Loogle!
Result
Found 48 declarations mentioning AffineSubspace.map.
- AffineSubspace.map_id ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (s : AffineSubspace k Pโ) : AffineSubspace.map (AffineMap.id k Pโ) s = s - AffineSubspace.map ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : AffineSubspace k Pโ - AffineSubspace.map_bot ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) : AffineSubspace.map f โฅ = โฅ - AffineSubspace.map_span ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : Set Pโ) : AffineSubspace.map f (affineSpan k s) = affineSpan k (โf '' s) - AffineSubspace.comap_symm ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (e : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : AffineSubspace.comap (โe.symm) s = AffineSubspace.map (โe) s - AffineSubspace.map_symm ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (e : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : AffineSubspace.map (โe.symm) s = AffineSubspace.comap (โe) s - AffineSubspace.le_comap_map ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : s โค AffineSubspace.comap f (AffineSubspace.map f s) - AffineSubspace.map_comap_le ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : AffineSubspace.map f (AffineSubspace.comap f s) โค s - AffineSubspace.map_eq_bot_iff ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) {s : AffineSubspace k Pโ} : AffineSubspace.map f s = โฅ โ s = โฅ - AffineSubspace.coe_map ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : โ(AffineSubspace.map f s) = โf '' โs - AffineMap.map_top_of_surjective ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (hf : Function.Surjective โf) : AffineSubspace.map f โค = โค - AffineSubspace.map_map ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} {Vโ : Type u_6} {Pโ : Type u_7} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (s : AffineSubspace k Pโ) (f : Pโ โแต[k] Pโ) (g : Pโ โแต[k] Pโ) : AffineSubspace.map g (AffineSubspace.map f s) = AffineSubspace.map (g.comp f) s - AffineSubspace.mem_map_of_mem ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) {x : Pโ} {s : AffineSubspace k Pโ} (h : x โ s) : f x โ AffineSubspace.map f s - AffineSubspace.gc_map_comap ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) : GaloisConnection (AffineSubspace.map f) (AffineSubspace.comap f) - AffineSubspace.map_iSup ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] {ฮน : Sort u_8} (f : Pโ โแต[k] Pโ) (s : ฮน โ AffineSubspace k Pโ) : AffineSubspace.map f (iSup s) = โจ i, AffineSubspace.map f (s i) - AffineSubspace.mem_map ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] {f : Pโ โแต[k] Pโ} {x : Pโ} {s : AffineSubspace k Pโ} : x โ AffineSubspace.map f s โ โ y โ s, f y = x - AffineSubspace.mem_map_iff_mem_of_injective ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] {f : Pโ โแต[k] Pโ} {x : Pโ} {s : AffineSubspace k Pโ} (hf : Function.Injective โf) : f x โ AffineSubspace.map f s โ x โ s - AffineSubspace.map_le_iff_le_comap ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] {f : Pโ โแต[k] Pโ} {s : AffineSubspace k Pโ} {t : AffineSubspace k Pโ} : AffineSubspace.map f s โค t โ s โค AffineSubspace.comap f t - AffineSubspace.map_direction ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : (AffineSubspace.map f s).direction = Submodule.map f.linear s.direction - AffineSubspace.map_sup ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (s t : AffineSubspace k Pโ) (f : Pโ โแต[k] Pโ) : AffineSubspace.map f (s โ t) = AffineSubspace.map f s โ AffineSubspace.map f t - AffineSubspace.pointwise_vadd_eq_map ๐ Mathlib.LinearAlgebra.AffineSpace.Pointwise
{k : Type u_2} {V : Type u_3} {P : Type u_4} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] (v : V) (s : AffineSubspace k P) : v +แตฅ s = AffineSubspace.map (โ(AffineEquiv.constVAdd k P v)) s - AffineSubspace.map_pointwise_vadd ๐ Mathlib.LinearAlgebra.AffineSpace.Pointwise
