Loogle!
Result
Found 63 declarations mentioning AddSubsemigroup.map.
- AddSubsemigroup.map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) (S : AddSubsemigroup M) : AddSubsemigroup N - AddSubsemigroup.map_id ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} [Add M] (S : AddSubsemigroup M) : AddSubsemigroup.map (AddHom.id M) S = S - AddHom.srange_eq_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) : f.srange = AddSubsemigroup.map f †- AddSubsemigroup.map_bot ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) : AddSubsemigroup.map f ⥠= ⥠- AddSubsemigroup.map_injective_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Injective âf) : Function.Injective (AddSubsemigroup.map f) - AddSubsemigroup.map_surjective_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Surjective âf) : Function.Surjective (AddSubsemigroup.map f) - AddSubsemigroup.comap_map_comap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {S : AddSubsemigroup N} {f : M ââ+ N} : AddSubsemigroup.comap f (AddSubsemigroup.map f (AddSubsemigroup.comap f S)) = AddSubsemigroup.comap f S - AddSubsemigroup.map_comap_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) {f : M ââ+ N} : AddSubsemigroup.map f (AddSubsemigroup.comap f (AddSubsemigroup.map f S)) = AddSubsemigroup.map f S - AddSubsemigroup.map_comap_eq ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) (S : AddSubsemigroup N) : AddSubsemigroup.map f (AddSubsemigroup.comap f S) = S â f.srange - AddHom.map_mclosure ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) (s : Set M) : AddSubsemigroup.map f (AddSubsemigroup.closure s) = AddSubsemigroup.closure (âf '' s) - AddHom.map_srange ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} {P : Type u_3} [Add M] [Add N] [Add P] (g : N ââ+ P) (f : M ââ+ N) : AddSubsemigroup.map g f.srange = (g.comp f).srange - AddSubsemigroup.comap_map_eq_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Injective âf) (S : AddSubsemigroup M) : AddSubsemigroup.comap f (AddSubsemigroup.map f S) = S - AddSubsemigroup.map_comap_eq_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Surjective âf) (S : AddSubsemigroup N) : AddSubsemigroup.map f (AddSubsemigroup.comap f S) = S - AddSubsemigroup.le_comap_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) {f : M ââ+ N} : S †AddSubsemigroup.comap f (AddSubsemigroup.map f S) - AddSubsemigroup.map_comap_le ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {S : AddSubsemigroup N} {f : M ââ+ N} : AddSubsemigroup.map f (AddSubsemigroup.comap f S) †S - AddSubsemigroup.map_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} {P : Type u_3} [Add M] [Add N] [Add P] (S : AddSubsemigroup M) (g : N ââ+ P) (f : M ââ+ N) : AddSubsemigroup.map g (AddSubsemigroup.map f S) = AddSubsemigroup.map (g.comp f) S - AddSubsemigroup.monotone_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} : Monotone (AddSubsemigroup.map f) - AddSubsemigroup.coe_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) (S : AddSubsemigroup M) : â(AddSubsemigroup.map f S) = âf '' âS - AddSubsemigroup.gc_map_comap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) : GaloisConnection (AddSubsemigroup.map f) (AddSubsemigroup.comap f) - AddHom.srange.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) : f.srange = (AddSubsemigroup.map f â€).copy (Set.range âf) ⯠- AddSubsemigroup.map_comap_eq_self ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} {S : AddSubsemigroup N} (h : S †f.srange) : AddSubsemigroup.map f (AddSubsemigroup.comap f S) = S - AddSubsemigroup.map.