Loogle!
Result
Found 58 declarations mentioning AffineSubspace.map.
- AffineSubspace.map_id ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (s : AffineSubspace k Pโ) : AffineSubspace.map (AffineMap.id k Pโ) s = s - AffineSubspace.map ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : AffineSubspace k Pโ - AffineSubspace.map_span ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : Set Pโ) : AffineSubspace.map f (affineSpan k s) = affineSpan k (โf '' s) - AffineSubspace.comap_map_eq_of_injective ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] {f : Pโ โแต[k] Pโ} (hf : Function.Injective โf) (s : AffineSubspace k Pโ) : AffineSubspace.comap f (AffineSubspace.map f s) = s - AffineSubspace.comap_symm ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (e : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : AffineSubspace.comap (โe.symm) s = AffineSubspace.map (โe) s - AffineSubspace.map_symm ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (e : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : AffineSubspace.map (โe.symm) s = AffineSubspace.comap (โe) s - AffineSubspace.le_comap_map ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : s โค AffineSubspace.comap f (AffineSubspace.map f s) - AffineSubspace.map_comap_le ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : AffineSubspace.map f (AffineSubspace.comap f s) โค s - AffineSubspace.coe_map ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : โ(AffineSubspace.map f s) = โf '' โs - AffineSubspace.map_map ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} {Vโ : Type u_6} {Pโ : Type u_7} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (s : AffineSubspace k Pโ) (f : Pโ โแต[k] Pโ) (g : Pโ โแต[k] Pโ) : AffineSubspace.map g (AffineSubspace.map f s) = AffineSubspace.map (g.comp f) s - AffineSubspace.mem_map_of_mem ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) {x : Pโ} {s : AffineSubspace k Pโ} (h : x โ s) : f x โ AffineSubspace.map f s - AffineSubspace.gc_map_comap ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) : GaloisConnection (AffineSubspace.map f) (AffineSubspace.comap f) - AffineSubspace.map_iSup ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] {ฮน : Sort u_8} (f : Pโ โแต[k] Pโ) (s : ฮน โ AffineSubspace k Pโ) : AffineSubspace.map f (iSup s) = โจ i, AffineSubspace.map f (s i) - AffineSubspace.mem_map ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] {f : Pโ โแต[k] Pโ} {x : Pโ} {s : AffineSubspace k Pโ} : x โ AffineSubspace.map f s โ โ y โ s, f y = x - AffineSubspace.gciMapComap ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] {f : Pโ โแต[k] Pโ} (hf : Function.Injective โf) : GaloisCoinsertion (AffineSubspace.map f) (AffineSubspace.comap f) - AffineSubspace.mem_map_iff_mem_of_injective ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] {f : Pโ โแต[k] Pโ} {x : Pโ} {s : AffineSubspace k Pโ} (hf : Function.Injective โf) : f x โ AffineSubspace.map f s โ x โ s - AffineSubspace.map_mono ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) {sโ sโ : AffineSubspace k Pโ} (h : sโ โค sโ) : AffineSubspace.map f sโ โค AffineSubspace.map f sโ - AffineSubspace.map_le_iff_le_comap ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] {f : Pโ โแต[k] Pโ} {s : AffineSubspace k Pโ} {t : AffineSubspace k Pโ} : AffineSubspace.map f s โค t โ s โค AffineSubspace.comap f t - AffineSubspace.map_direction ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (s : AffineSubspace k Pโ) : (AffineSubspace.map f s).direction = Submodule.map f.linear s.direction - AffineSubspace.map_sup ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (s t : AffineSubspace k Pโ) (f : Pโ โแต[k] Pโ) : AffineSubspace.map f (s โ t) = AffineSubspace.map f s โ AffineSubspace.map f t - AffineSubspace.map_mk' ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (p : Pโ) (direction : Submodule k Vโ) : AffineSubspace.map f (AffineSubspace.mk' p direction) = AffineSubspace.mk' (f p) (Submodule.map f.linear direction) - AffineSubspace.map_inf_eq ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (hf : Function.Injective โf) (sโ sโ : AffineSubspace k Pโ) : AffineSubspace.map f (sโ โ sโ) = AffineSubspace.map f sโ โ AffineSubspace.map f sโ - AffineSubspace.map_inf_le ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (sโ sโ : AffineSubspace k Pโ) : AffineSubspace.map f (sโ โ sโ) โค AffineSubspace.map f sโ โ AffineSubspace.map f sโ - AffineSubspace.map_bot ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) : AffineSubspace.map f โฅ = โฅ - AffineSubspace.map_eq_bot_iff ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) {s : AffineSubspace k Pโ} : AffineSubspace.map f s = โฅ โ s = โฅ - AffineMap.map_top_of_surjective ๐ Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (hf : Function.Surjective โf) : AffineSubspace.map f โค = โค - AffineSubspace.pointwise_vadd_eq_map ๐ Mathlib.LinearAlgebra.AffineSpace.Pointwise
{k : Type u_2} {V : Type u_3} {P : Type u_4} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] (v : V) (s : AffineSubspace k P) : v +แตฅ s = AffineSubspace.map (โ(AffineEquiv.constVAdd k P v)) s - AffineSubspace.map_pointwise_vadd ๐ Mathlib.LinearAlgebra.AffineSpace.Pointwise
{k : Type u_2} {Vโ : Type u_5} {Pโ : Type u_6} {Vโ : Type u_7} {Pโ : Type u_8} [Ring k] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (f : Pโ โแต[k] Pโ) (v : Vโ) (s : AffineSubspace k Pโ) : AffineSubspace.map f (v +แตฅ s) = f.linear v +แตฅ AffineSubspace.map f s - AffineSubspace.smul_eq_map ๐ Mathlib.LinearAlgebra.AffineSpace.Pointwise
{M : Type u_1} {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] [Monoid M] [DistribMulAction M V] [SMulCommClass M k V] (a : M) (s : AffineSubspace k V) : a โข s = AffineSubspace.map (DistribMulAction.toLinearMap k V a).toAffineMap s - AffineSubspace.nonempty_map ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] {E : AffineSubspace k Pโ} [Ene : Nonempty โฅE] {ฯ : Pโ โแต[k] Pโ} : Nonempty โฅ(AffineSubspace.map ฯ E) - AffineMap.restrict.linear_aux ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] {ฯ : Pโ โแต[k] Pโ} {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} (hEF : AffineSubspace.map ฯ E โค F) : E.direction โค Submodule.comap ฯ.linear F.direction - AffineMap.restrict ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] (ฯ : Pโ โแต[k] Pโ) {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} [Nonempty โฅE] [Nonempty โฅF] (hEF : AffineSubspace.map ฯ E โค F) : โฅE โแต[k] โฅF - AffineMap.restrict.congr_simp ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] (ฯ ฯโ : Pโ โแต[k] Pโ) (e_ฯ : ฯ = ฯโ) {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} [Nonempty โฅE] [Nonempty โฅF] (hEF : AffineSubspace.map ฯ E โค F) : ฯ.restrict hEF = ฯโ.restrict โฏ - AffineMap.restrict.linear ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] (ฯ : Pโ โแต[k] Pโ) {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} [Nonempty โฅE] [Nonempty โฅF] (hEF : AffineSubspace.map ฯ E โค F) : (ฯ.restrict hEF).linear = ฯ.linear.restrict โฏ - AffineMap.restrict.surjective ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] (ฯ : Pโ โแต[k] Pโ) {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} [Nonempty โฅE] [Nonempty โฅF] (h : AffineSubspace.map ฯ E = F) : Function.Surjective โ(ฯ.restrict โฏ) - AffineMap.restrict.injective ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] {ฯ : Pโ โแต[k] Pโ} (hฯ : Function.Injective โฯ) {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} [Nonempty โฅE] [Nonempty โฅF] (hEF : AffineSubspace.map ฯ E โค F) : Function.Injective โ(ฯ.restrict hEF) - AffineMap.restrict.coe_apply ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] (ฯ : Pโ โแต[k] Pโ) {E : AffineSubspace k Pโ} {F : AffineSubspace k Pโ} [Nonempty โฅE] [Nonempty โฅF] (hEF : AffineSubspace.map ฯ E โค F) (x : โฅE) : โ((ฯ.restrict hEF) x) = ฯ โx - AffineMap.restrict.bijective ๐ Mathlib.LinearAlgebra.AffineSpace.Restrict
