Loogle!
Result
Found 21 declarations mentioning Algebra.Extension.CotangentSpace.map.
- Algebra.Extension.CotangentSpace.map π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') : P.CotangentSpace ββ[S] P'.CotangentSpace - Algebra.Extension.CotangentSpace.map_id π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} : Algebra.Extension.CotangentSpace.map (Algebra.Extension.Hom.id P) = LinearMap.id - Algebra.Extension.CotangentSpace.map_tmul π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') (x : S) (y : P.Ring) : (Algebra.Extension.CotangentSpace.map f) (x ββ[P.Ring] (KaehlerDifferential.D R P.Ring) y) = (algebraMap S S') x ββ[P'.Ring] (KaehlerDifferential.D R' P'.Ring) (f.toAlgHom y) - Algebra.Extension.CotangentSpace.map_cotangentComplex π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') (x : P.Cotangent) : (Algebra.Extension.CotangentSpace.map f) (P.cotangentComplex x) = P'.cotangentComplex ((Algebra.Extension.Cotangent.map f) x) - Algebra.Extension.CotangentSpace.map_comp_cotangentComplex π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') : Algebra.Extension.CotangentSpace.map f ββ P.cotangentComplex = βS P'.cotangentComplex ββ Algebra.Extension.Cotangent.map f - Algebra.Extension.CotangentSpace.map_comp_apply π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] {R'' : Type u''} {S'' : Type v''} [CommRing R''] [CommRing S''] [Algebra R'' S''] {P'' : Algebra.Extension R'' S''} [Algebra R R''] [Algebra S S''] [Algebra R S''] [IsScalarTower R R'' S''] [Algebra R' R''] [Algebra S' S''] [Algebra R' S''] [IsScalarTower R' R'' S''] [IsScalarTower R R' R''] [IsScalarTower S S' S''] (f : P.Hom P') (g : P'.Hom P'') (x : P.CotangentSpace) : (Algebra.Extension.CotangentSpace.map (g.comp f)) x = (Algebra.Extension.CotangentSpace.map g) ((Algebra.Extension.CotangentSpace.map f) x) - Algebra.Generators.repr_CotangentSpaceMap π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Generators R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Generators R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] [IsScalarTower R S S'] (f : P.Hom P') (i : P.vars) (j : P'.vars) : (P'.cotangentSpaceBasis.repr ((Algebra.Extension.CotangentSpace.map f.toExtensionHom) (P.cotangentSpaceBasis i))) j = (MvPolynomial.aeval P'.val) ((MvPolynomial.pderiv j) (f.val i)) - Algebra.Extension.CotangentSpace.map_comp π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] {R'' : Type u''} {S'' : Type v''} [CommRing R''] [CommRing S''] [Algebra R'' S''] {P'' : Algebra.Extension R'' S''} [Algebra R R''] [Algebra S S''] [Algebra R S''] [IsScalarTower R R'' S''] [Algebra R' R''] [Algebra S' S''] [Algebra R' S''] [IsScalarTower R' R'' S''] [IsScalarTower R R' R''] [IsScalarTower S S' S''] (f : P.Hom P') (g : P'.Hom P'') : Algebra.Extension.CotangentSpace.map (g.comp f) = βS (Algebra.Extension.CotangentSpace.map g) ββ Algebra.Extension.CotangentSpace.map f - Algebra.Extension.CotangentSpace.map.eq_1 π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') : Algebra.Extension.CotangentSpace.map f = LinearMap.liftBaseChange S (βP.Ring ((TensorProduct.mk P'.Ring S' (Ξ©[P'.RingβR'])) 1) ββ KaehlerDifferential.map R R' P.Ring P'.Ring) - Algebra.Extension.CotangentSpace.map_sub_map π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] [IsScalarTower R S S'] (f g : P.Hom P') : Algebra.Extension.CotangentSpace.map f - Algebra.Extension.CotangentSpace.map g = βS P'.cotangentComplex ββ f.sub g - Algebra.Generators.CotangentSpace.map_ofComp_surjective π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : Function.Surjective β(Algebra.Extension.CotangentSpace.map (Q.ofComp P).toExtensionHom) - Algebra.Generators.H1Cotangent.