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) (S : AddSubsemigroup M) : AddSubsemigroup.map f S = { carrier := âf '' âS, add_mem' := ⯠} - AddSubsemigroup.mem_map_of_mem ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) {S : AddSubsemigroup M} {x : M} (hx : x â S) : f x â AddSubsemigroup.map f S - AddSubsemigroup.map_iSup ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Sort u_5} (f : M ââ+ N) (s : ι â AddSubsemigroup M) : AddSubsemigroup.map f (iSup s) = âš i, AddSubsemigroup.map f (s i) - AddSubsemigroup.comap_iInf_map_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Type u_5} {f : M ââ+ N} (hf : Function.Injective âf) (S : ι â AddSubsemigroup M) : AddSubsemigroup.comap f (âš i, AddSubsemigroup.map f (S i)) = iInf S - AddSubsemigroup.map_iInf_comap_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Type u_5} {f : M ââ+ N} (hf : Function.Surjective âf) (S : ι â AddSubsemigroup N) : AddSubsemigroup.map f (âš i, AddSubsemigroup.comap f (S i)) = iInf S - AddSubsemigroup.map_iInf ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Sort u_5} [Nonempty ι] (f : M ââ+ N) (hf : Function.Injective âf) (s : ι â AddSubsemigroup M) : AddSubsemigroup.map f (iInf s) = âš i, AddSubsemigroup.map f (s i) - AddSubsemigroup.map_strictMono_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Injective âf) : StrictMono (AddSubsemigroup.map f) - AddSubsemigroup.comap_inf_map_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Injective âf) (S T : AddSubsemigroup M) : AddSubsemigroup.comap f (AddSubsemigroup.map f S â AddSubsemigroup.map f T) = S â T - AddSubsemigroup.map_inf ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (S T : AddSubsemigroup M) (f : M ââ+ N) (hf : Function.Injective âf) : AddSubsemigroup.map f (S â T) = AddSubsemigroup.map f S â AddSubsemigroup.map f T - AddSubsemigroup.map_inf_comap_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Surjective âf) (S T : AddSubsemigroup N) : AddSubsemigroup.map f (AddSubsemigroup.comap f S â AddSubsemigroup.comap f T) = S â T - AddSubsemigroup.mem_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} {S : AddSubsemigroup M} {y : N} : y â AddSubsemigroup.map f S â â x â S, f x = y - AddSubsemigroup.gciMapComap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Injective âf) : GaloisCoinsertion (AddSubsemigroup.map f) (AddSubsemigroup.comap f) - AddSubsemigroup.giMapComap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Surjective âf) : GaloisInsertion (AddSubsemigroup.map f) (AddSubsemigroup.comap f) - AddSubsemigroup.map_equiv_top ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M â+ N) : AddSubsemigroup.map âf †= †- AddSubsemigroup.le_comap_of_map_le ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) {T : AddSubsemigroup N} {f : M ââ+ N} : AddSubsemigroup.map f S †T â S †AddSubsemigroup.comap f T - AddSubsemigroup.map_le_of_le_comap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) {T : AddSubsemigroup N} {f : M ââ+ N} : S †AddSubsemigroup.comap f T â AddSubsemigroup.map f S †T - AddSubsemigroup.map_le_iff_le_comap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} {S : AddSubsemigroup M} {T : AddSubsemigroup N} : AddSubsemigroup.map f S †T â S †AddSubsemigroup.comap f T - AddSubsemigroup.map_sup ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (S T : AddSubsemigroup M) (f : M ââ+ N) : AddSubsemigroup.map f (S â T) = AddSubsemigroup.map f S â AddSubsemigroup.map f T - AddSubsemigroup.mem_map_iff_mem ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Injective âf) {S : AddSubsemigroup M} {x : M} : f x â AddSubsemigroup.map f S â x â S - AddSubsemigroup.apply_coe_mem_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) (S : AddSubsemigroup M) (x : â¥S) : f âx â AddSubsemigroup.map f S - AddSubsemigroup.comap_iSup_map_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Type u_5} {f : M ââ+ N} (hf : Function.Injective âf) (S : ι â AddSubsemigroup M) : AddSubsemigroup.comap f (âš i, AddSubsemigroup.map f (S i)) = iSup S - AddSubsemigroup.map_iSup_comap_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {ι : Type u_5} {f : M ââ+ N} (hf : Function.Surjective âf) (S : ι â AddSubsemigroup N) : AddSubsemigroup.map f (âš i, AddSubsemigroup.comap f (S i)) = iSup S - AddHom.subsemigroupMap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) (M' : AddSubsemigroup M) : â¥M' ââ+ â¥(AddSubsemigroup.map f M') - AddSubsemigroup.map_le_map_iff_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Injective âf) {S T : AddSubsemigroup M} : AddSubsemigroup.map f S †AddSubsemigroup.map f T â S †T - AddSubsemigroup.comap_sup_map_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Injective âf) (S