{k : Type u_1} {Vโ : Type u_2} {Pโ : Type u_3} {Vโ : Type u_4} {Pโ : Type u_5} [Ring k] [AddCommGroup Vโ] [AddCommGroup Vโ] [Module k Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] [AddTorsor Vโ Pโ] {E : AffineSubspace k Pโ} [Nonempty โฅE] {ฯ : Pโ โแต[k] Pโ} (hฯ : Function.Injective โฯ) : Function.Bijective โ(ฯ.restrict โฏ) - AffineSubspace.equivMapOfInjective ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ : Type u_3} {Vโ : Type u_5} {Pโ : Type u_8} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (E : AffineSubspace ๐ Pโ) [Nonempty โฅE] (ฯ : Pโ โแต[๐] Pโ) (hฯ : Function.Injective โฯ) : โฅE โแต[๐] โฅ(AffineSubspace.map ฯ E) - AffineSubspace.isometryEquivMap ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ' : Type u_4} {Vโ : Type u_5} {Pโ' : Type u_9} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ'] [NormedSpace ๐ Vโ'] [MetricSpace Pโ'] [NormedAddTorsor Vโ' Pโ'] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (ฯ : Pโ' โแตโฑ[๐] Pโ) (E : AffineSubspace ๐ Pโ') [Nonempty โฅE] : โฅE โแตโฑ[๐] โฅ(AffineSubspace.map ฯ.toAffineMap E) - AffineSubspace.equivMapOfInjective_toFun ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ : Type u_3} {Vโ : Type u_5} {Pโ : Type u_8} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (E : AffineSubspace ๐ Pโ) [Nonempty โฅE] (ฯ : Pโ โแต[๐] Pโ) (hฯ : Function.Injective โฯ) (p : โโE) : (E.equivMapOfInjective ฯ hฯ) p = โจฯ โp, โฏโฉ - AffineSubspace.linear_equivMapOfInjective ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ : Type u_3} {Vโ : Type u_5} {Pโ : Type u_8} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (E : AffineSubspace ๐ Pโ) [Nonempty โฅE] (ฯ : Pโ โแต[๐] Pโ) (hฯ : Function.Injective โฯ) : (E.equivMapOfInjective ฯ hฯ).linear = (Submodule.equivMapOfInjective ฯ.linear โฏ E.direction).trans (LinearEquiv.ofEq (Submodule.map ฯ.linear E.direction) (AffineSubspace.map ฯ E).direction โฏ) - AffineSubspace.isometryEquivMap.coe_apply ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ' : Type u_4} {Vโ : Type u_5} {Pโ' : Type u_9} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ'] [NormedSpace ๐ Vโ'] [MetricSpace Pโ'] [NormedAddTorsor Vโ' Pโ'] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (ฯ : Pโ' โแตโฑ[๐] Pโ) (E : AffineSubspace ๐ Pโ') [Nonempty โฅE] (g : โฅE) : โ((AffineSubspace.isometryEquivMap ฯ E) g) = ฯ โg - AffineSubspace.isometryEquivMap.apply_symm_apply ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ' : Type u_4} {Vโ : Type u_5} {Pโ' : Type u_9} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ'] [NormedSpace ๐ Vโ'] [MetricSpace Pโ'] [NormedAddTorsor Vโ' Pโ'] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] {E : AffineSubspace ๐ Pโ'} [Nonempty โฅE] {ฯ : Pโ' โแตโฑ[๐] Pโ} (x : โฅ(AffineSubspace.map ฯ.toAffineMap E)) : ฯ โ((AffineSubspace.isometryEquivMap ฯ E).symm x) = โx - AffineSubspace.isometryEquivMap.toAffineMap_eq ๐ Mathlib.Analysis.Normed.Affine.Isometry