Ξ΄.eq_1 π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : Algebra.Generators.H1Cotangent.Ξ΄ Q P = SnakeLemma.Ξ΄' (LinearMap.baseChange T P.toExtension.cotangentComplex) (Q.comp P).toExtension.cotangentComplex Q.toExtension.cotangentComplex (LinearMap.liftBaseChange T (Algebra.Extension.Cotangent.map (Q.toComp P).toExtensionHom)) (Algebra.Extension.Cotangent.map (Q.ofComp P).toExtensionHom) β― (LinearMap.liftBaseChange T (Algebra.Extension.CotangentSpace.map (Q.toComp P).toExtensionHom)) (Algebra.Extension.CotangentSpace.map (Q.ofComp P).toExtensionHom) β― β― β― Algebra.Extension.h1CotangentΞΉ β― (LinearMap.baseChange T P.toExtension.toKaehler) β― β― β― - Algebra.Generators.H1Cotangent.map_comp_cotangentComplex_baseChange π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : LinearMap.liftBaseChange T (Algebra.Extension.CotangentSpace.map (Q.toComp P).toExtensionHom) ββ LinearMap.baseChange T P.toExtension.cotangentComplex = (Q.comp P).toExtension.cotangentComplex ββ LinearMap.liftBaseChange T (Algebra.Extension.Cotangent.map (Q.toComp P).toExtensionHom) - Algebra.Generators.CotangentSpace.map_toComp_injective π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : Function.Injective β(LinearMap.liftBaseChange T (Algebra.Extension.CotangentSpace.map (Q.toComp P).toExtensionHom)) - Algebra.Generators.CotangentSpace.exact π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : Function.Exact β(LinearMap.liftBaseChange T (Algebra.Extension.CotangentSpace.map (Q.toComp P).toExtensionHom)) β(Algebra.Extension.CotangentSpace.map (Q.ofComp P).toExtensionHom) - Algebra.Generators.CotangentSpace.fst_compEquiv π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : LinearMap.fst T Q.toExtension.CotangentSpace (TensorProduct S T P.toExtension.CotangentSpace) ββ β(Algebra.Generators.CotangentSpace.compEquiv Q P) = Algebra.Extension.CotangentSpace.map (Q.ofComp P).toExtensionHom - Algebra.Generators.H1Cotangent.Ξ΄_eq π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) (x : Q.toExtension.H1Cotangent) (y : (Q.comp P).toExtension.Cotangent) (hy : (Algebra.Extension.Cotangent.map (Q.ofComp P).toExtensionHom) y = βx) (z : TensorProduct S T P.toExtension.CotangentSpace) (hz : (LinearMap.liftBaseChange T (Algebra.Extension.CotangentSpace.map (Q.toComp P).toExtensionHom)) z = (Q.comp P).toExtension.cotangentComplex y) : (Algebra.Generators.H1Cotangent.Ξ΄ Q P) x = (LinearMap.baseChange T P.toExtension.toKaehler) z - Algebra.Generators.CotangentSpace.fst_compEquiv_apply π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) (x : (Q.comp P).toExtension.CotangentSpace) : ((Algebra.Generators.CotangentSpace.compEquiv Q P) x).1 = (Algebra.Extension.CotangentSpace.map (Q.ofComp P).toExtensionHom) x - Algebra.Generators.CotangentSpace.compEquiv_symm_inr π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : β(Algebra.Generators.CotangentSpace.compEquiv Q P).symm ββ LinearMap.inr T Q.toExtension.CotangentSpace (TensorProduct S T P.toExtension.CotangentSpace) = LinearMap.liftBaseChange T (Algebra.Extension.CotangentSpace.map (Q.toComp P).toExtensionHom) - Algebra.Generators.CotangentSpace.compEquiv_symm_zero π Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) (x : TensorProduct S T P.toExtension.CotangentSpace) : (Algebra.Generators.CotangentSpace.compEquiv Q P).symm (0, x) = (LinearMap.liftBaseChange T (Algebra.Extension.CotangentSpace.map (Q.toComp P).toExtensionHom)) x - Algebra.Extension.CotangentSpace.map_toInfinitesimal_bijective π Mathlib.RingTheory.Smooth.Kaehler
{R S : Type u} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Extension R S) : Function.Bijective β(Algebra.Extension.CotangentSpace.map P.toInfinitesimal)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65