Loogle!
Result
Found 43 declarations mentioning Algebra.TensorProduct.map.
- Algebra.TensorProduct.map π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) : TensorProduct R A B ββ[S] TensorProduct R C D - Algebra.TensorProduct.map_id π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] : Algebra.TensorProduct.map (AlgHom.id S A) (AlgHom.id R B) = AlgHom.id S (TensorProduct R A B) - Algebra.TensorProduct.productMap_eq_comp_map π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} [CommSemiring R] [Semiring A] [Semiring B] [CommSemiring S] [Algebra R A] [Algebra R B] [Algebra R S] (f : A ββ[R] S) (g : B ββ[R] S) : Algebra.TensorProduct.productMap f g = (Algebra.TensorProduct.lmul' R).comp (Algebra.TensorProduct.map f g) - Algebra.TensorProduct.map_comp_includeLeft π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) : (Algebra.TensorProduct.map f g).comp Algebra.TensorProduct.includeLeft = Algebra.TensorProduct.includeLeft.comp f - Algebra.TensorProduct.map_id_comp π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {D : Type uD} {F : Type uF} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring D] [Algebra R D] [Semiring F] [Algebra R F] (gβ : D ββ[R] F) (gβ : B ββ[R] D) : Algebra.TensorProduct.map (AlgHom.id S A) (gβ.comp gβ) = (Algebra.TensorProduct.map (AlgHom.id S A) gβ).comp (Algebra.TensorProduct.map (AlgHom.id S A) gβ) - Algebra.TensorProduct.map_comp_includeRight π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Semiring D] [Algebra R D] (f : A ββ[R] C) (g : B ββ[R] D) : (Algebra.TensorProduct.map f g).comp Algebra.TensorProduct.includeRight = Algebra.TensorProduct.includeRight.comp g - Algebra.TensorProduct.map_comp_id π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {S : Type uS} {A : Type uA} {C : Type uC} {E : Type uE} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring E] [Algebra R E] [Algebra S E] [IsScalarTower R S E] (fβ : C ββ[S] E) (fβ : A ββ[S] C) : Algebra.TensorProduct.map (fβ.comp fβ) (AlgHom.id R E) = (Algebra.TensorProduct.map fβ (AlgHom.id R E)).comp (Algebra.TensorProduct.map fβ (AlgHom.id R E)) - Algebra.TensorProduct.map_comp π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} {E : Type uE} {F : Type uF} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] [Semiring E] [Algebra R E] [Algebra S E] [IsScalarTower R S E] [Semiring F] [Algebra R F] (fβ : C ββ[S] E) (fβ : A ββ[S] C) (gβ : D ββ[R] F) (gβ : B ββ[R] D) : Algebra.TensorProduct.map (fβ.comp fβ) (gβ.comp gβ) = (Algebra.TensorProduct.map fβ gβ).comp (Algebra.TensorProduct.map fβ gβ) - Algebra.TensorProduct.map_tmul π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) (a : A) (b : B) : (Algebra.TensorProduct.map f g) (a ββ[R] b) = f a ββ[R] g b - Algebra.TensorProduct.map_restrictScalars_comp_includeRight π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) : (AlgHom.restrictScalars R (Algebra.TensorProduct.map f g)).comp Algebra.TensorProduct.includeRight = Algebra.TensorProduct.includeRight.comp g - Algebra.TensorProduct.congr_apply π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) (x : TensorProduct R A B) : (Algebra.TensorProduct.congr f g) x = (Algebra.TensorProduct.map βf βg) x - Algebra.TensorProduct.map_range π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Semiring D] [Algebra R D] (f : A ββ[R] C) (g : B ββ[R] D) : (Algebra.TensorProduct.map f g).range = (Algebra.TensorProduct.includeLeft.comp f).range β (Algebra.TensorProduct.includeRight.comp g).range - Algebra.TensorProduct.congr_symm_apply π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A ββ[S] C) (g : B ββ[R] D) (x : TensorProduct R C D) : (Algebra.TensorProduct.congr f g).symm x = (Algebra.TensorProduct.map βf.symm βg.symm) x - Algebra.TensorProduct.comm_comp_map π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Semiring D] [Algebra R D] (f : A ββ[R] C) (g : B ββ[R] D) : (β(Algebra.TensorProduct.comm R C D)).comp (Algebra.TensorProduct.map f g) = (Algebra.TensorProduct.map g f).comp β(Algebra.TensorProduct.comm R A B) - Algebra.TensorProduct.comm_comp_map_apply π Mathlib.RingTheory.TensorProduct.Basic
