSubmonoid.map f (s i) - AddSubmonoid.mem_map 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} {S : AddSubmonoid M} {y : N} : y ∈ AddSubmonoid.map f S ↔ ∃ x ∈ S, f x = y - AddSubmonoid.map_comap_eq_self 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} {S : AddSubmonoid N} (h : S ≤ AddMonoidHom.mrange f) : AddSubmonoid.map f (AddSubmonoid.comap f S) = S - AddSubmonoid.mem_map_iff_mem 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective ⇑f) {S : AddSubmonoid M} {x : M} : f x ∈ AddSubmonoid.map f S ↔ x ∈ S - AddSubmonoid.map_iSup 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Sort u_5} (f : F) (s : ι → AddSubmonoid M) : AddSubmonoid.map f (iSup s) = ⨆ i, AddSubmonoid.map f (s i) - AddSubmonoid.map_inl 📋 Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (s : AddSubmonoid M) : AddSubmonoid.map (AddMonoidHom.inl M N) s = s.prod ⊥ - AddSubmonoid.map_inr 📋 Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (s : AddSubmonoid N) : AddSubmonoid.map (AddMonoidHom.inr M N) s = ⊥.prod s - AddSubmonoid.map.eq_1 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid M) : AddSubmonoid.map f S = { carrier := ⇑f '' ↑S, add_mem' := ⋯, zero_mem' := ⋯ } - AddSubmonoid.comap_inf_map_of_injective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective ⇑f) (S T : AddSubmonoid M) : AddSubmonoid.comap f (AddSubmonoid.map f S ⊓ AddSubmonoid.map f T) = S ⊓ T - AddSubmonoid.gciMapComap 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective ⇑f) : GaloisCoinsertion (AddSubmonoid.map f) (AddSubmonoid.comap f) - AddSubmonoid.giMapComap 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Surjective ⇑f) : GaloisInsertion (AddSubmonoid.map f) (AddSubmonoid.comap f) - AddSubmonoid.map_inf 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (S T : AddSubmonoid M) (f : F) (hf : Function.Injective ⇑f) : AddSubmonoid.map f (S ⊓ T) = AddSubmonoid.map f S ⊓ AddSubmonoid.map f T - AddSubmonoid.map_inf_comap_of_surjective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Surjective ⇑f) (S T : AddSubmonoid N) : AddSubmonoid.map f (AddSubmonoid.comap f S ⊓ AddSubmonoid.comap f T) = S ⊓ T - AddSubmonoid.apply_coe_mem_map 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) (S : AddSubmonoid M) (x : ↥S) : f ↑x ∈ AddSubmonoid.map f S - AddSubmonoid.comap_iSup_map_of_injective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Injective ⇑f) (S : ι → AddSubmonoid M) : AddSubmonoid.comap f (⨆ i, AddSubmonoid.map f (S i)) = iSup S - AddSubmonoid.map_iSup_comap_of_surjective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {ι : Type u_5} {f : F} (hf : Function.Surjective ⇑f) (S : ι → AddSubmonoid N) : AddSubmonoid.map f (⨆ i, AddSubmonoid.comap f (S i)) = iSup S - AddSubmonoid.le_comap_of_map_le 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {T : AddSubmonoid N} {f : F} : AddSubmonoid.map f S ≤ T → S ≤ AddSubmonoid.comap f T - AddSubmonoid.map_le_of_le_comap 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {T : AddSubmonoid N} {f : F} : S ≤ AddSubmonoid.comap f T → AddSubmonoid.map f S ≤ T - AddMonoidHom.map_mrange 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} {P : Type u_3} [AddZeroClass M] [AddZeroClass N] [AddZeroClass P] (g : N →+ P) (f : M →+ N) : AddSubmonoid.map g (AddMonoidHom.mrange f) = AddMonoidHom.mrange (g.comp f) - AddMonoidHom.mrange_comp 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {O : Type u_5} [AddZeroClass O] (f : N →+ O) (g : M →+ N) : AddMonoidHom.mrange (f.comp g) = AddSubmonoid.map f (AddMonoidHom.mrange g) - AddSubmonoid.map_le_iff_le_comap 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} {S : AddSubmonoid M} {T : AddSubmonoid N} : AddSubmonoid.map f S ≤ T ↔ S ≤ AddSubmonoid.comap f T - AddSubmonoid.map_sup 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] (S T : AddSubmonoid M) (f : F) : AddSubmonoid.map f (S ⊔ T) = AddSubmonoid.map f S ⊔ AddSubmonoid.map f T - AddSubmonoid.map_map 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} {P : Type u_3} [AddZeroClass M] [AddZeroClass N] [AddZeroClass P] (S : AddSubmonoid M) (g : N →+ P) (f : M →+ N) : AddSubmonoid.map g (AddSubmonoid.map f S) = AddSubmonoid.map (g.comp f) S - AddMonoidHom.addSubmonoidMap 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (M' : AddSubmonoid M) : ↥M' →+ ↥(AddSubmonoid.map f M') - AddSubmonoid.map_equiv_top 📋 Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (f : M ≃+ N) : AddSubmonoid.map f ⊤ = ⊤ - AddSubmonoid.map_le_map_iff_of_injective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective ⇑f) {S T : AddSubmonoid M} : AddSubmonoid.map f S ≤ AddSubmonoid.map f T ↔ S ≤ T - AddSubmonoid.comap_sup_map_of_injective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective ⇑f) (S T : AddSubmonoid M) : AddSubmonoid.comap f (AddSubmonoid.map f S ⊔ AddSubmonoid.map f T) = S ⊔ T - AddSubmonoid.map_sup_comap_of_surjective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Surjective ⇑f) (S T : AddSubmonoid N) : AddSubmonoid.map f (AddSubmonoid.comap f S ⊔ AddSubmonoid.comap f T) = S ⊔ T - AddSubmonoid.equivMapOfInjective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (S : AddSubmonoid M) (f : M →+ N) (hf : Function.Injective ⇑f) : ↥S ≃+ ↥(AddSubmonoid.map f S) - AddSubmonoid.mem_map_equiv 📋 Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] {f : M ≃+ N} {K : AddSubmonoid M} {x : N} : x ∈ AddSubmonoid.map f.toAddMonoidHom K ↔ f.symm x ∈ K - AddSubmonoid.map_coe_toAddEquiv 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_5} [EquivLike F M N] [AddEquivClass F M N] (f : F) (S : AddSubmonoid M) : AddSubmonoid.map (↑f) S = AddSubmonoid.map f S - AddSubmonoid.comap_equiv_eq_map_symm 📋 Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (f : N ≃+ M) (K : AddSubmonoid M) : AddSubmonoid.comap f K = AddSubmonoid.map f.symm K - AddSubmonoid.map_equiv_eq_comap_symm 📋 Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (f : M ≃+ N) (K : AddSubmonoid M) : AddSubmonoid.map f K = AddSubmonoid.comap f.symm K - AddSubmonoid.gciMapComap.eq_1 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Injective ⇑f) : AddSubmonoid.gciMapComap hf = ⋯.toGaloisCoinsertion ⋯ - AddSubmonoid.giMapComap.eq_1 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] {F : Type u_4} [FunLike F M N] [mc : AddMonoidHomClass F M N] {f : F} (hf : Function.Surjective ⇑f) : AddSubmonoid.giMapComap hf = ⋯.toGaloisInsertion ⋯ - AddMonoidHom.restrict_mrange 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) (f : M →+ N) : AddMonoidHom.mrange (f.restrict S) = AddSubmonoid.map f S - AddEquiv.addSubmonoidMap 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (e : M ≃+ N) (S : AddSubmonoid M) : ↥S ≃+ ↥(AddSubmonoid.map e S) - AddSubmonoid.le_prod_iff 📋 Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] {s : AddSubmonoid M} {t : AddSubmonoid N} {u : AddSubmonoid (M × N)} : u ≤ s.prod t ↔ AddSubmonoid.map (AddMonoidHom.fst M N) u ≤ s ∧ AddSubmonoid.map (AddMonoidHom.snd M N) u ≤ t - AddSubmonoid.equivMapOfInjective.eq_1 📋 Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (S : AddSubmonoid M) (f : M →+ N) (hf : Function.Injective ⇑f) : S.