Loogle!
Result
Found 11 declarations mentioning Algebra.IsIntegral and Ideal.IsMaximal.
- Ideal.IsMaximal.under 📋 Mathlib.RingTheory.Ideal.GoingUp
(A : Type u_1) [CommRing A] {B : Type u_2} [CommRing B] [Algebra A B] [Algebra.IsIntegral A B] (P : Ideal B) [P.IsMaximal] : (Ideal.under A P).IsMaximal - Ideal.IsMaximal.of_isMaximal_liesOver 📋 Mathlib.RingTheory.Ideal.GoingUp
{A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] [Algebra A B] [Algebra.IsIntegral A B] (P : Ideal B) (p : Ideal A) [P.LiesOver p] [P.IsMaximal] : p.IsMaximal - Ideal.IsMaximal.of_liesOver_isMaximal 📋 Mathlib.RingTheory.Ideal.GoingUp
{A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] [Algebra A B] [Algebra.IsIntegral A B] (P : Ideal B) (p : Ideal A) [P.LiesOver p] [hpm : p.IsMaximal] [P.IsPrime] : P.IsMaximal - Ideal.exists_ideal_liesOver_maximal_of_isIntegral 📋 Mathlib.RingTheory.Ideal.GoingUp
{A : Type u_1} [CommRing A] (p : Ideal A) [p.IsMaximal] (B : Type u_3) [CommRing B] [Nontrivial B] [Algebra A B] [NoZeroSMulDivisors A B] [Algebra.IsIntegral A B] : ∃ P, P.IsMaximal ∧ P.LiesOver p - Ideal.primesOver.isMaximal 📋 Mathlib.RingTheory.Ideal.GoingUp
{A : Type u_1} [CommRing A] {p : Ideal A} [p.IsMaximal] {B : Type u_2} [CommRing B] [Algebra A B] [Algebra.IsIntegral A B] (Q : ↑(p.primesOver B)) : (↑Q).IsMaximal - Ideal.isMaximal_comap_of_isIntegral_of_isMaximal 📋 Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] [Algebra R S] [Algebra.IsIntegral R S] (I : Ideal S) [hI : I.IsMaximal] : (Ideal.comap (algebraMap R S) I).IsMaximal - Ideal.isMaximal_of_isIntegral_of_isMaximal_comap 📋 Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] [Algebra R S] [Algebra.IsIntegral R S] (I : Ideal S) [I.IsPrime] (hI : (Ideal.comap (algebraMap R S) I).IsMaximal) : I.IsMaximal - Ideal.exists_ideal_over_maximal_of_isIntegral 📋 Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] [Algebra R S] [Algebra.IsIntegral R S] (P : Ideal R) [P_max : P.IsMaximal] (hP : RingHom.ker (algebraMap R S) ≤ P) : ∃ Q, Q.IsMaximal ∧ Ideal.comap (algebraMap R S) Q = P - primesOver_finite 📋 Mathlib.RingTheory.DedekindDomain.Ideal
{A : Type u_4} [CommRing A] (p : Ideal A) [hpm : p.IsMaximal] (B : Type u_5) [CommRing B] [IsDedekindDomain B] [Algebra A B] [NoZeroSMulDivisors A B] [Algebra.IsIntegral A B] : (p.primesOver B).Finite - primesOver_ncard_ne_zero 📋 Mathlib.RingTheory.DedekindDomain.Ideal
{A : Type u_4} [CommRing A] (p : Ideal A) [hpm : p.IsMaximal] (B : Type u_5) [CommRing B] [IsDedekindDomain B] [Algebra A B] [NoZeroSMulDivisors A B] [Algebra.IsIntegral A B] : (p.primesOver B).ncard ≠ 0 - one_le_primesOver_ncard 📋 Mathlib.RingTheory.DedekindDomain.Ideal
{A : Type u_4} [CommRing A] (p : Ideal A) [hpm : p.IsMaximal] (B : Type u_5) [CommRing B] [IsDedekindDomain B] [Algebra A B] [NoZeroSMulDivisors A B] [Algebra.IsIntegral A B] : 1 ≤ (p.primesOver B).ncard
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 1bd7adb