{R : Type uR} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Semiring D] [Algebra R D] (f : A ββ[R] C) (g : B ββ[R] D) (x : TensorProduct R A B) : (Algebra.TensorProduct.comm R C D) ((Algebra.TensorProduct.map f g) x) = (Algebra.TensorProduct.map g f) ((Algebra.TensorProduct.comm R A B) x) - Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] [Module.Free R A] : Subalgebra.centralizer R βAlgebra.TensorProduct.includeRight.range = (Algebra.TensorProduct.map (AlgHom.id R A) (Subalgebra.center R B).val).range - Subalgebra.centralizer_coe_image_includeRight_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] (S : Set B) [Module.Free R A] : Subalgebra.centralizer R (βAlgebra.TensorProduct.includeRight '' S) = (Algebra.TensorProduct.map (AlgHom.id R A) (Subalgebra.centralizer R S).val).range - Subalgebra.centralizer_coe_map_includeRight_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] (S : Subalgebra R B) [Module.Free R A] : Subalgebra.centralizer R β(Subalgebra.map Algebra.TensorProduct.includeRight S) = (Algebra.TensorProduct.map (AlgHom.id R A) (Subalgebra.centralizer R βS).val).range - Subalgebra.centralizer_coe_range_includeLeft_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] [Module.Free R B] : Subalgebra.centralizer R βAlgebra.TensorProduct.includeLeft.range = (Algebra.TensorProduct.map (Subalgebra.center R A).val (AlgHom.id R B)).range - Subalgebra.centralizer_coe_image_includeLeft_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] (S : Set A) [Module.Free R B] : Subalgebra.centralizer R (βAlgebra.TensorProduct.includeLeft '' S) = (Algebra.TensorProduct.map (Subalgebra.centralizer R S).val (AlgHom.id R B)).range - Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_right π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] [Module.Free R A] : Subalgebra.centralizer R β(Algebra.TensorProduct.map (Algebra.ofId R A) (AlgHom.id R B)).range = (Algebra.TensorProduct.map (AlgHom.id R A) (Subalgebra.center R B).val).range - Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_left π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] [Module.Free R B] : Subalgebra.centralizer R β(Algebra.TensorProduct.map (AlgHom.id R A) (Algebra.ofId R B)).range = (Algebra.TensorProduct.map (Subalgebra.center R A).val (AlgHom.id R B)).range - Subalgebra.centralizer_coe_map_includeLeft_eq_center_tensorProduct π Mathlib.Algebra.Algebra.Subalgebra.Centralizer
(R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] [Algebra R A] (B : Type u_3) [Semiring B] [Algebra R B] (S : Subalgebra R A) [Module.Free R B] : Subalgebra.centralizer R β(Subalgebra.map Algebra.TensorProduct.includeLeft S) = (Algebra.TensorProduct.map (Subalgebra.centralizer R βS).val (AlgHom.id R B)).range - Bialgebra.ofAlgHom π Mathlib.RingTheory.Bialgebra.Basic
