Loogle!
Result
Found 63 declarations mentioning Algebra.TensorProduct.map.
- Algebra.TensorProduct.map π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) : TensorProduct R A B ββ[S] TensorProduct R C D - Algebra.TensorProduct.map_id π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] : Algebra.TensorProduct.map (AlgHom.id S A) (AlgHom.id R B) = AlgHom.id S (TensorProduct R A B) - Algebra.TensorProduct.productMap_eq_comp_map π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} [CommSemiring R] [Semiring A] [Semiring B] [CommSemiring S] [Algebra R A] [Algebra R B] [Algebra R S] (f : A ββ[R] S) (g : B ββ[R] S) : Algebra.TensorProduct.productMap f g = (Algebra.TensorProduct.lmul' R).comp (Algebra.TensorProduct.map f g) - Algebra.TensorProduct.map_comp_includeLeft π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) : (Algebra.TensorProduct.map f g).comp Algebra.TensorProduct.includeLeft = Algebra.TensorProduct.includeLeft.comp f - Algebra.TensorProduct.map_id_comp π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {D : Type uD} {F : Type uF} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring D] [Algebra R D] [Semiring F] [Algebra R F] (gβ : D ββ[R] F) (gβ : B ββ[R] D) : Algebra.TensorProduct.map (AlgHom.id S A) (gβ.comp gβ) = (Algebra.TensorProduct.map (AlgHom.id S A) gβ).comp (Algebra.TensorProduct.map (AlgHom.id S A) gβ) - Algebra.TensorProduct.map_comp_includeRight π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Semiring D] [Algebra R D] (f : A ββ[R] C) (g : B ββ[R] D) : (Algebra.TensorProduct.map f g).comp Algebra.TensorProduct.includeRight = Algebra.TensorProduct.includeRight.comp g - Algebra.TensorProduct.map_comp_id π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {C : Type uC} {E : Type uE} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring E] [Algebra R E] [Algebra S E] [IsScalarTower R S E] (fβ : C ββ[S] E) (fβ : A ββ[S] C) : Algebra.TensorProduct.map (fβ.comp fβ) (AlgHom.id R E) = (Algebra.TensorProduct.map fβ (AlgHom.id R E)).comp (Algebra.TensorProduct.map fβ (AlgHom.id R E)) - Algebra.TensorProduct.map_comp π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} {E : Type uE} {F : Type uF} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] [Semiring E] [Algebra R E] [Algebra S E] [IsScalarTower R S E] [Semiring F] [Algebra R F] (fβ : C ββ[S] E) (fβ : A ββ[S] C) (gβ : D ββ[R] F) (gβ : B ββ[R] D) : Algebra.TensorProduct.map (fβ.comp fβ) (gβ.comp gβ) = (Algebra.TensorProduct.map fβ gβ).comp (Algebra.TensorProduct.map fβ gβ) - Algebra.TensorProduct.map_tmul π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) (a : A) (b : B) : (Algebra.TensorProduct.map f g) (a ββ[R] b) = f a ββ[R] g b - Algebra.TensorProduct.lmul'_comp_map π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} [CommSemiring R] [Semiring A] [Semiring B] [CommSemiring S] [Algebra R A] [Algebra R B] [Algebra R S] (f : A ββ[R] S) (g : B ββ[R] S) : (Algebra.TensorProduct.lmul' R).comp (Algebra.TensorProduct.map f g) = Algebra.TensorProduct.lift f g β― - Algebra.TensorProduct.map_restrictScalars_comp_includeRight π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) : (AlgHom.restrictScalars R (Algebra.TensorProduct.map f g)).comp Algebra.TensorProduct.includeRight = Algebra.TensorProduct.includeRight.comp g - Algebra.TensorProduct.toLinearMap_map π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) : (Algebra.TensorProduct.map f g).toLinearMap = TensorProduct.AlgebraTensorModule.map f.toLinearMap g.toLinearMap - Algebra.TensorProduct.map_bijective π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Semiring D] [Algebra R D] {f : A ββ[R] B} {g : C ββ[R] D} (hf : Function.Bijective βf) (hg : Function.Bijective βg) : Function.Bijective β(Algebra.TensorProduct.map f g) - Algebra.TensorProduct.congr_apply π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) (x : TensorProduct R A B) : (Algebra.TensorProduct.congr f g) x = (Algebra.TensorProduct.map βf βg) x - Algebra.TensorProduct.map_range π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Semiring D] [Algebra R D] (f : A ββ[R] C) (g : B ββ[R] D) : (Algebra.TensorProduct.map f g).range = (Algebra.TensorProduct.includeLeft.comp f).range β (Algebra.TensorProduct.includeRight.comp g).range - Algebra.TensorProduct.congr_symm_apply π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) (x : TensorProduct R C D) : (Algebra.TensorProduct.congr f g).symm x = (Algebra.TensorProduct.map βf.symm βg.symm) x - Algebra.TensorProduct.comm_comp_map π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Semiring D] [Algebra R D] (f : A ββ[R] C) (g : B ββ[R] D) : (β(Algebra.TensorProduct.comm R C D)).comp (Algebra.TensorProduct.map f g) = (Algebra.TensorProduct.map g f).comp β(Algebra.TensorProduct.comm R A B) - Algebra.TensorProduct.comm_comp_map_apply π Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Semiring D] [Algebra R D] (f : A ββ[R] C) (g : B ββ[R] D) (x : TensorProduct R A B) : (Algebra.TensorProduct.comm R C D) ((Algebra.TensorProduct.map f g) x) = (Algebra.TensorProduct.map g f) ((Algebra.TensorProduct.comm R A B) x) - Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] [Module.Free R A] : Subalgebra.centralizer R βAlgebra.TensorProduct.includeRight.range = (Algebra.TensorProduct.map (AlgHom.id R A) (Subalgebra.center R B).val).range - Subalgebra.centralizer_coe_image_includeRight_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] (S : Set B) [Module.Free R A] : Subalgebra.centralizer R (βAlgebra.TensorProduct.includeRight '' S) = (Algebra.TensorProduct.map (AlgHom.id R A) (Subalgebra.centralizer R S).val).range - Subalgebra.centralizer_coe_map_includeRight_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] (S : Subalgebra R B) [Module.Free R A] : Subalgebra.centralizer R β(Subalgebra.map Algebra.TensorProduct.includeRight S) = (Algebra.TensorProduct.map (AlgHom.id R A) (Subalgebra.centralizer R βS).val).range - Subalgebra.centralizer_coe_range_includeLeft_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] [Module.Free R B] : Subalgebra.centralizer R βAlgebra.TensorProduct.includeLeft.range = (Algebra.TensorProduct.map (Subalgebra.center R A).val (AlgHom.id R B)).range - Subalgebra.centralizer_coe_image_includeLeft_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] (S : Set A) [Module.Free R B] : Subalgebra.centralizer R (βAlgebra.TensorProduct.includeLeft '' S) = (Algebra.TensorProduct.map (Subalgebra.centralizer R S).val (AlgHom.id R B)).range - Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_right π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] [Module.Free R A] : Subalgebra.centralizer R β(Algebra.TensorProduct.map (Algebra.ofId R A) (AlgHom.id R B)).range = (Algebra.TensorProduct.map (AlgHom.id R A) (Subalgebra.center R B).val).range - Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_left π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] [Module.Free R B] : Subalgebra.centralizer R β(Algebra.TensorProduct.map (AlgHom.id R A) (Algebra.ofId R B)).range = (Algebra.TensorProduct.map (Subalgebra.center R A).val (AlgHom.id R B)).range - Subalgebra.centralizer_coe_map_includeLeft_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] (S : Subalgebra R A) [Module.Free R B] : Subalgebra.centralizer R β(Subalgebra.map Algebra.TensorProduct.includeLeft S) = (Algebra.TensorProduct.map (Subalgebra.centralizer R βS).val (AlgHom.id R B)).range - Algebra.TensorProduct.lTensor_ker π Mathlib.LinearAlgebra.TensorProduct.RightExactness
{R : Type u_4} [CommRing R] {A : Type u_5} {C : Type u_7} {D : Type u_8} [Ring A] [Ring C] [Ring D] [Algebra R A] [Algebra R C] [Algebra R D] (g : C ββ[R] D) (hg : Function.Surjective βg) : RingHom.ker (Algebra.TensorProduct.map (AlgHom.id R A) g) = Ideal.map Algebra.TensorProduct.includeRight (RingHom.ker g) - Algebra.TensorProduct.rTensor_ker π Mathlib.LinearAlgebra.TensorProduct.RightExactness
{R : Type u_4} [CommRing R] {A : Type u_5} {B : Type u_6} {C : Type u_7} [Ring A] [Ring B] [Ring C] [Algebra R A] [Algebra R B] [Algebra R C] (f : A ββ[R] B) (hf : Function.Surjective βf) : RingHom.ker (Algebra.TensorProduct.map f (AlgHom.id R C)) = Ideal.map Algebra.TensorProduct.includeLeft (RingHom.ker f) - Algebra.TensorProduct.map_ker π Mathlib.LinearAlgebra.TensorProduct.RightExactness
{R : Type u_4} [CommRing R] {A : Type u_5} {B : Type u_6} {C : Type u_7} {D : Type u_8} [Ring A] [Ring B] [Ring C] [Ring D] [Algebra R A] [Algebra R B] [Algebra R C] [Algebra R D] (f : A ββ[R] B) (g : C ββ[R] D) (hf : Function.Surjective βf) (hg : Function.Surjective βg) : RingHom.ker (Algebra.TensorProduct.map f g) = Ideal.map Algebra.TensorProduct.includeLeft (RingHom.ker f) β Ideal.map Algebra.TensorProduct.includeRight (RingHom.ker g) - RingHom.Finite.tensorProductMap π Mathlib.RingTheory.TensorProduct.Finite
{R : Type u_1} {S : Type u_2} {S' : Type u_3} {T : Type u_4} {T' : Type u_5} [CommRing R] [CommRing S] [CommRing T] [CommRing S'] [CommRing T'] [Algebra R S] [Algebra R T] [Algebra R S'] [Algebra R T'] {f : S ββ[R] S'} (Hf : f.Finite) {g : T ββ[R] T'} (Hg : g.Finite) : (Algebra.TensorProduct.map f g).Finite - AlgCat.hom_whiskerLeft π Mathlib.Algebra.Category.AlgCat.Monoidal
{R : Type u} [CommRing R] (L : AlgCat R) {M N : AlgCat R} (f : M βΆ N) : AlgCat.Hom.hom (CategoryTheory.MonoidalCategoryStruct.whiskerLeft L f) = Algebra.TensorProduct.map (AlgHom.id R βL) (AlgCat.Hom.hom f) - AlgCat.hom_whiskerRight π Mathlib.Algebra.Category.AlgCat.Monoidal
