Loogle!
Result
Found 13 declarations mentioning Algebra.Extension.H1Cotangent.map.
- Algebra.Extension.H1Cotangent.map 📋 Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] {P : Algebra.Extension R S} (f : P.Hom P') : P.H1Cotangent →ₗ[S] P'.H1Cotangent - Algebra.Extension.H1Cotangent.map_eq 📋 Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] [IsScalarTower R S S'] {P : Algebra.Extension R S} (f g : P.Hom P') : Algebra.Extension.H1Cotangent.map f = Algebra.Extension.H1Cotangent.map g - Algebra.Extension.H1Cotangent.map_id 📋 Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} : Algebra.Extension.H1Cotangent.map (Algebra.Extension.Hom.id P) = LinearMap.id - Algebra.H1Cotangent.map.eq_1 📋 Mathlib.RingTheory.Kaehler.CotangentComplex
(R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (S' : Type u_1) [CommRing S'] [Algebra R S'] (T : Type w) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [Algebra S' T] [IsScalarTower R S' T] : Algebra.H1Cotangent.map R S S' T = Algebra.Extension.H1Cotangent.map ((Algebra.Generators.self R S').defaultHom (Algebra.Generators.self S T)).toExtensionHom - Algebra.Extension.H1Cotangent.map_comp 📋 Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] {R'' : Type u''} {S'' : Type v''} [CommRing R''] [CommRing S''] [Algebra R'' S''] {P'' : Algebra.Extension R'' S''} [Algebra R R''] [Algebra S S''] [Algebra R S''] [IsScalarTower R R'' S''] [Algebra R' R''] [Algebra S' S''] [Algebra R' S''] [IsScalarTower R' R'' S''] [IsScalarTower R R' R''] [IsScalarTower S S' S''] {P : Algebra.Extension R S} (f : P.Hom P') (g : P'.Hom P'') : Algebra.Extension.H1Cotangent.map (g.comp f) = ↑S (Algebra.Extension.H1Cotangent.map g) ∘ₗ Algebra.Extension.H1Cotangent.map f - Algebra.Extension.H1Cotangent.map_apply_coe 📋 Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] {P : Algebra.Extension R S} (f : P.Hom P') (c : ↥(LinearMap.ker P.cotangentComplex)) : ↑((Algebra.Extension.H1Cotangent.map f) c) = (Algebra.Extension.Cotangent.map f) ↑c - Algebra.Generators.H1Cotangent.exact_map_δ' 📋 Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) (P' : Algebra.Generators R T) (f : P'.Hom Q) : Function.Exact ⇑(Algebra.Extension.H1Cotangent.map f.toExtensionHom) ⇑(Algebra.Generators.H1Cotangent.δ Q P) - Algebra.Generators.H1Cotangent.exact_map_δ 📋 Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) : Function.Exact ⇑(Algebra.Extension.H1Cotangent.map (Q.ofComp P).toExtensionHom) ⇑(Algebra.Generators.H1Cotangent.δ Q P) - Algebra.Generators.H1Cotangent.δ_map 📋 Mathlib.RingTheory.Kaehler.JacobiZariski
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type uT} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.Generators S T) (P : Algebra.Generators R S) (Q' : Algebra.Generators S T) (P' : Algebra.Generators R S) (f : Q'.Hom Q) (x : Q'.toExtension.H1Cotangent) : (Algebra.Generators.H1Cotangent.δ Q P) ((Algebra.Extension.H1Cotangent.map f.toExtensionHom) x) = (Algebra.Generators.H1Cotangent.δ Q' P') x - Algebra.Extension.H1Cotangent.map_toInfinitesimal_bijective 📋 Mathlib.RingTheory.Smooth.Kaehler
{R S : Type u} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Extension R S) : Function.Bijective ⇑(Algebra.Extension.H1Cotangent.map P.toInfinitesimal) - Algebra.Extension.H1Cotangent.equivOfFormallySmooth_toLinearMap 📋 Mathlib.RingTheory.Smooth.Kaehler
{R S : Type u} [CommRing R] [CommRing S] [Algebra R S] {P₁ P₂ : Algebra.Extension R S} (f : P₁.Hom P₂) [Algebra.FormallySmooth R P₁.Ring] [Algebra.FormallySmooth R P₂.Ring] : ↑(Algebra.Extension.H1Cotangent.equivOfFormallySmooth P₁ P₂) = Algebra.Extension.H1Cotangent.map f - Algebra.Extension.H1Cotangent.equivOfFormallySmooth_apply 📋 Mathlib.RingTheory.Smooth.Kaehler
{R S : Type u} [CommRing R] [CommRing S] [Algebra R S] {P₁ P₂ : Algebra.Extension R S} (f : P₁.Hom P₂) [Algebra.FormallySmooth R P₁.Ring] [Algebra.FormallySmooth R P₂.Ring] (x : P₁.H1Cotangent) : (Algebra.Extension.H1Cotangent.equivOfFormallySmooth P₁ P₂) x = (Algebra.Extension.H1Cotangent.map f) x - Algebra.Extension.tensorH1Cotangent.eq_1 📋 Mathlib.RingTheory.Etale.Kaehler
{R S T : Type u} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {P : Algebra.Extension R S} {Q : Algebra.Extension R T} (f : P.Hom Q) [alg : Algebra P.Ring Q.Ring] (halg : algebraMap P.Ring Q.Ring = f.toRingHom) [Module.Flat S T] (H₁ : f.toRingHom.FormallyEtale) (H₂ : Function.Bijective ⇑(LinearMap.liftBaseChange Q.Ring (f.mapKer halg))) : Algebra.Extension.tensorH1Cotangent f halg H₁ H₂ = LinearEquiv.ofBijective (LinearMap.liftBaseChange T (Algebra.Extension.H1Cotangent.map f)) ⋯
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08