T : AddSubsemigroup M) : AddSubsemigroup.comap f (AddSubsemigroup.map f S â AddSubsemigroup.map f T) = S â T - AddSubsemigroup.map_sup_comap_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Surjective âf) (S T : AddSubsemigroup N) : AddSubsemigroup.map f (AddSubsemigroup.comap f S â AddSubsemigroup.comap f T) = S â T - AddSubsemigroup.equivMapOfInjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) (f : M ââ+ N) (hf : Function.Injective âf) : â¥S â+ â¥(AddSubsemigroup.map f S) - AddSubsemigroup.comap_equiv_eq_map_symm ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : N â+ M) (K : AddSubsemigroup M) : AddSubsemigroup.comap (âf) K = AddSubsemigroup.map (âf.symm) K - AddSubsemigroup.map_equiv_eq_comap_symm ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M â+ N) (K : AddSubsemigroup M) : AddSubsemigroup.map (âf) K = AddSubsemigroup.comap (âf.symm) K - AddSubsemigroup.mem_map_equiv ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M â+ N} {K : AddSubsemigroup M} {x : N} : x â AddSubsemigroup.map (âf) K â f.symm x â K - AddSubsemigroup.gciMapComap.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Injective âf) : AddSubsemigroup.gciMapComap hf = â¯.toGaloisCoinsertion ⯠- AddSubsemigroup.giMapComap.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {f : M ââ+ N} (hf : Function.Surjective âf) : AddSubsemigroup.giMapComap hf = â¯.toGaloisInsertion ⯠- AddSubsemigroup.le_prod_iff ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] {s : AddSubsemigroup M} {t : AddSubsemigroup N} {u : AddSubsemigroup (M à N)} : u †s.prod t â AddSubsemigroup.map (AddHom.fst M N) u †s â§ AddSubsemigroup.map (AddHom.snd M N) u †t - AddEquiv.subsemigroupMap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (e : M â+ N) (S : AddSubsemigroup M) : â¥S â+ â¥(AddSubsemigroup.map (âe) S) - AddSubsemigroup.equivMapOfInjective.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) (f : M ââ+ N) (hf : Function.Injective âf) : S.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (âf) (âS) hf, map_add' := ⯠} - AddHom.subsemigroupMap.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) (M' : AddSubsemigroup M) : f.subsemigroupMap M' = { toFun := fun x => âšf âx, â¯â©, map_add' := ⯠} - AddHom.subsemigroupMap_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) (M' : AddSubsemigroup M) : Function.Surjective â(f.subsemigroupMap M') - AddHom.subsemigroupMap_apply_coe ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (f : M ââ+ N) (M' : AddSubsemigroup M) (x : â¥M') : â((f.subsemigroupMap M') x) = f âx - AddSubsemigroup.coe_equivMapOfInjective_apply ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (S : AddSubsemigroup M) (f : M ââ+ N) (hf : Function.Injective âf) (x : â¥S) : â((S.equivMapOfInjective f hf) x) = f âx - AddEquiv.subsemigroupMap.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (e : M â+ N) (S : AddSubsemigroup M) : e.subsemigroupMap S = { toFun := fun x => âše âx, â¯â©, invFun := fun x => âše.symm âx, â¯â©, left_inv := â¯, right_inv := â¯, map_add' := ⯠} - AddEquiv.subsemigroupMap_apply_coe ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (e : M â+ N) (S : AddSubsemigroup M) (x : â¥S) : â((e.subsemigroupMap S) x) = e âx - AddEquiv.subsemigroupMap_symm_apply_coe ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Add M] [Add N] (e : M â+ N) (S : AddSubsemigroup M) (x : â¥(AddSubsemigroup.map (âe) S)) : â((e.subsemigroupMap S).symm x) = e.symm âx
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
ðReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
ð"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
ð_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
ðReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
ð(?a -> ?b) -> List ?a -> List ?b
ðList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
ð|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allâ
andâ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
ð|- _ < _ â tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
ð Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ â _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65