{R : Type u} [CommRing R] {L M : AlgCat R} (f : L βΆ M) (N : AlgCat R) : AlgCat.Hom.hom (CategoryTheory.MonoidalCategoryStruct.whiskerRight f N) = Algebra.TensorProduct.map (AlgCat.Hom.hom f) (AlgHom.id R βN) - AlgCat.hom_tensorHom π Mathlib.Algebra.Category.AlgCat.Monoidal
{R : Type u} [CommRing R] {K L M N : AlgCat R} (f : K βΆ L) (g : M βΆ N) : AlgCat.Hom.hom (CategoryTheory.MonoidalCategoryStruct.tensorHom f g) = Algebra.TensorProduct.map (AlgCat.Hom.hom f) (AlgCat.Hom.hom g) - Bialgebra.ofAlgHom π Mathlib.RingTheory.Bialgebra.Basic
{R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (comul : A ββ[R] TensorProduct R A A) (counit : A ββ[R] R) (h_coassoc : (β(Algebra.TensorProduct.assoc R R A A A)).comp ((Algebra.TensorProduct.map comul (AlgHom.id R A)).comp comul) = (Algebra.TensorProduct.map (AlgHom.id R A) comul).comp comul) (h_rTensor : (Algebra.TensorProduct.map counit (AlgHom.id R A)).comp comul = β(Algebra.TensorProduct.lid R A).symm) (h_lTensor : (Algebra.TensorProduct.map (AlgHom.id R A) counit).comp comul = β(Algebra.TensorProduct.rid R R A).symm) : Bialgebra R A - BialgHom.ofAlgHom π Mathlib.RingTheory.Bialgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Bialgebra R A] [Bialgebra R B] (f : A ββ[R] B) (counit_comp : (Bialgebra.counitAlgHom R B).comp f = Bialgebra.counitAlgHom R A) (map_comp_comul : (Algebra.TensorProduct.map f f).comp (Bialgebra.comulAlgHom R A) = (Bialgebra.comulAlgHom R B).comp f) : A ββc[R] B - BialgHom.ofAlgHom_apply π Mathlib.RingTheory.Bialgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Bialgebra R A] [Bialgebra R B] (f : A ββ[R] B) (counit_comp : (Bialgebra.counitAlgHom R B).comp f = Bialgebra.counitAlgHom R A) (map_comp_comul : (Algebra.TensorProduct.map f f).comp (Bialgebra.comulAlgHom R A) = (Bialgebra.comulAlgHom R B).comp f) (aβ : A) : (BialgHom.ofAlgHom f counit_comp map_comp_comul) aβ = f aβ - BialgHomClass.map_comp_comulAlgHom π Mathlib.RingTheory.Bialgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [Semiring A] [Bialgebra R A] [Semiring B] [Bialgebra R B] [FunLike F A B] [BialgHomClass F R A B] (f : F) : (Algebra.TensorProduct.map βf βf).comp (Bialgebra.comulAlgHom R A) = (Bialgebra.comulAlgHom R B).comp βf - BialgEquiv.ofAlgEquiv π Mathlib.RingTheory.Bialgebra.Equiv
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Bialgebra R A] [Bialgebra R B] (f : A ββ[R] B) (counit_comp : (Bialgebra.counitAlgHom R B).comp βf = Bialgebra.counitAlgHom R A) (map_comp_comul : (Algebra.TensorProduct.map βf βf).comp (Bialgebra.comulAlgHom R A) = (Bialgebra.comulAlgHom R B).comp βf) : A ββc[R] B - BialgEquiv.ofAlgEquiv_apply π Mathlib.RingTheory.Bialgebra.Equiv
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Bialgebra R A] [Bialgebra R B] (f : A ββ[R] B) (counit_comp : (Bialgebra.counitAlgHom R B).comp βf = Bialgebra.counitAlgHom R A) (map_comp_comul : (Algebra.TensorProduct.map βf βf).comp (Bialgebra.comulAlgHom R A) = (Bialgebra.comulAlgHom R B).comp βf) (aβ : A) : (BialgEquiv.ofAlgEquiv f counit_comp map_comp_comul) aβ = f.toFun aβ - BialgEquiv.toLinearMap_ofAlgEquiv π Mathlib.RingTheory.Bialgebra.Equiv
