Loogle!
Result
Found 12 declarations mentioning Affine.Simplex.map.
- Affine.Simplex.map_id ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {P : Type u_5} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] {n : โ} (s : Affine.Simplex k P n) : s.map (AffineMap.id k P) โฏ = s - Affine.Simplex.map ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {Vโ : Type u_3} {P : Type u_5} {Pโ : Type u_6} [Ring k] [AddCommGroup V] [AddCommGroup Vโ] [Module k V] [Module k Vโ] [AddTorsor V P] [AddTorsor Vโ Pโ] {n : โ} (s : Affine.Simplex k P n) (f : P โแต[k] Pโ) (hf : Function.Injective โf) : Affine.Simplex k Pโ n - Affine.Simplex.map_mkOfPoint ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {Vโ : Type u_3} {P : Type u_5} {Pโ : Type u_6} [Ring k] [AddCommGroup V] [AddCommGroup Vโ] [Module k V] [Module k Vโ] [AddTorsor V P] [AddTorsor Vโ Pโ] (f : P โแต[k] Pโ) (hf : Function.Injective โf) (p : P) : (Affine.Simplex.mkOfPoint k p).map f hf = Affine.Simplex.mkOfPoint k (f p) - Affine.Simplex.reindex_map ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {Vโ : Type u_3} {P : Type u_5} {Pโ : Type u_6} [Ring k] [AddCommGroup V] [AddCommGroup Vโ] [Module k V] [Module k Vโ] [AddTorsor V P] [AddTorsor Vโ Pโ] {m n : โ} (s : Affine.Simplex k P m) (e : Fin (m + 1) โ Fin (n + 1)) (f : P โแต[k] Pโ) (hf : Function.Injective โf) : (s.map f hf).reindex e = (s.reindex e).map f hf - Affine.Simplex.map_points ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {Vโ : Type u_3} {P : Type u_5} {Pโ : Type u_6} [Ring k] [AddCommGroup V] [AddCommGroup Vโ] [Module k V] [Module k Vโ] [AddTorsor V P] [AddTorsor Vโ Pโ] {n : โ} (s : Affine.Simplex k P n) (f : P โแต[k] Pโ) (hf : Function.Injective โf) : (s.map f hf).points = โf โ s.points - Affine.Simplex.faceOpposite_map ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {Vโ : Type u_3} {P : Type u_5} {Pโ : Type u_6} [Ring k] [AddCommGroup V] [AddCommGroup Vโ] [Module k V] [Module k Vโ] [AddTorsor V P] [AddTorsor Vโ Pโ] {n : โ} [NeZero n] (s : Affine.Simplex k P n) (f : P โแต[k] Pโ) (hf : Function.Injective โf) (i : Fin (n + 1)) : (s.map f hf).faceOpposite i = (s.faceOpposite i).map f hf - Affine.Simplex.face_map ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {Vโ : Type u_3} {P : Type u_5} {Pโ : Type u_6} [Ring k] [AddCommGroup V] [AddCommGroup Vโ] [Module k V] [Module k Vโ] [AddTorsor V P] [AddTorsor Vโ Pโ] {n : โ} (s : Affine.Simplex k P n) (f : P โแต[k] Pโ) (hf : Function.Injective โf) {fs : Finset (Fin (n + 1))} {m : โ} (h : fs.card = m + 1) : (s.map f hf).face h = (s.face h).map f hf - Affine.Simplex.map_comp ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {Vโ : Type u_3} {Vโ : Type u_4} {P : Type u_5} {Pโ : Type u_6} {Pโ : Type u_7} [Ring k] [AddCommGroup V] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k V] [Module k Vโ] [Module k Vโ] [AddTorsor V P] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] {n : โ} (s : Affine.Simplex k P n) (f : P โแต[k] Pโ) (hf : Function.Injective โf) (g : Pโ โแต[k] Pโ) (hg : Function.Injective โg) : s.map (g.comp f) โฏ = (s.map f hf).map g hg - Affine.Simplex.restrict_map_subtype ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {P : Type u_5} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] {n : โ} (s : Affine.Simplex k P n) : (s.restrict (affineSpan k (Set.range s.points)) โฏ).map (affineSpan k (Set.range s.points)).subtype โฏ = s - Affine.Simplex.restrict_map_inclusion ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {P : Type u_5} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] {n : โ} (s : Affine.Simplex k P n) (Sโ Sโ : AffineSubspace k P) (hSโ : affineSpan k (Set.range s.points) โค Sโ) (hSโ : Sโ โค Sโ) : (s.restrict Sโ hSโ).map (AffineSubspace.inclusion hSโ) โฏ = s.restrict Sโ โฏ - Affine.Simplex.map_subtype_restrict ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {P : Type u_5} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] {n : โ} (S : AffineSubspace k P) [Nonempty โฅS] (s : Affine.Simplex k (โฅS) n) : (s.map S.subtype โฏ).restrict S โฏ = s - Affine.Simplex.restrict_map_restrict ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {Vโ : Type u_3} {P : Type u_5} {Pโ : Type u_6} [Ring k] [AddCommGroup V] [AddCommGroup Vโ] [Module k V] [Module k Vโ] [AddTorsor V P] [AddTorsor Vโ Pโ] {n : โ} (s : Affine.Simplex k P n) (f : P โแต[k] Pโ) (hf : Function.Injective โf) (Sโ : AffineSubspace k P) (Sโ : AffineSubspace k Pโ) (hSโ : affineSpan k (Set.range s.points) โค Sโ) (hfS : AffineSubspace.map f Sโ โค Sโ) : (s.restrict Sโ hSโ).map (f.restrict hfS) โฏ = (s.map f hf).restrict Sโ โฏ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65