Loogle!
Result
Found 19 declarations mentioning Algebra.PreSubmersivePresentation.map.
- Algebra.PreSubmersivePresentation.map ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (self : Algebra.PreSubmersivePresentation R S) : self.rels โ self.vars - Algebra.PreSubmersivePresentation.localizationAway_map ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (r : R) [IsLocalization.Away r S] (xโ : (Algebra.Presentation.localizationAway S r).rels) : (Algebra.PreSubmersivePresentation.localizationAway S r).map xโ = () - Algebra.PreSubmersivePresentation.map_inj ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (self : Algebra.PreSubmersivePresentation R S) : Function.Injective self.map - Algebra.PreSubmersivePresentation.baseChange.eq_1 ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (T : Type u_1) [CommRing T] [Algebra R T] (P : Algebra.PreSubmersivePresentation R S) : Algebra.PreSubmersivePresentation.baseChange T P = { toPresentation := Algebra.Presentation.baseChange T P.toPresentation, map := P.map, map_inj := โฏ, relations_finite := โฏ } - Algebra.PreSubmersivePresentation.comp_map ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {T : Type u_1} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.PreSubmersivePresentation S T) (P : Algebra.PreSubmersivePresentation R S) (aโ : Q.rels โ P.rels) : (Q.comp P).map aโ = Sum.elim (fun rq => Sum.inl (Q.map rq)) (fun rp => Sum.inr (P.map rp)) aโ - Algebra.PreSubmersivePresentation.reindex_map ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S) {ฮน : Type u_1} {ฮบ : Type u_2} (e : ฮน โ P.vars) (f : ฮบ โ P.rels) (aโ : (P.reindex e f).rels) : (P.reindex e f).map aโ = (โe.symm โ P.map โ โf) aโ - Algebra.PreSubmersivePresentation.jacobiMatrix_apply ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S) [Fintype P.rels] [DecidableEq P.rels] (i j : P.rels) : P.jacobiMatrix i j = (MvPolynomial.pderiv (P.map i)) (P.relation j) - Algebra.SubmersivePresentation.linearIndependent_aeval_val_pderiv_relation ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.SubmersivePresentation R S) : LinearIndependent S fun i j => (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map j)) (P.relation i)) - Algebra.PreSubmersivePresentation.aevalDifferential_single ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S) [DecidableEq P.rels] (i j : P.rels) : P.aevalDifferential (Pi.single i 1) j = (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map j)) (P.relation i)) - Algebra.SubmersivePresentation.basisDeriv_apply ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.SubmersivePresentation R S) (i j : P.rels) : P.basisDeriv i j = (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map j)) (P.relation i)) - Algebra.PreSubmersivePresentation.differential.eq_1 ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S) : P.differential = (P.basis.constr P.Ring) fun j i => (MvPolynomial.pderiv (P.map i)) (P.relation j) - Algebra.SubmersivePresentation.basisKaehler ๐ Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.SubmersivePresentation R S) : Basis (โ(Set.range P.map)แถ) S (ฮฉ[SโR]) - Algebra.SubmersivePresentation.basisKaehlerOfIsCompl ๐ Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.SubmersivePresentation R S) {ฮบ : Type u_3} {f : ฮบ โ P.vars} (hf : Function.Injective f) (hcompl : IsCompl (Set.range f) (Set.range P.map)) : Basis ฮบ S (ฮฉ[SโR]) - Algebra.PreSubmersivePresentation.cotangentComplexAux.eq_1 ๐ Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S) : P.cotangentComplexAux = โ(Finsupp.linearEquivFunOnFinite S S P.rels) โโ Finsupp.lcomapDomain P.map โฏ โโ โP.cotangentSpaceBasis.repr โโ P.toExtension.cotangentComplex - Algebra.PreSubmersivePresentation.cotangentComplexAux_apply ๐ Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S) (x : โฅP.ker) (i : P.rels) : P.cotangentComplexAux (Algebra.Extension.Cotangent.mk x) i = (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map i)) โx) - Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff ๐ Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.PreSubmersivePresentation R S} (x : โฅP.ker) : P.cotangentComplexAux (Algebra.Extension.Cotangent.mk x) = 0 โ โ (i : P.rels), (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map i)) โx) = 0 - Algebra.SubmersivePresentation.sectionCotangent_zero_of_not_mem_range ๐ Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.SubmersivePresentation R S) (i : P.vars) (hi : i โ Set.range P.map) : P.sectionCotangent (P.cotangentSpaceBasis i) = 0 - Algebra.SubmersivePresentation.sectionCotangent.eq_1 ๐ Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.SubmersivePresentation R S) : P.sectionCotangent = โP.cotangentEquiv.symm โโ โ(Finsupp.linearEquivFunOnFinite S S P.rels) โโ Finsupp.lcomapDomain P.map โฏ โโ โP.cotangentSpaceBasis.repr - Algebra.SubmersivePresentation.sectionCotangent_eq_iff ๐ Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.SubmersivePresentation R S) (x : P.toExtension.CotangentSpace) (y : P.toExtension.Cotangent) : P.sectionCotangent x = y โ โ (i : P.rels), (P.cotangentSpaceBasis.repr x) (P.map i) = P.cotangentComplexAux y i
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65