Loogle!
Result
Found 16 declarations mentioning AlgebraicGeometry.AffineSpace.map.
- AlgebraicGeometry.AffineSpace.map ๐ Mathlib.AlgebraicGeometry.AffineSpace
(n : Type v) {S T : AlgebraicGeometry.Scheme} (f : S โถ T) : AlgebraicGeometry.AffineSpace n S โถ AlgebraicGeometry.AffineSpace n T - AlgebraicGeometry.AffineSpace.map_id ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} (S : AlgebraicGeometry.Scheme) : AlgebraicGeometry.AffineSpace.map n (CategoryTheory.CategoryStruct.id S) = CategoryTheory.CategoryStruct.id (AlgebraicGeometry.AffineSpace n S) - AlgebraicGeometry.AffineSpace.map_comp ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {S S' S'' : AlgebraicGeometry.Scheme} (f : S โถ S') (g : S' โถ S'') : AlgebraicGeometry.AffineSpace.map n (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.map n f) (AlgebraicGeometry.AffineSpace.map n g) - AlgebraicGeometry.AffineSpace.map_reindex ๐ Mathlib.AlgebraicGeometry.AffineSpace
{nโ nโ : Type v} (i : nโ โ nโ) {S T : AlgebraicGeometry.Scheme} (f : S โถ T) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.map nโ f) (AlgebraicGeometry.AffineSpace.reindex i T) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.reindex i S) (AlgebraicGeometry.AffineSpace.map nโ f) - AlgebraicGeometry.AffineSpace.map_toSpecMvPoly ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {S T : AlgebraicGeometry.Scheme} (f : S โถ T) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.map n f) (AlgebraicGeometry.AffineSpace.toSpecMvPoly n T) = AlgebraicGeometry.AffineSpace.toSpecMvPoly n S - AlgebraicGeometry.AffineSpace.isPullback_map ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {S T : AlgebraicGeometry.Scheme} (f : S โถ T) : CategoryTheory.IsPullback (AlgebraicGeometry.AffineSpace.map n f) (AlgebraicGeometry.AffineSpace n S โ S) (AlgebraicGeometry.AffineSpace n T โ T) f - AlgebraicGeometry.AffineSpace.map_over ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {S T : AlgebraicGeometry.Scheme} (f : S โถ T) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.map n f) (AlgebraicGeometry.AffineSpace n T โ T) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace n S โ S) f - AlgebraicGeometry.AffineSpace.functor_obj_map ๐ Mathlib.AlgebraicGeometry.AffineSpace
(n : Type vแตแต) {Xโ Yโ : AlgebraicGeometry.Scheme} (f : Xโ โถ Yโ) : (AlgebraicGeometry.AffineSpace.functor.obj n).map f = AlgebraicGeometry.AffineSpace.map (Opposite.unop n) f - AlgebraicGeometry.AffineSpace.map_comp_assoc ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {S S' S'' : AlgebraicGeometry.Scheme} (f : S โถ S') (g : S' โถ S'') {Z : AlgebraicGeometry.Scheme} (h : AlgebraicGeometry.AffineSpace n S'' โถ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.map n (CategoryTheory.CategoryStruct.comp f g)) h = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.map n f) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.map n g) h) - AlgebraicGeometry.AffineSpace.map_reindex_assoc ๐ Mathlib.AlgebraicGeometry.AffineSpace
{nโ nโ : Type v} (i : nโ โ nโ) {S T : AlgebraicGeometry.Scheme} (f : S โถ T) {Z : AlgebraicGeometry.Scheme} (h : AlgebraicGeometry.AffineSpace nโ T โถ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.map nโ f) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.reindex i T) h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.reindex i S) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.map nโ f) h) - AlgebraicGeometry.AffineSpace.map_toSpecMvPoly_assoc ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {S T : AlgebraicGeometry.Scheme} (f : S โถ T) {Z : AlgebraicGeometry.Scheme} (h : AlgebraicGeometry.Spec (CommRingCat.of (MvPolynomial n (ULift.{max u v, 0} โค))) โถ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.map n f) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.toSpecMvPoly n T) h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.toSpecMvPoly n S) h - AlgebraicGeometry.AffineSpace.map_over_assoc ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {S T : AlgebraicGeometry.Scheme} (f : S โถ T) {Z : AlgebraicGeometry.Scheme} (h : T โถ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.map n f) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace n T โ T) h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace n S โ S) (CategoryTheory.CategoryStruct.comp f h) - AlgebraicGeometry.AffineSpace.mapSpecMap ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {R S : CommRingCat} (ฯ : R โถ S) : CategoryTheory.Arrow.mk (AlgebraicGeometry.AffineSpace.map n (AlgebraicGeometry.Spec.map ฯ)) โ CategoryTheory.Arrow.mk (AlgebraicGeometry.Spec.map (CommRingCat.ofHom (MvPolynomial.map (CommRingCat.Hom.hom ฯ)))) - AlgebraicGeometry.AffineSpace.functor_map_app ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n m : Type vแตแต} (i : n โถ m) (S : AlgebraicGeometry.Scheme) : (AlgebraicGeometry.AffineSpace.functor.map i).app S = AlgebraicGeometry.AffineSpace.reindex i.unop S - AlgebraicGeometry.AffineSpace.map_Spec_map ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {R S : CommRingCat} (ฯ : R โถ S) : AlgebraicGeometry.AffineSpace.map n (AlgebraicGeometry.Spec.map ฯ) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.SpecIso n S).hom (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Spec.map (CommRingCat.ofHom (MvPolynomial.map (CommRingCat.Hom.hom ฯ)))) (AlgebraicGeometry.AffineSpace.SpecIso n R).inv) - AlgebraicGeometry.AffineSpace.map_appTop_coord ๐ Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {S T : AlgebraicGeometry.Scheme} (f : S โถ T) (i : n) : (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.appTop (AlgebraicGeometry.AffineSpace.map n f))) (AlgebraicGeometry.AffineSpace.coord T i) = AlgebraicGeometry.AffineSpace.coord S i
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65