Loogle!
Result
Found 31 declarations mentioning Algebra.PreSubmersivePresentation.map.
- Algebra.PreSubmersivePresentation.map 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] (self : Algebra.PreSubmersivePresentation R S ι σ) : σ → ι - Algebra.PreSubmersivePresentation.map_inj 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] (self : Algebra.PreSubmersivePresentation R S ι σ) : Function.Injective self.map - Algebra.PreSubmersivePresentation.localizationAway_map 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (r : R) [IsLocalization.Away r S] (x✝ : Unit) : (Algebra.PreSubmersivePresentation.localizationAway S r).map x✝ = () - Algebra.SubmersivePresentation.ofSubsingleton_map 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
(R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] [Subsingleton S] (x✝ : PUnit.{u_1 + 1}) : (Algebra.SubmersivePresentation.ofSubsingleton R S).map x✝ = PUnit.unit - Algebra.PreSubmersivePresentation.reindex_map 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S ι σ) {ι' : Type u_1} {σ' : Type u_2} (e : ι' ≃ ι) (f : σ' ≃ σ) (a✝ : σ') : (P.reindex e f).map a✝ = (⇑e.symm ∘ P.map ∘ ⇑f) a✝ - Algebra.PreSubmersivePresentation.reindex.eq_1 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S ι σ) {ι' : Type u_1} {σ' : Type u_2} (e : ι' ≃ ι) (f : σ' ≃ σ) : P.reindex e f = { toPresentation := P.reindex e f, map := ⇑e.symm ∘ P.map ∘ ⇑f, map_inj := ⋯ } - Algebra.PreSubmersivePresentation.comp_map 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] {ι' : Type u_1} {σ' : Type u_2} {T : Type u_3} [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (Q : Algebra.PreSubmersivePresentation S T ι' σ') (P : Algebra.PreSubmersivePresentation R S ι σ) (a✝ : σ' ⊕ σ) : (Q.comp P).map a✝ = Sum.elim (fun rq => Sum.inl (Q.map rq)) (fun rp => Sum.inr (P.map rp)) a✝ - Algebra.PreSubmersivePresentation.baseChange.eq_1 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] (T : Type u_1) [CommRing T] [Algebra R T] (P : Algebra.PreSubmersivePresentation R S ι σ) : Algebra.PreSubmersivePresentation.baseChange T P = { toPresentation := Algebra.Presentation.baseChange T P.toPresentation, map := P.map, map_inj := ⋯ } - Algebra.PreSubmersivePresentation.jacobiMatrix_apply 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S ι σ) [Fintype σ] [DecidableEq σ] (i j : σ) : P.jacobiMatrix i j = (MvPolynomial.pderiv (P.map i)) (P.relation j) - Algebra.SubmersivePresentation.linearIndependent_aeval_val_pderiv_relation 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) : LinearIndependent S fun i j => (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map j)) (P.relation i)) - Algebra.SubmersivePresentation.basisDeriv_apply 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) (i j : σ) : P.basisDeriv i j = (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map j)) (P.relation i)) - Algebra.PreSubmersivePresentation.aevalDifferential_single 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S ι σ) [Finite σ] [DecidableEq σ] (i j : σ) : P.aevalDifferential (Pi.single i 1) j = (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map j)) (P.relation i)) - Algebra.PreSubmersivePresentation.isUnit_jacobian_of_linearIndependent_of_span_eq_top 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S ι σ) [Finite σ] (hli : LinearIndependent S fun j i => (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map i)) (P.relation j))) (hsp : Submodule.span S (Set.range fun j i => (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map i)) (P.relation j))) = ⊤) : IsUnit P.jacobian - Algebra.PreSubmersivePresentation.differential.eq_1 📋 Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ι : Type w} {σ : Type t} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.PreSubmersivePresentation R S ι σ) [Finite σ] : P.differential = (P.basis.constr P.Ring) fun j i => (MvPolynomial.pderiv (P.map i)) (P.relation j) - Algebra.SubmersivePresentation.basisKaehler 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) : Module.Basis (↑(Set.range P.map)ᶜ) S Ω[S⁄R] - Algebra.SubmersivePresentation.basisKaehlerOfIsCompl 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) {κ : Type u_5} {f : κ → ι} (hf : Function.Injective f) (hcompl : IsCompl (Set.range f) (Set.range P.map)) : Module.Basis κ S Ω[S⁄R] - Algebra.SubmersivePresentation.basisKaehler.eq_1 