Loogle!
Result
Found 11 declarations mentioning AddUnits.map.
- AddUnits.map 📋 Mathlib.Algebra.Group.Units.Hom
{M : Type u} {N : Type v} [AddMonoid M] [AddMonoid N] (f : M →+ N) : AddUnits M →+ AddUnits N - AddUnits.map_id 📋 Mathlib.Algebra.Group.Units.Hom
(M : Type u) [AddMonoid M] : AddUnits.map (AddMonoidHom.id M) = AddMonoidHom.id (AddUnits M) - AddUnits.map_injective 📋 Mathlib.Algebra.Group.Units.Hom
{M : Type u} {N : Type v} [AddMonoid M] [AddMonoid N] {f : M →+ N} (hf : Function.Injective ⇑f) : Function.Injective ⇑(AddUnits.map f) - AddUnits.map_comp 📋 Mathlib.Algebra.Group.Units.Hom
{M : Type u} {N : Type v} {P : Type w} [AddMonoid M] [AddMonoid N] [AddMonoid P] (f : M →+ N) (g : N →+ P) : AddUnits.map (g.comp f) = (AddUnits.map g).comp (AddUnits.map f) - AddUnits.coe_map 📋 Mathlib.Algebra.Group.Units.Hom
{M : Type u} {N : Type v} [AddMonoid M] [AddMonoid N] (f : M →+ N) (x : AddUnits M) : ↑((AddUnits.map f) x) = f ↑x - AddUnits.coe_map_neg 📋 Mathlib.Algebra.Group.Units.Hom
{M : Type u} {N : Type v} [AddMonoid M] [AddMonoid N] (f : M →+ N) (u : AddUnits M) : ↑(-(AddUnits.map f) u) = f ↑(-u) - AddUnits.map.eq_1 📋 Mathlib.Algebra.Group.Units.Hom
{M : Type u} {N : Type v} [AddMonoid M] [AddMonoid N] (f : M →+ N) : AddUnits.map f = AddMonoidHom.mk' (fun u => { val := f ↑u, neg := f u.neg, val_neg := ⋯, neg_val := ⋯ }) ⋯ - AddUnits.map_mk 📋 Mathlib.Algebra.Group.Units.Hom
{M : Type u} {N : Type v} [AddMonoid M] [AddMonoid N] (f : M →+ N) (val inv : M) (val_inv : val + inv = 0) (inv_val : inv + val = 0) : (AddUnits.map f) { val := val, neg := inv, val_neg := val_inv, neg_val := inv_val } = { val := f val, neg := f inv, val_neg := ⋯, neg_val := ⋯ } - AddEquiv.prodAddUnits.eq_1 📋 Mathlib.Algebra.Group.Prod
{M : Type u_3} {N : Type u_4} [AddMonoid M] [AddMonoid N] : AddEquiv.prodAddUnits = { toFun := ⇑((AddUnits.map (AddMonoidHom.fst M N)).prod (AddUnits.map (AddMonoidHom.snd M N))), invFun := fun u => { val := (↑u.1, ↑u.2), neg := (↑(-u.1), ↑(-u.2)), val_neg := ⋯, neg_val := ⋯ }, left_inv := ⋯, right_inv := ⋯, map_add' := ⋯ } - addUnitsCenterToCenterAddUnits.eq_1 📋 Mathlib.GroupTheory.Submonoid.Center
(M : Type u_1) [AddMonoid M] : addUnitsCenterToCenterAddUnits M = (AddUnits.map (AddSubmonoid.center M).subtype).codRestrict (AddSubmonoid.center (AddUnits M)) ⋯ - Continuous.addUnits_map 📋 Mathlib.Topology.Algebra.Monoid
{M : Type u_3} {N : Type u_4} [AddMonoid M] [AddMonoid N] [TopologicalSpace M] [TopologicalSpace N] (f : M →+ N) (hf : Continuous ⇑f) : Continuous ⇑(AddUnits.map f)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65