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Bialgebra R A] [Bialgebra R B] (f : A ββ[R] B) (counit_comp : (Bialgebra.counitAlgHom R B).comp βf = Bialgebra.counitAlgHom R A) (map_comp_comul : (Algebra.TensorProduct.map βf βf).comp (Bialgebra.comulAlgHom R A) = (Bialgebra.comulAlgHom R B).comp βf) : ββ(BialgEquiv.ofAlgEquiv f counit_comp map_comp_comul) = ββf - Bialgebra.TensorProduct.counitAlgHom_def π Mathlib.RingTheory.Bialgebra.TensorProduct
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Bialgebra S A] [Bialgebra R B] [Algebra R A] [Algebra R S] [IsScalarTower R S A] : Bialgebra.counitAlgHom S (TensorProduct R A B) = (β(Algebra.TensorProduct.rid R S S)).comp (Algebra.TensorProduct.map (Bialgebra.counitAlgHom S A) (Bialgebra.counitAlgHom R B)) - Bialgebra.TensorProduct.counit_eq_algHom_toLinearMap π Mathlib.RingTheory.Bialgebra.TensorProduct
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Bialgebra S A] [Bialgebra R B] [Algebra R A] [Algebra R S] [IsScalarTower R S A] : CoalgebraStruct.counit = ((β(Algebra.TensorProduct.rid R S S)).comp (Algebra.TensorProduct.map (Bialgebra.counitAlgHom S A) (Bialgebra.counitAlgHom R B))).toLinearMap - Bialgebra.TensorProduct.map_toAlgHom π Mathlib.RingTheory.Bialgebra.TensorProduct
{R : Type u_1} {S : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} {D : Type u_6} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Bialgebra S A] [Bialgebra R B] [Algebra R A] [Algebra R S] [IsScalarTower R S A] [Semiring C] [Semiring D] [Bialgebra S C] [Bialgebra R D] [Algebra R C] [IsScalarTower R S C] (f : A ββc[S] C) (g : B ββc[R] D) : β(Bialgebra.TensorProduct.map f g) = Algebra.TensorProduct.map βf βg - Bialgebra.TensorProduct.comulAlgHom_def π Mathlib.RingTheory.Bialgebra.TensorProduct
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Bialgebra S A] [Bialgebra R B] [Algebra R A] [Algebra R S] [IsScalarTower R S A] : Bialgebra.comulAlgHom S (TensorProduct R A B) = (β(Algebra.TensorProduct.tensorTensorTensorComm R S R S A A B B)).comp (Algebra.TensorProduct.map (Bialgebra.comulAlgHom S A) (Bialgebra.comulAlgHom R B)) - Bialgebra.TensorProduct.comul_eq_algHom_toLinearMap π Mathlib.RingTheory.Bialgebra.TensorProduct
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Bialgebra S A] [Bialgebra R B] [Algebra R A] [Algebra R S] [IsScalarTower R S A] : CoalgebraStruct.comul = ((β(Algebra.TensorProduct.tensorTensorTensorComm R S R S A A B B)).comp (Algebra.TensorProduct.map (Bialgebra.comulAlgHom S A) (Bialgebra.comulAlgHom R B))).toLinearMap - CommRingCat.tensorProd_map_right π Mathlib.Algebra.Category.Ring.Under.Basic
(R S : CommRingCat) [Algebra βR βS] {Xβ Yβ : CategoryTheory.Under R} (f : Xβ βΆ Yβ) : ((R.tensorProd S).map f).right = CommRingCat.ofHom β(Algebra.TensorProduct.map (AlgHom.id βS βS) (CommRingCat.toAlgHom f)) - CommAlgCat.whiskerLeft_hom π Mathlib.Algebra.Category.CommAlgCat.Monoidal
{R : Type u} [CommRing R] {A B : CommAlgCat R} (C : CommAlgCat R) (f : A βΆ B) : CommAlgCat.Hom.hom (CategoryTheory.MonoidalCategoryStruct.whiskerLeft C f) = Algebra.TensorProduct.map (AlgHom.id R βC) (CommAlgCat.Hom.hom f) - CommAlgCat.whiskerRight_hom π Mathlib.Algebra.Category.CommAlgCat.Monoidal