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) : P.basisKaehler = P.basisKaehlerOfIsCompl ⋯ ⋯ - Algebra.SubmersivePresentation.basisKaehlerOfIsCompl.congr_simp 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P P✝ : Algebra.SubmersivePresentation R S ι σ) (e_P : P = P✝) {κ : Type u_5} {f f✝ : κ → ι} (e_f : f = f✝) (hf : Function.Injective f) (hcompl : IsCompl (Set.range f) (Set.range P.map)) : P.basisKaehlerOfIsCompl hf hcompl = P✝.basisKaehlerOfIsCompl ⋯ ⋯ - Algebra.SubmersivePresentation.basisKaehlerOfIsCompl_apply 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) {κ : Type u_5} {f : κ → ι} (hf : Function.Injective f) (hcompl : IsCompl (Set.range f) (Set.range P.map)) (k : κ) : (P.basisKaehlerOfIsCompl hf hcompl) k = (KaehlerDifferential.D R S) (P.val (f k)) - Algebra.SubmersivePresentation.basisKaehler_apply 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) (k : ↑(Set.range P.map)ᶜ) : P.basisKaehler k = (KaehlerDifferential.D R S) (P.val ↑k) - Algebra.SubmersivePresentation.basisKaehlerOfIsCompl.eq_1 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) {κ : Type u_5} {f : κ → ι} (hf : Function.Injective f) (hcompl : IsCompl (Set.range f) (Set.range P.map)) : P.basisKaehlerOfIsCompl hf hcompl = Module.Basis.ofSplitExact ⋯ ⋯ ⋯ P.cotangentSpaceBasis hf ⋯ ⋯ ⋯ - Algebra.PreSubmersivePresentation.cotangentComplexAux.eq_1 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.PreSubmersivePresentation R S ι σ) : P.cotangentComplexAux = ↑(Finsupp.linearEquivFunOnFinite S S σ) ∘ₗ Finsupp.lcomapDomain P.map ⋯ ∘ₗ ↑P.cotangentSpaceBasis.repr ∘ₗ P.toExtension.cotangentComplex - Algebra.PreSubmersivePresentation.cotangentComplexAux_apply 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.PreSubmersivePresentation R S ι σ) (x : ↥P.ker) (i : σ) : P.cotangentComplexAux (Algebra.Extension.Cotangent.mk x) i = (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map i)) ↑x) - Algebra.PreSubmersivePresentation.cotangentComplexAux_zero_iff 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] {P : Algebra.PreSubmersivePresentation R S ι σ} (x : ↥P.ker) : P.cotangentComplexAux (Algebra.Extension.Cotangent.mk x) = 0 ↔ ∀ (i : σ), (MvPolynomial.aeval P.val) ((MvPolynomial.pderiv (P.map i)) ↑x) = 0 - Algebra.SubmersivePresentation.sectionCotangent_zero_of_notMem_range 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) (i : ι) (hi : i ∉ Set.range P.map) : P.sectionCotangent (P.cotangentSpaceBasis i) = 0 - Algebra.SubmersivePresentation.sectionCotangent_zero_of_not_mem_range 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) (i : ι) (hi : i ∉ Set.range P.map) : P.sectionCotangent (P.cotangentSpaceBasis i) = 0 - Algebra.SubmersivePresentation.sectionCotangent.eq_1 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) : P.sectionCotangent = ↑P.cotangentEquiv.symm ∘ₗ ↑(Finsupp.linearEquivFunOnFinite S S σ) ∘ₗ Finsupp.lcomapDomain P.map ⋯ ∘ₗ ↑P.cotangentSpaceBasis.repr - Algebra.SubmersivePresentation.sectionCotangent_eq_iff 📋 Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ι : Type u_3} {σ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite σ] (P : Algebra.SubmersivePresentation R S ι σ) [Finite σ] (x : P.toExtension.CotangentSpace) (y : P.toExtension.Cotangent) : P.sectionCotangent x = y ↔ ∀ (i : σ), (P.cotangentSpaceBasis.repr x) (P.map i) = P.cotangentComplexAux y i - StandardEtalePresentation.toSubmersivePresentation_map 📋 Mathlib.RingTheory.Etale.StandardEtale
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : StandardEtalePresentation R S) (a : Fin 2) : P.toSubmersivePresentation.map a = id a - Algebra.PreSubmersivePresentation.isUnit_jacobian_of_cotangentRestrict_bijective 📋 Mathlib.RingTheory.Extension.Cotangent.Free
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {ι : Type u_3} {σ : Type u_4} (P : Algebra.PreSubmersivePresentation R S ι σ) [Finite σ] (b : Module.Basis σ S P.toExtension.Cotangent) (hb : ∀ (r : σ), b r = Algebra.Extension.Cotangent.mk ⟨P.relation r, ⋯⟩) (h : Function.Bijective ⇑(P.cotangentRestrict ⋯)) : IsUnit P.jacobian - MvPolynomial.universalFactorizationMapPresentation_map 📋 Mathlib.RingTheory.Polynomial.UniversalFactorizationRing
(R : Type u_1) [CommRing R] (n m k : ℕ) (hn : n = m + k) (a✝ : Fin n) : (MvPolynomial.universalFactorizationMapPresentation R n m k hn).map a✝ = (⇑finSumFinEquiv.symm ∘ ⇑(finCongr hn)) a✝
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c