Loogle!
Result
Found 13 declarations mentioning AlgebraicGeometry.Scheme.AffineCover.map.
- AlgebraicGeometry.Scheme.AffineCover.map_prop 📋 Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (self : AlgebraicGeometry.Scheme.AffineCover P X) (j : self.J) : P (self.map j) - AlgebraicGeometry.Scheme.AffineCover.map 📋 Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (self : AlgebraicGeometry.Scheme.AffineCover P X) (j : self.J) : AlgebraicGeometry.Spec (self.obj j) ⟶ X - AlgebraicGeometry.Scheme.AffineCover.cover_map 📋 Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (𝒰 : AlgebraicGeometry.Scheme.AffineCover P X) (j : 𝒰.J) : 𝒰.cover.map j = 𝒰.map j - AlgebraicGeometry.Scheme.AffineCover.covers 📋 Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (self : AlgebraicGeometry.Scheme.AffineCover P X) (x : ↥X) : x ∈ Set.range ⇑(CategoryTheory.ConcreteCategory.hom (self.map (self.f x)).base) - AlgebraicGeometry.Scheme.AffineOpenCover.instIsOpenImmersionMap 📋 Mathlib.AlgebraicGeometry.Cover.Open
{X : AlgebraicGeometry.Scheme} (𝒰 : X.AffineOpenCover) (j : 𝒰.J) : AlgebraicGeometry.IsOpenImmersion (𝒰.map j) - AlgebraicGeometry.Scheme.affineOpenCover_map 📋 Mathlib.AlgebraicGeometry.Cover.Open
(X : AlgebraicGeometry.Scheme) (j : X.affineCover.J) : X.affineOpenCover.map j = X.affineCover.map j - AlgebraicGeometry.Scheme.AffineOpenCover.openCover_map 📋 Mathlib.AlgebraicGeometry.Cover.Open
{X : AlgebraicGeometry.Scheme} (𝒰 : X.AffineOpenCover) (j : 𝒰.J) : 𝒰.openCover.map j = 𝒰.map j - AlgebraicGeometry.Scheme.affineOpenCoverOfSpanRangeEqTop_map 📋 Mathlib.AlgebraicGeometry.Cover.Open
{R : CommRingCat} {ι : Type u_1} (s : ι → ↑R) (hs : Ideal.span (Set.range s) = ⊤) (i : ι) : (AlgebraicGeometry.Scheme.affineOpenCoverOfSpanRangeEqTop s hs).map i = AlgebraicGeometry.Spec.map (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away (s i)))) - AlgebraicGeometry.Scheme.IdealSheafData.subschemeCover_map_subschemeι 📋 Mathlib.AlgebraicGeometry.IdealSheaf.Subscheme
{X : AlgebraicGeometry.Scheme} (I : X.IdealSheafData) (U : ↑X.affineOpens) : CategoryTheory.CategoryStruct.comp (I.subschemeCover.map U) I.subschemeι = CategoryTheory.CategoryStruct.comp (I.glueDataObjι U) (↑U).ι - AlgebraicGeometry.Scheme.IdealSheafData.subSchemeCover_map_inclusion 📋 Mathlib.AlgebraicGeometry.IdealSheaf.Subscheme
{X : AlgebraicGeometry.Scheme} {I J : X.IdealSheafData} (h : I ≤ J) (U : J.subschemeCover.J) : CategoryTheory.CategoryStruct.comp (J.subschemeCover.map U) (AlgebraicGeometry.Scheme.IdealSheafData.inclusion h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.IdealSheafData.glueDataObjHom h U) (I.subschemeCover.map U) - AlgebraicGeometry.Scheme.IdealSheafData.subSchemeCover_map_inclusion_assoc 📋 Mathlib.AlgebraicGeometry.IdealSheaf.Subscheme
{X : AlgebraicGeometry.Scheme} {I J : X.IdealSheafData} (h : I ≤ J) (U : J.subschemeCover.J) {Z : AlgebraicGeometry.Scheme} (h✝ : I.subscheme ⟶ Z) : CategoryTheory.CategoryStruct.comp (J.subschemeCover.map U) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.IdealSheafData.inclusion h) h✝) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.IdealSheafData.glueDataObjHom h U) (CategoryTheory.CategoryStruct.comp (I.subschemeCover.map U) h✝) - AlgebraicGeometry.Scheme.IdealSheafData.opensRange_subschemeCover_map 📋 Mathlib.AlgebraicGeometry.IdealSheaf.Subscheme
{X : AlgebraicGeometry.Scheme} (I : X.IdealSheafData) (U : ↑X.affineOpens) : AlgebraicGeometry.Scheme.Hom.opensRange (I.subschemeCover.map U) = (TopologicalSpace.Opens.map I.subschemeι.base).obj ↑U - AlgebraicGeometry.Scheme.IdealSheafData.subschemeObjIso.eq_1 📋 Mathlib.AlgebraicGeometry.IdealSheaf.Subscheme
{X : AlgebraicGeometry.Scheme} (I : X.IdealSheafData) (U : ↑X.affineOpens) : I.subschemeObjIso U = CategoryTheory.Functor.mapIso I.subscheme.presheaf (CategoryTheory.eqToIso ⋯).op ≪≫ AlgebraicGeometry.Scheme.Hom.appIso (I.subschemeCover.map U) ⊤ ≪≫ AlgebraicGeometry.Scheme.ΓSpecIso (CommRingCat.of (↑(X.presheaf.obj (Opposite.op ↑U)) ⧸ I.ideal U))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65