{R : Type u} [CommRing R] {A B : CommAlgCat R} (C : CommAlgCat R) (f : A βΆ B) : CommAlgCat.Hom.hom (CategoryTheory.MonoidalCategoryStruct.whiskerRight f C) = Algebra.TensorProduct.map (CommAlgCat.Hom.hom f) (AlgHom.id R βC) - CommAlgCat.tensorHom_hom π Mathlib.Algebra.Category.CommAlgCat.Monoidal
{R : Type u} [CommRing R] {A B C D : CommAlgCat R} (f : A βΆ C) (g : B βΆ D) : CommAlgCat.Hom.hom (CategoryTheory.MonoidalCategoryStruct.tensorHom f g) = Algebra.TensorProduct.map (CommAlgCat.Hom.hom f) (CommAlgCat.Hom.hom g) - RingHom.SurjectiveOnStalks.tensorProductMap π Mathlib.RingTheory.SurjectiveOnStalks
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] {T : Type u_3} [CommRing T] {S' : Type u_4} {T' : Type u_5} [CommRing S'] [CommRing T'] [Algebra R S] [Algebra R T] [Algebra R S'] [Algebra R T'] {f : S ββ[R] S'} (Hf : f.SurjectiveOnStalks) {g : T ββ[R] T'} (Hg : g.SurjectiveOnStalks) : (Algebra.TensorProduct.map f g).SurjectiveOnStalks - AlgHom.tensorEqualizer π Mathlib.RingTheory.Flat.Equalizer
{R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A ββ[R] B) : TensorProduct R T β₯(AlgHom.equalizer f g) ββ[S] β₯(AlgHom.equalizer (Algebra.TensorProduct.map (AlgHom.id S T) f) (Algebra.TensorProduct.map (AlgHom.id S T) g)) - AlgHom.tensorEqualizerEquiv π Mathlib.RingTheory.Flat.Equalizer
{R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A ββ[R] B) [Module.Flat R T] : TensorProduct R T β₯(AlgHom.equalizer f g) ββ[S] β₯(AlgHom.equalizer (Algebra.TensorProduct.map (AlgHom.id S T) f) (Algebra.TensorProduct.map (AlgHom.id S T) g)) - AlgHom.coe_tensorEqualizer π Mathlib.RingTheory.Flat.Equalizer
{R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A ββ[R] B) (x : TensorProduct R T β₯(AlgHom.equalizer f g)) : β((AlgHom.tensorEqualizer S T f g) x) = (Algebra.TensorProduct.map (AlgHom.id S T) (AlgHom.equalizer f g).val) x - AlgHom.tensorEqualizerEquiv_apply π Mathlib.RingTheory.Flat.Equalizer
{R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A ββ[R] B) [Module.Flat R T] (x : TensorProduct R T β₯(AlgHom.equalizer f g)) : (AlgHom.tensorEqualizerEquiv S T f g) x = (AlgHom.tensorEqualizer S T f g) x - CommRingCat.Under.equalizerForkTensorProdIso π Mathlib.Algebra.Category.Ring.Under.Limits
{R S : CommRingCat} [Algebra βR βS] [Module.Flat βR βS] {A B : CategoryTheory.Under R} (f g : A βΆ B) : CommRingCat.Under.tensorProdEqualizer f g β CommRingCat.Under.equalizerFork' (Algebra.TensorProduct.map (AlgHom.id βS βS) (CommRingCat.toAlgHom f)) (Algebra.TensorProduct.map (AlgHom.id βS βS) (CommRingCat.toAlgHom g)) - Algebra.FiniteType.baseChangeAux_surj π Mathlib.RingTheory.FiniteStability
{R : Type wβ} [CommRing R] {A : Type wβ} [CommRing A] [Algebra R A] (B : Type wβ) [CommRing B] [Algebra R B] {Ο : Type u_1} {f : MvPolynomial Ο R ββ[R] A} (hf : Function.Surjective βf) : Function.Surjective β(Algebra.TensorProduct.map (AlgHom.id B B) f) - Subalgebra.mulMap_map_comp_eq π Mathlib.LinearAlgebra.TensorProduct.Subalgebra
{R : Type u_1} {S : Type u_2} {T : Type u_3} [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring T] [Algebra R T] (A B : Subalgebra R S) (f : S ββ[R] T) : ((Subalgebra.map f A).mulMap (Subalgebra.map f B)).comp (Algebra.TensorProduct.map (AlgHom.subalgebraMap A f) (AlgHom.subalgebraMap B f)) = f.comp (A.mulMap B) - Algebra.TensorProduct.algEquivIncludeRange_toAlgHom π Mathlib.LinearAlgebra.TensorProduct.Subalgebra