{k : Type u_2} {Vโ : Type u_5} {Pโ : Type u_6} {Vโ : Type u_7} {Pโ : Type u_8} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (v : Vโ) (s : AffineSubspace k Pโ) : AffineSubspace.map f (v +แตฅ s) = f.linear v +แตฅ AffineSubspace.map f s - AffineSubspace.smul_eq_map ๐ Mathlib.LinearAlgebra.AffineSpace.Pointwise
{M : Type u_1} {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] [Monoid M] [DistribMulAction M V] [SMulCommClass M k V] (a : M) (s : AffineSubspace k V) : a โข s = AffineSubspace.map (DistribMulAction.toLinearMap k V a).toAffineMap s - AffineSubspace.nonempty_map ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] {E : AffineSubspace k Pโ} [Ene : Nonempty โฅE] {ฯ : Pโ โแต[k] Pโ} : Nonempty โฅ(AffineSubspace.map ฯ E) - AffineMap.restrict.linear_aux ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] {ฯ : Pโ โแต[k] Pโ} {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} (hEF : AffineSubspace.map ฯ E โค F) : E.direction โค Submodule.comap ฯ.linear F.direction - AffineMap.restrict ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] (ฯ : Pโ โแต[k] Pโ) {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} [Nonempty โฅE] [Nonempty โฅF] (hEF : AffineSubspace.map ฯ E โค F) : โฅE โแต[k] โฅF - AffineMap.restrict.linear ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] (ฯ : Pโ โแต[k] Pโ) {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} [Nonempty โฅE] [Nonempty โฅF] (hEF : AffineSubspace.map ฯ E โค F) : (ฯ.restrict hEF).linear = ฯ.linear.restrict โฏ - AffineMap.restrict.surjective ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] (ฯ : Pโ โแต[k] Pโ) {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} [Nonempty โฅE] [Nonempty โฅF] (h : AffineSubspace.map ฯ E = F) : Function.Surjective โ(ฯ.restrict โฏ) - AffineMap.restrict.injective ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] {ฯ : Pโ โแต[k] Pโ} (hฯ : Function.Injective โฯ) {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} [Nonempty โฅE] [Nonempty โฅF] (hEF : AffineSubspace.map ฯ E โค F) : Function.Injective โ(ฯ.restrict hEF) - AffineMap.restrict.coe_apply ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] (ฯ : Pโ โแต[k] Pโ) {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} [Nonempty โฅE] [Nonempty โฅF] (hEF : AffineSubspace.map ฯ E โค F) (x : โฅE) : โ((ฯ.restrict hEF) x) = ฯ โx - AffineMap.restrict.bijective ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] {E : AffineSubspace k Pโ} [Nonempty โฅE] {ฯ : Pโ โแต[k] Pโ} (hฯ : Function.Injective โฯ) : Function.Bijective โ(ฯ.restrict โฏ) - AffineSubspace.isometryEquivMap ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ' : Type u_4} {Vโ : Type u_5} {Pโ' : Type u_9} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ'] [NormedSpace ๐ Vโ'] [MetricSpace Pโ'] [NormedAddTorsor Vโ' Pโ'] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (ฯ : Pโ' โแตโฑ[๐] Pโ) (E : AffineSubspace ๐ Pโ') [Nonempty โฅE] : โฅE โแตโฑ[๐] โฅ(AffineSubspace.map ฯ.toAffineMap E) - AffineSubspace.equivMapOfInjective ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ : Type u_3} {Vโ : Type u_5} {Pโ : Type u_8} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (E : AffineSubspace ๐ Pโ) [Nonempty โฅE] (ฯ : Pโ โแต[๐] Pโ) (hฯ : Function.Injective โฯ) : โฅE โแต[๐] โฅ(AffineSubspace.map ฯ E) - AffineSubspace.linear_equivMapOfInjective ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ : Type u_3} {Vโ : Type u_5} {Pโ : Type u_8} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (E : AffineSubspace ๐ Pโ) [Nonempty โฅE] (ฯ : Pโ โแต[๐] Pโ) (hฯ : Function.Injective โฯ) : (E.equivMapOfInjective ฯ hฯ).linear = (Submodule.equivMapOfInjective ฯ.linear โฏ E.direction).trans (LinearEquiv.ofEq (Submodule.map ฯ.linear E.direction) (AffineSubspace.map ฯ E).direction โฏ) - AffineSubspace.isometryEquivMap.coe_apply ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ' : Type u_4} {Vโ : Type u_5} {Pโ' : Type u_9} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ'] [NormedSpace ๐ Vโ'] [MetricSpace Pโ'] [NormedAddTorsor Vโ' Pโ'] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (ฯ : Pโ' โแตโฑ[๐] Pโ) (E : AffineSubspace ๐ Pโ') [Nonempty โฅE] (g : โฅE) : โ((AffineSubspace.isometryEquivMap ฯ E) g) = ฯ โg - AffineSubspace.equivMapOfInjective_toFun ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ : Type u_3} {Vโ : Type u_5} {Pโ : Type u_8} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (E : AffineSubspace ๐ Pโ) [Nonempty โฅE] (ฯ : Pโ โแต[๐] Pโ) (hฯ : Function.Injective โฯ) (p : โโE) : (E.equivMapOfInjective ฯ hฯ) p = โจฯ โp, โฏโฉ - AffineSubspace.isometryEquivMap.apply_symm_apply ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ' : Type u_4} {Vโ : Type u_5} {Pโ' : Type u_9} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ'] [NormedSpace ๐ Vโ'] [MetricSpace Pโ'] [NormedAddTorsor Vโ' Pโ'] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] {E : AffineSubspace ๐ Pโ'} [Nonempty โฅE] {ฯ : Pโ' โแตโฑ[๐] Pโ} (x : โฅ(AffineSubspace.map ฯ.toAffineMap E)) : ฯ โ((AffineSubspace.isometryEquivMap ฯ E).symm x) = โx - AffineSubspace.isometryEquivMap.toAffineMap_eq ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ' : Type u_4} {Vโ : Type u_5} {Pโ' : Type u_9} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ'] [NormedSpace ๐ Vโ'] [MetricSpace Pโ'] [NormedAddTorsor Vโ' Pโ'] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (ฯ : Pโ' โแตโฑ[๐] Pโ) (E : AffineSubspace ๐ Pโ') [Nonempty โฅE] : โ(AffineSubspace.isometryEquivMap ฯ E).toAffineEquiv = โ(E.equivMapOfInjective ฯ.toAffineMap โฏ) - AffineSubspace.WOppSide.map ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (h : s.WOppSide x y) (f : P โแต[R] P') : (AffineSubspace.map f s).WOppSide (f x) (f y) - AffineSubspace.WSameSide.map ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (h : s.WSameSide x y) (f : P โแต[R] P') : (AffineSubspace.map f s).WSameSide (f x) (f y) - Function.Injective.sOppSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} {f : P โแต[R] P'} (hf : Function.Injective โf) : (AffineSubspace.map f s).SOppSide (f x) (f y) โ s.SOppSide x y - Function.Injective.sSameSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} {f : P โแต[R] P'} (hf : Function.Injective โf) : (AffineSubspace.map f s).SSameSide (f x) (f y) โ s.SSameSide x y - Function.Injective.wOppSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} {f : P โแต[R] P'} (hf : Function.Injective โf) : (AffineSubspace.map f s).WOppSide (f x) (f y) โ s.WOppSide x y - Function.Injective.wSameSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} {f : P โแต[R] P'} (hf : Function.Injective โf) : (AffineSubspace.map f s).WSameSide (f x) (f y) โ s.WSameSide x y - AffineEquiv.sOppSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (f : P โแต[R] P') : (AffineSubspace.map (โf) s).SOppSide (f x) (f y) โ s.SOppSide x y - AffineEquiv.sSameSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (f : P โแต[R] P') : (AffineSubspace.map (โf) s).SSameSide (f x) (f y) โ s.SSameSide x y - AffineEquiv.wOppSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (f : P โแต[R] P') : (AffineSubspace.map (โf) s).WOppSide (f x) (f y) โ s.WOppSide x y - AffineEquiv.wSameSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (f : P โแต[R] P') : (AffineSubspace.map (โf) s).WSameSide (f x) (f y) โ s.WSameSide x y
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08