Loogle!
Result
Found 17 declarations mentioning Algebra.Extension.Cotangent.map.
- Algebra.Extension.Cotangent.map π Mathlib.RingTheory.Extension
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u_1} {S' : Type u_2} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') : P.Cotangent ββ[S] P'.Cotangent - Algebra.Extension.Cotangent.map_id π Mathlib.RingTheory.Extension
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} : Algebra.Extension.Cotangent.map (Algebra.Extension.Hom.id P) = LinearMap.id - Algebra.Extension.Cotangent.map_comp π Mathlib.RingTheory.Extension
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u_1} {S' : Type u_2} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} {R'' : Type u_4} {S'' : Type u_5} [CommRing R''] [CommRing S''] [Algebra R'' S''] (P'' : Algebra.Extension R'' S'') [Algebra R R'] [Algebra R' R''] [Algebra R' S''] [Algebra S S'] [Algebra S' S''] [Algebra S S''] [Algebra R S'] [IsScalarTower R R' S'] [Algebra R R''] [IsScalarTower R R' R''] [IsScalarTower R' R'' S''] [Algebra R S''] [IsScalarTower R R'' S''] [IsScalarTower S S' S''] (f : P.Hom P') (g : P'.Hom P'') : Algebra.Extension.Cotangent.map (g.comp f) = βS (Algebra.Extension.Cotangent.map g) ββ Algebra.Extension.Cotangent.map f - Algebra.Extension.Cotangent.map_mk π Mathlib.RingTheory.Extension
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u_1} {S' : Type u_2} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') (x : β₯P.ker) : (Algebra.Extension.Cotangent.map f) (Algebra.Extension.Cotangent.mk x) = Algebra.Extension.Cotangent.mk β¨f.toAlgHom βx, β―β© - Algebra.Extension.Cotangent.map_sub_map π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] [IsScalarTower R S S'] (f g : P.Hom P') : Algebra.Extension.Cotangent.map f - Algebra.Extension.Cotangent.map g = f.sub g ββ P.cotangentComplex - Algebra.Extension.CotangentSpace.map_cotangentComplex π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') (x : P.Cotangent) : (Algebra.Extension.CotangentSpace.map f) (P.cotangentComplex x) = P'.cotangentComplex ((Algebra.Extension.Cotangent.map f) x) - Algebra.Extension.CotangentSpace.map_comp_cotangentComplex π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') : Algebra.Extension.CotangentSpace.map f ββ P.cotangentComplex = βS P'.cotangentComplex ββ Algebra.Extension.Cotangent.map f - Algebra.Extension.H1Cotangent.map_apply_coe π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] {P : Algebra.Extension R S} (f : P.Hom P') (c : β₯(LinearMap.ker P.cotangentComplex)) : β((Algebra.Extension.H1Cotangent.map f) c) = (Algebra.Extension.Cotangent.map f) βc - Algebra.Extension.H1Cotangent.equiv_apply π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {Pβ : Algebra.Extension R S} {Pβ : Algebra.Extension R S} (fβ : Pβ.Hom Pβ) (fβ : Pβ.Hom Pβ) (c : β₯(LinearMap.ker Pβ.cotangentComplex)) : (Algebra.Extension.H1Cotangent.equiv fβ fβ) c = β¨(Algebra.Extension.Cotangent.map fβ) βc, β―β© - Algebra.Generators.H1Cotangent.equiv_apply π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Generators R S) (P' : Algebra.Generators R S) (c : β₯(LinearMap.ker P.toExtension.cotangentComplex)) : (Algebra.Generators.H1Cotangent.equiv P P') c = β¨(Algebra.Extension.Cotangent.map (P.defaultHom P').toExtensionHom) βc, β―β© - Algebra.Generators.Cotangent.surjective_map_ofComp π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : Function.Surjective β(Algebra.Extension.Cotangent.map (Q.ofComp P).toExtensionHom) - Algebra.Generators.Cotangent.exact π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : Function.Exact β(LinearMap.liftBaseChange T (Algebra.Extension.Cotangent.map (Q.toComp P).toExtensionHom)) β(Algebra.Extension.Cotangent.map (Q.ofComp P).toExtensionHom) - Algebra.Generators.H1Cotangent.Ξ΄.eq_1 π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : Algebra.Generators.H1Cotangent.Ξ΄ Q P = SnakeLemma.Ξ΄' (LinearMap.baseChange T P.toExtension.cotangentComplex) (Q.comp P).toExtension.cotangentComplex Q.toExtension.cotangentComplex (LinearMap.liftBaseChange T (Algebra.Extension.Cotangent.map (Q.toComp P).toExtensionHom)) (Algebra.Extension.Cotangent.map (Q.ofComp P).toExtensionHom) β― (LinearMap.liftBaseChange T (Algebra.Extension.CotangentSpace.map (Q.toComp P).toExtensionHom)) (Algebra.Extension.CotangentSpace.map (Q.ofComp P).toExtensionHom) β― β― β― Algebra.Extension.h1CotangentΞΉ β― (LinearMap.baseChange T P.toExtension.toKaehler) β― β― β― - Algebra.Generators.H1Cotangent.map_comp_cotangentComplex_baseChange π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : LinearMap.liftBaseChange T (Algebra.Extension.CotangentSpace.map (Q.toComp P).toExtensionHom) ββ LinearMap.baseChange T P.toExtension.cotangentComplex = (Q.comp P).toExtension.cotangentComplex ββ LinearMap.liftBaseChange T (Algebra.Extension.Cotangent.map (Q.toComp P).toExtensionHom) - Algebra.Generators.H1Cotangent.Ξ΄_eq π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) (x : Q.toExtension.H1Cotangent) (y : (Q.comp P).toExtension.Cotangent) (hy : (Algebra.Extension.Cotangent.map (Q.ofComp P).toExtensionHom) y = βx) (z : TensorProduct S T P.toExtension.CotangentSpace) (hz : (LinearMap.liftBaseChange T (Algebra.Extension.CotangentSpace.map (Q.toComp P).toExtensionHom)) z = (Q.comp P).toExtension.cotangentComplex y) : (Algebra.Generators.H1Cotangent.Ξ΄ Q P) x = (LinearMap.baseChange T P.toExtension.toKaehler) z - Algebra.Extension.Cotangent.map_toInfinitesimal_bijective π Mathlib.RingTheory.Smooth.Kaehler
{R S : Type u} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Extension R S) : Function.Bijective β(Algebra.Extension.Cotangent.map P.toInfinitesimal) - Algebra.Generators.liftBaseChange_injective_of_isLocalizationAway π Mathlib.RingTheory.CotangentLocalizationAway
{R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [Algebra R S] [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (g : S) [IsLocalization.Away g T] (P : Algebra.Generators R S) : Function.Injective β(LinearMap.liftBaseChange T (Algebra.Extension.Cotangent.map ((Algebra.Generators.localizationAway g).toComp P).toExtensionHom))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65