Loogle!
Result
Found 14 declarations mentioning Additive, Group, and Subgroup.
- AddSubgroup.toSubgroup' π Mathlib.Algebra.Group.Subgroup.Lattice
{G : Type u_1} [Group G] : AddSubgroup (Additive G) βo Subgroup G - Subgroup.toAddSubgroup π Mathlib.Algebra.Group.Subgroup.Lattice
{G : Type u_1} [Group G] : Subgroup G βo AddSubgroup (Additive G) - AddSubgroup.toSubgroup'_closure π Mathlib.Algebra.Group.Subgroup.Lattice
{G : Type u_1} [Group G] (S : Set (Additive G)) : AddSubgroup.toSubgroup' (AddSubgroup.closure S) = Subgroup.closure (βAdditive.ofMul β»ΒΉ' S) - Subgroup.toAddSubgroup_closure π Mathlib.Algebra.Group.Subgroup.Lattice
{G : Type u_1} [Group G] (S : Set G) : Subgroup.toAddSubgroup (Subgroup.closure S) = AddSubgroup.closure (βAdditive.toMul β»ΒΉ' S) - Subgroup.coe_toAddSubgroup_apply π Mathlib.Algebra.Group.Subgroup.Lattice
{G : Type u_1} [Group G] (S : Subgroup G) : β(Subgroup.toAddSubgroup S) = βAdditive.toMul β»ΒΉ' βS - Subgroup.coe_toAddSubgroup_symm_apply π Mathlib.Algebra.Group.Subgroup.Lattice
{G : Type u_1} [Group G] (S : AddSubgroup (Additive G)) : β((RelIso.symm Subgroup.toAddSubgroup) S) = βMultiplicative.toAdd β»ΒΉ' βS - Subgroup.toAddSubgroup_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {Gβ : Type u_7} [Group Gβ] (f : G β* Gβ) (s : Subgroup Gβ) : AddSubgroup.comap (MonoidHom.toAdditive f) (Subgroup.toAddSubgroup s) = Subgroup.toAddSubgroup (Subgroup.comap f s) - MonoidHom.coe_toAdditive_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') : (MonoidHom.toAdditive f).range = Subgroup.toAddSubgroup f.range - MonoidHom.coe_toAdditive_ker π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') : (MonoidHom.toAdditive f).ker = Subgroup.toAddSubgroup f.ker - MonoidHom.coe_toAdditive_map π Mathlib.Algebra.Module.Submodule.Map
{G : Type u_10} {Gβ : Type u_11} [Group G] [Group Gβ] (f : G β* Gβ) (s : Subgroup G) : AddSubgroup.map (MonoidHom.toAdditive f) (Subgroup.toAddSubgroup s) = Subgroup.toAddSubgroup (Subgroup.map f s) - ofMul_image_zpowers_eq_zmultiples_ofMul π Mathlib.Algebra.Group.Subgroup.ZPowers.Basic
{G : Type u_1} [Group G] {x : G} : βAdditive.ofMul '' β(Subgroup.zpowers x) = β(AddSubgroup.zmultiples (Additive.ofMul x)) - Subgroup.fg_iff_add_fg π Mathlib.GroupTheory.Finiteness
{G : Type u_3} [Group G] (P : Subgroup G) : P.FG β (Subgroup.toAddSubgroup P).FG - Subgroup.index_toAddSubgroup π Mathlib.GroupTheory.Index
{G : Type u_1} [Group G] {H : Subgroup G} : (Subgroup.toAddSubgroup H).index = H.index - Subgroup.relindex_toAddSubgroup π Mathlib.GroupTheory.Index
{G : Type u_1} [Group G] {H K : Subgroup G} : (Subgroup.toAddSubgroup H).relindex (Subgroup.toAddSubgroup K) = H.relindex K
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 3e2b26a