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (⇑f) (↑S) hf, map_add' := ⋯ } - AddSubmonoid.prod_le_iff 📋 Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] {s : AddSubmonoid M} {t : AddSubmonoid N} {u : AddSubmonoid (M × N)} : s.prod t ≤ u ↔ AddSubmonoid.map (AddMonoidHom.inl M N) s ≤ u ∧ AddSubmonoid.map (AddMonoidHom.inr M N) t ≤ u - AddMonoidHom.addSubmonoidMap_surjective 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (M' : AddSubmonoid M) : Function.Surjective ⇑(f.addSubmonoidMap M') - AddSubmonoid.equivMapOfInjective_coe_addEquiv 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (S : AddSubmonoid M) (e : M ≃+ N) : S.equivMapOfInjective ↑e ⋯ = e.addSubmonoidMap S - AddMonoidHom.addSubmonoidMap_apply_coe 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (M' : AddSubmonoid M) (x : ↥M') : ↑((f.addSubmonoidMap M') x) = f ↑x - AddEquiv.addSubmonoidMap.eq_1 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (e : M ≃+ N) (S : AddSubmonoid M) : e.addSubmonoidMap S = { toEquiv := (↑e).image ↑S, map_add' := ⋯ } - AddMonoidHom.addSubmonoidMap.eq_1 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (M' : AddSubmonoid M) : f.addSubmonoidMap M' = { toFun := fun x => ⟨f ↑x, ⋯⟩, map_zero' := ⋯, map_add' := ⋯ } - AddSubmonoid.coe_equivMapOfInjective_apply 📋 Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [AddZeroClass N] {M : Type u_5} [AddZeroClass M] (S : AddSubmonoid M) (f : M →+ N) (hf : Function.Injective ⇑f) (x : ↥S) : ↑((S.equivMapOfInjective f hf) x) = f ↑x - AddEquiv.coe_addSubmonoidMap_apply 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (e : M ≃+ N) (S : AddSubmonoid M) (g : ↥S) : ↑((e.addSubmonoidMap S) g) = e ↑g - AddEquiv.add_submonoid_map_symm_apply 📋 Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [AddZeroClass M] [AddZeroClass N] (e : M ≃+ N) (S : AddSubmonoid M) (g : ↥(AddSubmonoid.map (↑e) S)) : (e.addSubmonoidMap S).symm g = ⟨e.symm ↑g, ⋯⟩ - AddSubgroup.map_toAddSubmonoid 📋 Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G →+ G') (K : AddSubgroup G) : (AddSubgroup.map f K).toAddSubmonoid = AddSubmonoid.map f K.toAddSubmonoid - AddMonoidHom.addSubgroupMap_apply_coe 📋 Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G →+ G') (H : AddSubgroup G) (x : ↥H.toAddSubmonoid) : ↑((f.addSubgroupMap H) x) = f ↑x - Submodule.map_toAddSubmonoid' 📋 Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {R₂ : Type u_3} {M : Type u_5} {M₂ : Type u_7} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [RingHomSurjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) (p : Submodule R M) : (Submodule.map f p).toAddSubmonoid = AddSubmonoid.map f p.toAddSubmonoid - Submodule.map_toAddSubmonoid 📋 Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {R₂ : Type u_3} {M : Type u_5} {M₂ : Type u_7} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [RingHomSurjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) (p : Submodule R M) : (Submodule.map f p).toAddSubmonoid = AddSubmonoid.map (↑f) p.toAddSubmonoid - AddSubmonoid.LocalizationMap.ofAddEquivOfDom 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {k : P ≃+ M} (H : AddSubmonoid.map k.toAddMonoidHom T = S) : T.LocalizationMap N - AddSubmonoid.LocalizationMap.addEquivOfAddEquiv 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {Q : Type u_4} [AddCommMonoid Q] (k : T.LocalizationMap Q) {j : M ≃+ P} (H : AddSubmonoid.map j.toAddMonoidHom S = T) : N ≃+ Q - AddSubmonoid.LocalizationMap.addEquivOfAddEquiv.eq_1 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {Q : Type u_4} [AddCommMonoid Q] (k : T.LocalizationMap Q) {j : M ≃+ P} (H : AddSubmonoid.map j.toAddMonoidHom S = T) : f.addEquivOfAddEquiv k H = f.addEquivOfLocalizations (k.ofAddEquivOfDom H) - AddSubmonoid.LocalizationMap.ofAddEquivOfDom_eq 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {k : P ≃+ M} (H : AddSubmonoid.map k.toAddMonoidHom T = S) : (f.ofAddEquivOfDom H).toMap = f.toMap.comp k.toAddMonoidHom - AddSubmonoid.LocalizationMap.of_addEquivOfAddEquiv 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {Q : Type u_4} [AddCommMonoid Q] {k : T.LocalizationMap Q} {j : M ≃+ P} (H : AddSubmonoid.map j.toAddMonoidHom S = T) : (f.ofAddEquivOfLocalizations (f.addEquivOfAddEquiv k H)).toMap = k.toMap.comp j.toAddMonoidHom - AddSubmonoid.LocalizationMap.ofAddEquivOfDom.eq_1 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {k : P ≃+ M} (H : AddSubmonoid.map k.toAddMonoidHom T = S) : f.ofAddEquivOfDom H = (f.toMap.comp k.toAddMonoidHom).toLocalizationMap ⋯ ⋯ ⋯ - AddSubmonoid.LocalizationMap.ofAddEquivOfDom_apply 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {k : P ≃+ M} (H : AddSubmonoid.map k.toAddMonoidHom T = S) (x : P) : (f.ofAddEquivOfDom H).toMap x = f.toMap (k x) - AddSubmonoid.LocalizationMap.map_injective_of_injective 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {g : M →+ P} {Q : Type u_4} [AddCommMonoid Q] (hg : Function.Injective ⇑g) (k : (AddSubmonoid.map g S).LocalizationMap Q) : Function.Injective ⇑(f.map ⋯ k) - AddSubmonoid.LocalizationMap.map_surjective_of_surjective 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {g : M →+ P} {Q : Type u_4} [AddCommMonoid Q] (hg : Function.Surjective ⇑g) (k : (AddSubmonoid.map g S).LocalizationMap Q) : Function.Surjective ⇑(f.map ⋯ k) - AddSubmonoid.LocalizationMap.ofAddEquivOfDom_comp_symm 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {k : P ≃+ M} (H : AddSubmonoid.map k.toAddMonoidHom T = S) (x : M) : (f.ofAddEquivOfDom H).toMap (k.symm x) = f.toMap x - AddSubmonoid.LocalizationMap.of_addEquivOfAddEquiv_apply 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {Q : Type u_4} [AddCommMonoid Q] {k : T.LocalizationMap Q} {j : M ≃+ P} (H : AddSubmonoid.map j.toAddMonoidHom S = T) (x : M) : (f.ofAddEquivOfLocalizations (f.addEquivOfAddEquiv k H)).toMap x = k.toMap (j x) - AddSubmonoid.LocalizationMap.ofAddEquivOfDom_comp 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {k : M ≃+ P} (H : AddSubmonoid.map k.symm.toAddMonoidHom T = S) (x : M) : (f.ofAddEquivOfDom H).toMap (k x) = f.toMap x - AddSubmonoid.LocalizationMap.addEquivOfAddEquiv_eq 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {Q : Type u_4} [AddCommMonoid Q] {k : T.LocalizationMap Q} {j : M ≃+ P} (H : AddSubmonoid.map j.toAddMonoidHom S = T) (x : M) : (f.addEquivOfAddEquiv k H) (f.toMap x) = k.toMap (j x) - AddSubmonoid.LocalizationMap.addEquivOfAddEquiv_mk' 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {Q : Type u_4} [AddCommMonoid Q] {k : T.LocalizationMap Q} {j : M ≃+ P} (H : AddSubmonoid.map j.toAddMonoidHom S = T) (x : M) (y : ↥S) : (f.addEquivOfAddEquiv k H) (f.mk' x y) = k.mk' (j x) ⟨j ↑y, ⋯⟩ - AddSubmonoid.LocalizationMap.addEquivOfAddEquiv_eq_map 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {Q : Type u_4} [AddCommMonoid Q] {k : T.LocalizationMap Q} {j : M ≃+ P} (H : AddSubmonoid.map j.toAddMonoidHom S = T) : (f.addEquivOfAddEquiv k H).toAddMonoidHom = f.map ⋯ k - AddSubmonoid.LocalizationMap.addEquivOfAddEquiv_eq_map_apply 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] {P : Type u_3} [AddCommMonoid P] (f : S.LocalizationMap N) {T : AddSubmonoid P} {Q : Type u_4} [AddCommMonoid Q] {k : T.LocalizationMap Q} {j : M ≃+ P} (H : AddSubmonoid.map j.toAddMonoidHom S = T) (x : N) : (f.addEquivOfAddEquiv k H) x = (f.map ⋯ k) x - AddSubmonoid.LocalizationMap.ofAddEquivOfDom_id 📋 Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [AddCommMonoid M] {S : AddSubmonoid M} {N : Type u_2} [AddCommMonoid N] (f : S.LocalizationMap N) : f.ofAddEquivOfDom ⋯ = f - AddSubmonoid.FG.map 📋 Mathlib.GroupTheory.Finiteness
{M : Type u_1} [AddMonoid M] {M' : Type u_3} [AddMonoid M'] {P : AddSubmonoid M} (h : P.FG) (e : M →+ M') : (AddSubmonoid.map e P).FG - AddSubmonoid.FG.map_injective 📋 Mathlib.GroupTheory.Finiteness
{M : Type u_1} [AddMonoid M] {M' : Type u_3} [AddMonoid M'] {P : AddSubmonoid M} (e : M →+ M') (he : Function.Injective ⇑e) (h : (AddSubmonoid.map e P).FG) : P.FG - AddSubgroup.ofAddUnits.eq_1 📋 Mathlib.Algebra.Group.Submonoid.Units
{M : Type u_1} [AddMonoid M] (S : AddSubgroup (AddUnits M)) : S.ofAddUnits = AddSubmonoid.map (AddUnits.coeHom M) S.toAddSubmonoid
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65