{R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (comul : A ββ[R] TensorProduct R A A) (counit : A ββ[R] R) (h_coassoc : (β(Algebra.TensorProduct.assoc R A A A)).comp ((Algebra.TensorProduct.map comul (AlgHom.id R A)).comp comul) = (Algebra.TensorProduct.map (AlgHom.id R A) comul).comp comul) (h_rTensor : (Algebra.TensorProduct.map counit (AlgHom.id R A)).comp comul = β(Algebra.TensorProduct.lid R A).symm) (h_lTensor : (Algebra.TensorProduct.map (AlgHom.id R A) counit).comp comul = β(Algebra.TensorProduct.rid R R A).symm) : Bialgebra R A - BialgHomClass.map_comp_comulAlgHom π Mathlib.RingTheory.Bialgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [Semiring A] [Bialgebra R A] [Semiring B] [Bialgebra R B] [FunLike F A B] [BialgHomClass F R A B] (f : F) : (Algebra.TensorProduct.map βf βf).comp (Bialgebra.comulAlgHom R A) = (Bialgebra.comulAlgHom R B).comp βf - Bialgebra.TensorProduct.counit_eq_algHom_toLinearMap π Mathlib.RingTheory.Bialgebra.TensorProduct
(R : Type u_1) (A : Type u_2) (B : Type u_3) [CommRing R] [Ring A] [Ring B] [Bialgebra R A] [Bialgebra R B] : CoalgebraStruct.counit = ((Algebra.TensorProduct.lmul' R).comp (Algebra.TensorProduct.map (Bialgebra.counitAlgHom R A) (Bialgebra.counitAlgHom R B))).toLinearMap - Bialgebra.TensorProduct.map_toAlgHom π Mathlib.RingTheory.Bialgebra.TensorProduct
{R A B C D : Type u} [CommRing R] [Ring A] [Ring B] [Ring C] [Ring D] [Bialgebra R A] [Bialgebra R B] [Bialgebra R C] [Bialgebra R D] (f : A ββc[R] B) (g : C ββc[R] D) : β(Bialgebra.TensorProduct.map f g) = Algebra.TensorProduct.map βf βg - Bialgebra.TensorProduct.comul_eq_algHom_toLinearMap π Mathlib.RingTheory.Bialgebra.TensorProduct
(R : Type u_1) (A : Type u_2) (B : Type u_3) [CommRing R] [Ring A] [Ring B] [Bialgebra R A] [Bialgebra R B] : CoalgebraStruct.comul = ((β(Algebra.TensorProduct.tensorTensorTensorComm R R A A B B)).comp (Algebra.TensorProduct.map (Bialgebra.comulAlgHom R A) (Bialgebra.comulAlgHom R B))).toLinearMap - Algebra.TensorProduct.lTensor_ker π Mathlib.LinearAlgebra.TensorProduct.RightExactness
{R : Type u_4} [CommRing R] {A : Type u_5} {C : Type u_7} {D : Type u_8} [Ring A] [Ring C] [Ring D] [Algebra R A] [Algebra R C] [Algebra R D] (g : C ββ[R] D) (hg : Function.Surjective βg) : RingHom.ker (Algebra.TensorProduct.map (AlgHom.id R A) g) = Ideal.map Algebra.TensorProduct.includeRight (RingHom.ker g) - Algebra.TensorProduct.rTensor_ker π Mathlib.LinearAlgebra.TensorProduct.RightExactness
{R : Type u_4} [CommRing R] {A : Type u_5} {B : Type u_6} {C : Type u_7} [Ring A] [Ring B] [Ring C] [Algebra R A] [Algebra R B] [Algebra R C] (f : A ββ[R] B) (hf : Function.Surjective βf) : RingHom.ker (Algebra.TensorProduct.map f (AlgHom.id R C)) = Ideal.map Algebra.TensorProduct.includeLeft (RingHom.ker f) - Algebra.TensorProduct.map_ker π Mathlib.LinearAlgebra.TensorProduct.RightExactness
{R : Type u_4} [CommRing R] {A : Type u_5} {B : Type u_6} {C : Type u_7} {D : Type u_8} [Ring A] [Ring B] [Ring C] [Ring D] [Algebra R A] [Algebra R B] [Algebra R C] [Algebra R D] (f : A ββ[R] B) (g : C ββ[R] D) (hf : Function.Surjective βf) (hg : Function.Surjective βg) : RingHom.ker (Algebra.TensorProduct.map f g) = Ideal.map Algebra.TensorProduct.includeLeft (RingHom.ker f) β Ideal.map Algebra.TensorProduct.includeRight (RingHom.ker g) - CommRingCat.tensorProd_map_right π Mathlib.Algebra.Category.Ring.Under.Basic
(R S : CommRingCat) [Algebra βR βS] {Xβ Yβ : CategoryTheory.Under R} (f : Xβ βΆ Yβ) : ((R.tensorProd S).map f).right = CommRingCat.ofHom β(Algebra.TensorProduct.map (AlgHom.id βS βS) (CommRingCat.toAlgHom f)) - AlgHom.tensorEqualizer π Mathlib.RingTheory.Flat.Equalizer
{R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A ββ[R] B) : TensorProduct R T β₯(AlgHom.equalizer f g) ββ[S] β₯(AlgHom.equalizer (Algebra.TensorProduct.map (AlgHom.id S T) f) (Algebra.TensorProduct.map (AlgHom.id S T) g)) - AlgHom.tensorEqualizerEquiv π Mathlib.RingTheory.Flat.Equalizer
{R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A ββ[R] B) [Module.Flat R T] : TensorProduct R T β₯(AlgHom.equalizer f g) ββ[S] β₯(AlgHom.equalizer (Algebra.TensorProduct.map (AlgHom.id S T) f) (Algebra.TensorProduct.map (AlgHom.id S T) g)) - AlgHom.coe_tensorEqualizer π Mathlib.RingTheory.Flat.Equalizer