(R : Type u_1) (S : Type u_2) (T : Type u_3) [CommSemiring R] [Semiring S] [Algebra R S] [Semiring T] [Algebra R T] : β(Algebra.TensorProduct.algEquivIncludeRange R S T) = Algebra.TensorProduct.map Algebra.TensorProduct.includeLeft.rangeRestrict Algebra.TensorProduct.includeRight.rangeRestrict - CliffordAlgebra.toBaseChange_comp_involute π Mathlib.LinearAlgebra.CliffordAlgebra.BaseChange
{R : Type u_1} (A : Type u_2) {V : Type u_3} [CommRing R] [CommRing A] [AddCommGroup V] [Algebra R A] [Module R V] [Invertible 2] (Q : QuadraticForm R V) : (CliffordAlgebra.toBaseChange A Q).comp CliffordAlgebra.involute = (Algebra.TensorProduct.map (AlgHom.id A A) CliffordAlgebra.involute).comp (CliffordAlgebra.toBaseChange A Q) - CliffordAlgebra.toBaseChange_comp_reverseOp π Mathlib.LinearAlgebra.CliffordAlgebra.BaseChange
{R : Type u_1} (A : Type u_2) {V : Type u_3} [CommRing R] [CommRing A] [AddCommGroup V] [Algebra R A] [Module R V] [Invertible 2] (Q : QuadraticForm R V) : (AlgHom.op (CliffordAlgebra.toBaseChange A Q)).comp CliffordAlgebra.reverseOp = (β(Algebra.TensorProduct.opAlgEquiv R A A (CliffordAlgebra Q))).comp ((Algebra.TensorProduct.map (β(AlgEquiv.toOpposite A A)) CliffordAlgebra.reverseOp).comp (CliffordAlgebra.toBaseChange A Q)) - Algebra.Presentation.tensorModelOfHasCoeffsInv.eq_1 π Mathlib.RingTheory.Extension.Presentation.Core
{R : Type u_1} {S : Type u_2} {ΞΉ : Type u_3} {Ο : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Presentation R S ΞΉ Ο) (Rβ : Type u_5) [CommRing Rβ] [Algebra Rβ R] [Algebra Rβ S] [IsScalarTower Rβ R S] [P.HasCoeffs Rβ] : P.tensorModelOfHasCoeffsInv Rβ = (Ideal.Quotient.liftβ P.ker ((Algebra.TensorProduct.map (AlgHom.id R R) (Ideal.Quotient.mkβ Rβ (Ideal.span (Set.range (Algebra.Presentation.relationOfHasCoeffs Rβ))))).comp β(MvPolynomial.algebraTensorAlgEquiv Rβ R).symm) β―).comp β(AlgEquiv.restrictScalars R P.quotientEquiv).symm - PrimeSpectrum.isHomeomorph_comap_tensorProductMap_of_isPurelyInseparable π Mathlib.RingTheory.Spectrum.Prime.Homeomorph
(K : Type u_2) (R : Type u_3) (S : Type u_4) [Field K] [CommRing R] [CommRing S] [Algebra R K] [Algebra R S] (L : Type u_5) [Field L] [Algebra R L] [Algebra K L] [IsScalarTower R K L] [IsPurelyInseparable K L] : IsHomeomorph (PrimeSpectrum.comap (Algebra.TensorProduct.map (Algebra.ofId K L) (AlgHom.id R S)).toRingHom) - MonoidAlgebra.tensorEquiv.eq_1 π Mathlib.RingTheory.TensorProduct.MonoidAlgebra
(R : Type u_1) {M : Type u_2} (A : Type u_4) (B : Type u_5) [CommSemiring R] [CommMonoid M] [CommSemiring A] [Algebra R A] [CommSemiring B] [Algebra R B] : MonoidAlgebra.tensorEquiv R A B = AlgEquiv.ofAlgHom (Algebra.TensorProduct.lift ((IsScalarTower.toAlgHom A (TensorProduct R A B) (MonoidAlgebra (TensorProduct R A B) M)).comp Algebra.TensorProduct.includeLeft) (MonoidAlgebra.mapRangeAlgHom M Algebra.TensorProduct.includeRight) β―) (MonoidAlgebra.liftNCAlgHom (Algebra.TensorProduct.map (AlgHom.id A A) MonoidAlgebra.singleOneAlgHom) ((βAlgebra.TensorProduct.includeRight.toRingHom).comp (MonoidAlgebra.of B M)) β―) β― β―
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c