{๐ : Type u_1} {Vโ' : Type u_4} {Vโ : Type u_5} {Pโ' : Type u_9} {Pโ : Type u_11} [NormedField ๐] [SeminormedAddCommGroup Vโ'] [NormedSpace ๐ Vโ'] [MetricSpace Pโ'] [NormedAddTorsor Vโ' Pโ'] [SeminormedAddCommGroup Vโ] [NormedSpace ๐ Vโ] [PseudoMetricSpace Pโ] [NormedAddTorsor Vโ Pโ] (ฯ : Pโ' โแตโฑ[๐] Pโ) (E : AffineSubspace ๐ Pโ') [Nonempty โฅE] : โ(AffineSubspace.isometryEquivMap ฯ E).toAffineEquiv = โ(E.equivMapOfInjective ฯ.toAffineMap โฏ) - Affine.Simplex.restrict_map_restrict ๐ Mathlib.LinearAlgebra.AffineSpace.Simplex.Basic
{k : Type u_1} {V : Type u_2} {Vโ : Type u_3} {P : Type u_5} {Pโ : Type u_6} [Ring k] [AddCommGroup V] [AddCommGroup Vโ] [Module k V] [Module k Vโ] [AddTorsor V P] [AddTorsor Vโ Pโ] {n : โ} (s : Affine.Simplex k P n) (f : P โแต[k] Pโ) (hf : Function.Injective โf) (Sโ : AffineSubspace k P) (Sโ : AffineSubspace k Pโ) (hSโ : affineSpan k (Set.range s.points) โค Sโ) (hfS : AffineSubspace.map f Sโ โค Sโ) : (s.restrict Sโ hSโ).map (f.restrict hfS) โฏ = (s.map f hf).restrict Sโ โฏ - finiteDimensional_direction_map ๐ Mathlib.LinearAlgebra.AffineSpace.FiniteDimensional
{k : Type u_1} {V : Type u_2} {P : Type u_3} [DivisionRing k] [AddCommGroup V] [Module k V] [AddTorsor V P] {Vโ : Type u_5} {Pโ : Type u_6} [AddCommGroup Vโ] [Module k Vโ] [AddTorsor Vโ Pโ] (s : AffineSubspace k P) [FiniteDimensional k โฅs.direction] (f : P โแต[k] Pโ) : FiniteDimensional k โฅ(AffineSubspace.map f s).direction - AffineSubspace.WOppSide.map ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (h : s.WOppSide x y) (f : P โแต[R] P') : (AffineSubspace.map f s).WOppSide (f x) (f y) - AffineSubspace.WSameSide.map ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (h : s.WSameSide x y) (f : P โแต[R] P') : (AffineSubspace.map f s).WSameSide (f x) (f y) - Function.Injective.sOppSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} {f : P โแต[R] P'} (hf : Function.Injective โf) : (AffineSubspace.map f s).SOppSide (f x) (f y) โ s.SOppSide x y - Function.Injective.sSameSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} {f : P โแต[R] P'} (hf : Function.Injective โf) : (AffineSubspace.map f s).SSameSide (f x) (f y) โ s.SSameSide x y - Function.Injective.wOppSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} {f : P โแต[R] P'} (hf : Function.Injective โf) : (AffineSubspace.map f s).WOppSide (f x) (f y) โ s.WOppSide x y - Function.Injective.wSameSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} {f : P โแต[R] P'} (hf : Function.Injective โf) : (AffineSubspace.map f s).WSameSide (f x) (f y) โ s.WSameSide x y - AffineEquiv.sOppSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (f : P โแต[R] P') : (AffineSubspace.map (โf) s).SOppSide (f x) (f y) โ s.SOppSide x y - AffineEquiv.sSameSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (f : P โแต[R] P') : (AffineSubspace.map (โf) s).SSameSide (f x) (f y) โ s.SSameSide x y - AffineEquiv.wOppSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (f : P โแต[R] P') : (AffineSubspace.map (โf) s).WOppSide (f x) (f y) โ s.WOppSide x y - AffineEquiv.wSameSide_map_iff ๐ Mathlib.Analysis.Convex.Side
{R : Type u_1} {V : Type u_2} {V' : Type u_3} {P : Type u_4} {P' : Type u_5} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] [AddCommGroup V] [Module R V] [AddTorsor V P] [AddCommGroup V'] [Module R V'] [AddTorsor V' P'] {s : AffineSubspace R P} {x y : P} (f : P โแต[R] P') : (AffineSubspace.map (โf) s).WSameSide (f x) (f y) โ s.WSameSide x y - EuclideanGeometry.Sphere.orthRadius_map ๐ Mathlib.Geometry.Euclidean.Sphere.OrthRadius
{V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace โ V] [MetricSpace P] [NormedAddTorsor V P] {s : EuclideanGeometry.Sphere P} (p : P) {f : P โแตโฑ[โ] P} (h : f s.center = s.center) : AffineSubspace.map (โf.toAffineEquiv) (s.orthRadius p) = s.orthRadius (f p)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโandโ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c