{R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A ββ[R] B) (x : TensorProduct R T β₯(AlgHom.equalizer f g)) : β((AlgHom.tensorEqualizer S T f g) x) = (Algebra.TensorProduct.map (AlgHom.id S T) (AlgHom.equalizer f g).val) x - AlgHom.tensorEqualizerEquiv_apply π Mathlib.RingTheory.Flat.Equalizer
{R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A ββ[R] B) [Module.Flat R T] (x : TensorProduct R T β₯(AlgHom.equalizer f g)) : (AlgHom.tensorEqualizerEquiv S T f g) x = (AlgHom.tensorEqualizer S T f g) x - CommRingCat.Under.equalizerForkTensorProdIso π Mathlib.Algebra.Category.Ring.Under.Limits
{R S : CommRingCat} [Algebra βR βS] [Module.Flat βR βS] {A B : CategoryTheory.Under R} (f g : A βΆ B) : CommRingCat.Under.tensorProdEqualizer f g β CommRingCat.Under.equalizerFork' (Algebra.TensorProduct.map (AlgHom.id βS βS) (CommRingCat.toAlgHom f)) (Algebra.TensorProduct.map (AlgHom.id βS βS) (CommRingCat.toAlgHom g)) - Algebra.FiniteType.baseChangeAux_surj π Mathlib.RingTheory.FiniteStability
{R : Type wβ} [CommRing R] {A : Type wβ} [CommRing A] [Algebra R A] (B : Type wβ) [CommRing B] [Algebra R B] {Ο : Type u_1} {f : MvPolynomial Ο R ββ[R] A} (hf : Function.Surjective βf) : Function.Surjective β(Algebra.TensorProduct.map (AlgHom.id B B) f) - Subalgebra.mulMap_map_comp_eq π Mathlib.LinearAlgebra.TensorProduct.Subalgebra
{R : Type u_1} {S : Type u_2} {T : Type u_3} [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring T] [Algebra R T] (A B : Subalgebra R S) (f : S ββ[R] T) : ((Subalgebra.map f A).mulMap (Subalgebra.map f B)).comp (Algebra.TensorProduct.map (AlgHom.subalgebraMap A f) (AlgHom.subalgebraMap B f)) = f.comp (A.mulMap B) - Algebra.TensorProduct.algEquivIncludeRange_toAlgHom π Mathlib.LinearAlgebra.TensorProduct.Subalgebra
(R : Type u_1) (S : Type u_2) (T : Type u_3) [CommSemiring R] [Semiring S] [Algebra R S] [Semiring T] [Algebra R T] : β(Algebra.TensorProduct.algEquivIncludeRange R S T) = Algebra.TensorProduct.map Algebra.TensorProduct.includeLeft.rangeRestrict Algebra.TensorProduct.includeRight.rangeRestrict - CliffordAlgebra.toBaseChange_comp_involute π Mathlib.LinearAlgebra.CliffordAlgebra.BaseChange
{R : Type u_1} (A : Type u_2) {V : Type u_3} [CommRing R] [CommRing A] [AddCommGroup V] [Algebra R A] [Module R V] [Invertible 2] (Q : QuadraticForm R V) : (CliffordAlgebra.toBaseChange A Q).comp CliffordAlgebra.involute = (Algebra.TensorProduct.map (AlgHom.id A A) CliffordAlgebra.involute).comp (CliffordAlgebra.toBaseChange A Q) - CliffordAlgebra.toBaseChange_comp_reverseOp π Mathlib.LinearAlgebra.CliffordAlgebra.BaseChange
{R : Type u_1} (A : Type u_2) {V : Type u_3} [CommRing R] [CommRing A] [AddCommGroup V] [Algebra R A] [Module R V] [Invertible 2] (Q : QuadraticForm R V) : (AlgHom.op (CliffordAlgebra.toBaseChange A Q)).comp CliffordAlgebra.reverseOp = (β(Algebra.TensorProduct.opAlgEquiv R A A (CliffordAlgebra Q))).comp ((Algebra.TensorProduct.map (β(AlgEquiv.toOpposite A A)) CliffordAlgebra.reverseOp).comp (CliffordAlgebra.toBaseChange A Q)) - PrimeSpectrum.isHomeomorph_comap_tensorProductMap_of_isPurelyInseparable π Mathlib.RingTheory.Spectrum.Prime.Homeomorph
(K : Type u_2) (R : Type u_3) (S : Type u_4) [Field K] [CommRing R] [CommRing S] [Algebra R K] [Algebra R S] (L : Type u_5) [Field L] [Algebra R L] [Algebra K L] [IsScalarTower R K L] [IsPurelyInseparable K L] : IsHomeomorph β(PrimeSpectrum.comap (Algebra.TensorProduct.map (Algebra.ofId K L) (AlgHom.id R S)).toRingHom)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65